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Dark matter is an essential building block of the Standard Model
of Cosmology
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What do we know about DM?

1.stable particle (lite time at least age of the Universe)
2.Its amount Qcpy ~ 0.26 (CMB)
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What do we know about DM?

3.electrically neutral: if not, it would interact with photons! (photons

couple to charge) DM would not be ‘dark’ i.e. ‘invisible’!
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What do we know about DM?

3.electrically neutral:

® it could bind with other charged particles (and form neutral systems),
but strong limits on exotic atoms!

o if X+, bound states with electron ~heavy Hydrogen!

® if X- bound to nuclei- anomalous isotopes

Abundance Limits for X Particles
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4.%it* it has non gravitational interactions they must be ‘weak’:

® genuine weak interactions, exchange W or Z

® here means generally just un-observably week
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What do we know about DM? .. = =5 .

5.'non-baryonic’: does not form atoms and does
not dissipate energy like baryons - strong limits
from Big Beng Nucleosynthesis (BBN).

From what we know about nuclear physics we can very well
predict the sequence of events in which proton, neutron and
electrons bound to form H+, D+, He**, Lit+*+ (Thermal
decoupling of sorts!)
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DM did not participate in this process! i.e. DM cannot be
baryonic, otherwise the abundances of elements measured
today would be quite different than what calculated!
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What do we know about DM?

6.1t was slow (non relativistic) at the time of formation of first structures (if in
thermal equilibrium)

N-body simulations find that it DM would be lighter
than keV small structures would have been erased!

Evolution of matter perturbations

cold dark matter warm dark matter

Cold Dark Matter
IS

Warm Dark Matter

»

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns,
Boyarski & Ruchayskiy ‘12




DM check list:

[ stable

(ZQCDM ~ 0.26
A electrically neutral

I ‘'weakly’ interacting
[ does not affect BBN

[ non-relativistic at
structure formation



The challenge

s it a particle?
How does it couple to the Standard Model?
« Composite or elementary?

‘Maverick’ or dark ‘sector’?
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3. DM candidates Today
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Particle dark matter models

A theorist’s ‘landscape’

MSSM

Hidden
Sector DM

O\ 20
N\

Dark Photon

Asymmetric DM

R-parity
Conserving

R-parity
violating

7

Light
Force Carriers

| ——

Sterile Neutrinos

—

QCD Axions

T Tait

Axion-like Particles

Solitonic DM

Quark
Nuggets

Littlest Higgs

Supersymmetry

Extra Dimensions

Warped Extra
Dimensions

G __—

Little Higgs

|4

Credit: T. Tait



Particle dark matter models

Landscape in terms of (gamma-ray) signatures

'WIMP/thermal’' DM

Little Higg

Axions/ALPs

Credit: M. Meyer



Models
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Models

leld particle macroscopic
_ _ ther.mal Planck scale
Ultra—light scalars, axion Vs particles 10-10
by eyl
| B B
107 107 1071 f 1 101;f 10%°
Thow weak scale

Some clues about its nature:

One mystery is why dark matter is stable -
especially if it is heavy enough to be “cold”
in the early universe

 Sets stringent limits on DM-SM interactions

e Easiest route: impose some kind of symmetry
to prevent DM from decaying




Models

leld particle macroscopic

B Planck scale

tra—lieht scal i articles
Ultra—light scalars, axion Vg p - 19_10’ 1 1010 1020 1030 1040kg
| B B
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Some clues about its nature:

Any DM model must explain the abundance of
dark matter at the epoch of last scattering

e Thermal: interactions set final abundance
e Non-thermal: Initial condition from

reheating? -Misalignment mechanism? -Phase
transition?




Models

leld particle macroscopic

B Planck scale

tra—lieht scal i articles
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Some clues about its nature:

Any DM model must explain the abundance of
dark matter at the epoch of last scattering

e Thermal: interactions set final abundance
e Non-thermal: Initial condition from

reheating? -Misalignment mechanism? -Phase
transition?




