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  Galaxies

[Orsi et al. (2009)]

Hα versus H-band selection in future redshift surveys 9

Figure 8. The spatial distribution of galaxies and dark matter in the Bow06(r) model at z = 1. Dark matter is shown in grey, with the densest regions shown
with the brightest shading. Galaxies selected by their Hα emission with log(FHα[erg s−1 cm−2]) > −16.00 and and EWobs > 100Å are shown in red
in the left-hand panels. Galaxies brighter than HAB = 22 are shown in green in the right-hand panels. Each row shows the same region from the Millennium
simulation. The first row shows a slice of 200h−1Mpc on a side and 10h−1Mpc deep. The second row shows a zoom into a region of 50h−1Mpc on a side
and 10h−1Mpc deep, which corresponds to the white square drawn in the first row images. Note that all of the galaxies which pass the selection criteria are
shown in these plots.

tion. First, a form must be adopted for the distribution of sources
in redshift. Second, some papers quote results in terms of proper
separation whereas others report in comoving units. Lastly, an evo-
lutionary form is sometimes assumed for the correlation function
(Groth & Peebles 1977). In this case, the results obtained for the
correlation length depend upon the choice of evolutionary model.

Estimates of the correlation length of Hα emitters are avail-
able at a small number of redshifts from narrow band sur-
veys, as shown in Fig. 9 (Morioka et al. 2008; Shioya et al. 2008;
Nakajima et al. 2008; Geach et al. 2008). These surveys are small
and sampling variance is not always included in the error bar quoted
on the correlation length (see Orsi et al. 2008 for an illustration of
how sampling variance can affect measurements of the correlation
function made from small fields). The models are in reasonable
agreement with the estimate by Geach et al. (2008) at z = 2.2, but
overpredict the low redshift measurements. The z = 0.24 measure-
ments are particularly challenging to reproduce. The correlation

length of the dark matter in the ΛCDM model is around 5h−1Mpc
at this redshift, so the z = 0.24 result implies an effective bias of
b < 0.5. Gao & White (2007) show that dark matter haloes at the
resolution limit of the Millennium Simulation, M ∼ 1010h−1M",
do not reach this level of bias, unless the 20% of the youngest
haloes of this mass are selected. In the Bow06(r) model, the Hα
emitters populate a range of halo masses, with a spread in forma-
tion times, and so the effective bias is closer to unity. Another possi-
ble explanation for the discrepancy is that the observational sample
could be contaminated by objects which are not Hα emitters and
which dilute the clustering signal.

The bottom panel of Fig. 9 shows the correlation length evo-
lution for different H-band selections, compared to observational
estimates from Firth et al. (2002). Note that the samples analysed
by Firth et al. are significantly brighter than the typical samples
considered in this paper (HAB = 20 versus HAB = 22). Firth
et al. use photometric redshifts to isolate galaxies in redshift bins
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Dark matter is an essential building block of the Standard Model 
of Cosmology 



What do we know about DM?

1.stable particle (life time at least age of the Universe) 

2. Its amount ΩCDM ~ 0.26 (CMB) 



3.electrically neutral: if not, it would interact with photons! (photons 

couple to charge) DM would not be ‘dark’ i.e. ‘invisible’! 

What do we know about DM?



3.electrically neutral: 

• it could bind with other charged particles (and form neutral systems), 
but strong limits on exotic atoms!


• if X+, bound states with electron ~heavy Hydrogen!


• if X- bound to nuclei- anomalous isotopes

* *
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What do we know about DM?



4.*if* it has non gravitational interactions they must be ‘weak’: 

• genuine weak interactions, exchange W or Z


• here means generally just un-observably week 
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5. ‘non-baryonic’: does not form atoms and does 
not dissipate energy like baryons - strong limits 
from Big Beng Nucleosynthesis (BBN).


From what we know about nuclear physics we can very well 
predict the sequence of events in which proton, neutron and 
electrons bound to form H+, D+, He++, Li+++  (Thermal 
decoupling of sorts!) 

DM did not participate in this process!  i.e. DM cannot be 
baryonic, otherwise the abundances of elements measured 
today would be quite different than what calculated!
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What do we know about DM?



6. it was slow (non relativistic) at the time of formation of first structures (if in 
thermal equilibrium)

cold dark matter • warm dark matter  

Lovell, Eke, Frenk, Gao, Jenkins, Wang, White, Theuns, 
Boyarski & Ruchayskiy  ‘12 

N-body simulations find that if DM would be lighter 
than keV small structures would have been erased! 

What do we know about DM?



DM check list:


stable

ΩCDM ~ 0.26

 electrically neutral 

‘weakly’ interacting

does not affect BBN

non-relativistic at 
structure formation 



The challenge

Artwork by Sandbox Studio, Chicago

• Is it a particle?


• How does it couple to the Standard Model?


• Composite or elementary? 


• ‘Maverick’ or dark ‘sector’?
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Outline

1. Pre history a detour 


2. (gravitational) evidence for dark matter


3. DM candidates


4. Experiments


5. Signal & Targets


6. The gamma-ray sky (astro ‘backgrounds’) 


7. Data Analysis strategy


8. Examples of search in particular targets (WIMPs)


- Galactic center


- dSphs


- Galaxy clusters

Today 

On  Wed 



Models

13

A matter of perspective: plausible mass ranges
Candidates

90 orders of magnitude!

particle macroscopicfield

Credit: M. Cirelli

90 orders of magnitude in mass…

deBroglie 
wavelnegth  

~cosmological 

scales  



Particle dark matter models
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W H AT  I S  T H E  PA R T I C L E  N AT U R E  O F  
D A R K  M AT T E R ?  
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Particle dark matter models
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A matter of perspective: plausible mass ranges
Candidates

90 orders of magnitude!

particle macroscopicfield

Credit: M. Cirelli

W H AT  I S  T H E  PA R T I C L E  N AT U R E  O F  
D A R K  M AT T E R ?  

3

Symmetry Magazine

mSUGRA

R-parity
Conserving

Supersymmetry

pMSSM

R-parity
violating

Gravitino DM

MSSM NMSSM

Dirac
DM

Extra Dimensions

UED DM

Warped Extra 
Dimensions

Little Higgs

T-odd DM

5d

6d