A ‘special’ model: ‘Weakly interacting Massive Particles’ (WIMPs) -> Thermal DM

thermal Planck scale

Ultra-light scalars, ux'i(lm v, particles 10"'2{ 1 1010 lpzo 103 104°kg
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In the early universe, let the DM
particle be thermally coupled to the
SM. Can annihilate to SM particles, or
SM particles can collide and produce it.

XX < SM SM

Temperature(universe) < particle mass
=> can still annihilate, but can’t be
produced.

xX — SM SM

XX < SM SM

Abundance falls exponentially, cut off
when timescale for annihilation ~ R i )

Hubl?le time. The comoving dark matter ¢, (known) late-time density is set by
density then freezes out. annihilation rate.

(ov) ~ 3 x 107 *°cm?® /s ~ ma? /(100 GeV)?

Kolb, Turner 1

100




Qutline of calculation

Ingredients: annihilation rate for identical particles given by
annihilations / dt / dV = n*{ov)/2
Boltzmann equation:

dn | 5 5
i 3Hn = —(ov) [n* — nZ |
Equilibrium density (Boltzmann distribution):

3/2
m1 e
Neq = g (%) & A

Temperature of universe (assume radiation domination):
H2oc,oo<T4“=>To<\/H<><t_1/2




stimating freezeout

® For precision solution, can solve this differential equation numerically

® But we can get a simple estimate of important quantities analytically.

® Freezeout occurs when timescale for expansion ~ timescale for
collision: H ~ n{owv

20Ut, N~Neq, SO We require H ~ g(mT/2m)3/2e=™/T (gv)
ehave H(m)z ™2 = g(m?/2n)3/ 2232~ (ov)

XZ

® Transcendental equation ¢ © = :v_l/ 2 /C' has approximate solution

z~InC ~ In (g(m2 /127)3/2 (g0 /H(m))

note: only depends on m and cross section logarithmically




® Abundance at freeze-out:

. g(m2/2ﬂ_)3/2x—3/26—x v

® For comparison, photon abun

3 S
Ny ~T° ~m”/x}

M
ut

(H(m)/m") (z/m)/{ov)

® To match measurements of DM mass density from CMB (comparable to
critical density and baryon density), DM number density ~9 orders of
magnitude below photon number density if mpy = m;,n. At higher DM

mass, number density must be lower (keeping mass density = mass x
number density fixed).

H(m) ~ m?/mp; = 1077GeVmp; ~

zf/{ov) = (ov) ~ 2,107 '°GeV 7




® | et us estimate

® [hen from first estimate for cross section, natural mass
scale is m~1000 GeV.

® Plug this back into formula for xg; we find x~25.

s ~ In (g/(27r)3/2mmp1<av>)

® This gives us a better cross section estimate:

(ov) ~2x 1077GeV % ~ 2 x 10~ %cm? /s




Thermal decoupling?

N —— Thermal decoupling, i.e. the fact that the
Neutrino Decoupling present abundance of a given specie is

determined by its interaction with the

plasma in equilibrium up to the ‘freeze-

out’ moment, explains many of the events
in the early Universe

* Prime example - Cosmic Neutrino

Background (CNB): decoupling of weak
interactions for a relativistic particle

T=3x101K

Y+Y=ette
n+v.=2p+e

p+v.=2n+et

The neutrinos decouple when we have the rates comparable, which is

'y =Tw.
We find the energy scale is MeV while time scale is second! Also notice the decoupling for different flavors should be different.

As a result of expansion, those cosmic background neutrinos should be very cold.

ol Number density: 112 neutrinos per cc/for each flavor. This 112 includes both neutrinos and antineutrinos.
e Temperature: 1.94K which corresponds to 1.67 x 10~ %eV.

25



Thermal dark matter

* In a thermal scenario (already at play for most of the events in the Early

Universe), weak-scale annihilation cross section naturally yields the observed
abundance of dark matter.

* Suggestive of new physics not too far above the weak scale.

e Stable WIMPs automatically occur in many scenarios for physics beyond the
Standard Model, in particular in supersymmetry.

* However, simplest scenarios are challenged by lack of detection on other fronts;

26



A ‘special’ model: ‘Weakly interacting Massive Particles’ (WIMPs)

thermal Planck scale

Ultra—light scalars, axion v, particles
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A ‘special’ model: ‘Weakly interacting Massive Particles’ (WIMPs)

thermal
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4. Experiments
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Search strategy & tools

thermal freeze-out (early Univ.)

indirect detection (now)
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What is the expected DM signal? - y's and v's travel in straight lines!

4 A 4 D
particle physics X | cosmology

Flux (y, v)

\ J & J

t . Mass i //
A 3

Cross section
Profile

o How is DM distributed
Annihilation Channel

>
Energy
Bertone 2007

+: cascade
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What is the expected DM signal? - charged particles

f \
Flux (CRs)
. Y

[credit: Cirelli, M.]

Sagittarius Arm

particle physics

Galactic Bulge

-

\_

cosmology

J

s

&

astrophysics

~

J




What is the expected DM signal? - charged particles

r \
Flux (CRs)
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Focus on gamma-rays

PROs:

* neutral! point back to their source

* Easier to catch than neutrinos (high(er) statistics)
e => with gamma-rays one can study individual identified sources and

different sources classes

Challenge:
Gamma rays (much) rarer than
charged Cosmic Rays

Flux / (cm? s sr GeV/n)™
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What tools?
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What tools?

11 incoming gamma ray

Large FoV
(1/4 of the sky)
Negligible CR
contamination

clectron-positron pair

(gamma rays
measured DIRECTLY)

e Limited effective
area ~ m?

Dl

 Limited angular
resolution

~ few - 0.1 deg

| -

Sensitivity E? dN/dE [e
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 Large duty cycle
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What tools?

£6:5.; MAGIC,\ :
Limited FoV ~ 5x5
degrees :
v a (‘pointing’ telescopes) .
| B - Significant CR
contamination

(electrons!)

Large effective area
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What tools?
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LHAASO - a combination of few techniques
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Future?
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5. Signal & Targets
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In the case of WIMPs

The signal

particle physics

4 A
dE, - 4r 2 ms , l
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flux of SM particles

per DM annihilation

1) featureless spectra for bulk of the channels
Secondary photons (tree level) q uaSi-un ive rsal S p ectra
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The signal

In the case of WIMPs cosmology
(AD(AQ,E,) dN! ! |
() B
( )/) _ 1 (O'annV) X BR 0% X 4O dSp2(S, Q)
dEy 4 2 m?2 l dE AQ los
S y / Y - v,
flux of SM particles
per DM annihilation
2) feature - full spectra 1075,
centre region
— 107" mpy = 100 GeV
ine signal (loop level @ (a? :‘2 <ov>=3x10 _26cm3s )
Line signal (Ioop level ©(a?)) e
. a@ 99.9
; f: 107
X 0.1 |> My =10GeV
zZ S 1070w 95
=0 s s
1011 ' Ty o
1073 Lo — ' - | |
10 10 o 0.1 ’ 5 20 200
! E, [GeV]

» photons from Final State Particles (FSR) or internal states (VIB) and annihilation to a y-
ray line (two photons/Zy) through loop processes) or box shaped emission, to four photos

via an intermediate state.

* low signals but easier to distinguish from astrophysics radiation




The signal

In the case of WIMPs particle physics cosmology
4 N 1N r B
d(D(AQ, E’)/) _ 1 (O'annV) X BRl _)/ X f dQ f dsz(S, Q)
dE, 4r 2m; . dE, AQ los
\ ) l \- _/

» DM density distribution needed
* From N-body simulations
= Or observations of gravitation field tracers




Where to look - DM density map (N-body simulations

.

Credit: J. Coronado-Blazquez




Targets
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Targets

Numwerous
subhalos

—  pure COM B f S

WOM: m=2.0keV || [ A .
— MDM: m=3.0keV || [ESERSER §S
~  WDM: m=4.0keV 5 Dark :

v %=

;A?‘ * - . ;i 2
ubhalos|

S

-
o
-

O AR » g 3 : - -
o LY 1 DS 4 \ 3 e % .
R - . o . W B . 8
%, . .‘ oo e . ». 2 . »
- '.“ e > W B Tie ¢ - \
. i, g . ' -
Kigias i

dn/dinM [Mpch]?
=

[
-
=

“IMilky Way-like halo

Credit: J. Coronado-Blazquez




Targets

sig nal PS or extended

|dsphs: the most | Luminosity 300 suns -
massive subhalos | =
(1029 M), host stars ' ‘ ' s

 Mass >600,000 suns!




Targets

Magellanic Clouwds

lrregular galaxies,
datelines of the CINg e e .. &8 .
MW, ~1010 M, b i e S ; | «Milky: Way-like halo

Credit: J. Coronado-Blazquez




Targets
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Credit: J. Coronado-Blazquez




Targets
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Targets

Together with analysis of individual targets, target assembles can be used in various
statistics frameworks:

— cumulative extragalactic signal
— angular anisotropies

— cross-correlations between gamma ray maps and DM tracer maps (weak lensing,
galaxy catalogues..)

[TNG100 simulation]



Main uncertainties in DM signal prediction

Observations 2 ___
N-body simulations and SR TR s
observations agree on large
scales (>~galaxies). However,
DM density distribution poorly
constrained on small scales!

Critical because signal is usually
DOMINATED by small scales
(e.g. center of our Galaxy) or by
annihilation in small halos (which
are the most concentrated)

Simulations




Uncertainty in DM density distribution

N-body simulations: issues 01

» limited resolution-> small distances and small masses unresolved.

Angle from the GC [degrees]

recall for WIMPs f 10 f q 2( Q) 107 30”17 5°10° 30’ 1° 20 5°1090°45°

Sp S, — T T T T T T T T T T Nq -
' . resolution of
signal~ AQ los 104 :

N Moore ) .
S simulations

10° & NFW >

102 = Einasto

10 £

1E

ppm [GeV/em’]

107!

small masses

; * . R 1 , 10_2 B [ WA ld
A ' 1073 102 10! 1 10 1
r [kpc] [Cirelli, M.+, JCAP, 2011]

| (sub)halos resolved down to >~105 M.

WIMPs could produce halos as smati"as 10-¢ M.
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N-body simulations: issues 02

» baryonic feedback baryons can dominate gravitational potential at small
scales

» Challenge - simulations need to cover a large span of scales
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i oy A
J Compact
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...&

Binary X
Interactions

Figure from Roland Dieh =%

[TNG simulation]

A number of simulations recover realistic disk Galaxies (great progress!),
but still a number of open issues
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Observations - subhalos

different approach is to measure motion of stellar objects to determine the

gravitational potential of DM. For example:

» dwarf spheroidal Galaxies: the smallest DM halos (108, 10? Msol) that

" Luminosity 300 suns -

* Mass >600,000 suns!
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Observations - subhalos

different approach is to measure motion of stellar objects to determine the
gravitational potential of DM. For example:

» dwarf spheroidal Galaxies: Assuming virialization, each population
traces the gravitational potential, and we can use the spherical Jeans
equation to link the measured velocity dispersion and the dSph
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Observations - galaxy center

» in the very centers of halos gravitational potential is usually dominated by
baryons, or hard to determine.
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In a nutshell

We use N-body simulations AND observation of DM tracers to track DM
density profile. Both methods “fail” at small scales

» small (sub)halos have few or NO stars/unresolved in simulations and

» in the very centers of halos gravitational potential is usually dominated by
baryons, or hard to determine/unresolved in simulations

= Considerable uncertainties remain!



Summary

— gamma rays are a great messenger (also for DM search :)
— N-body simulations tell us ‘where to look’
— uncertainties in signal prediction on small scales

— predicted signals often extended on the sky




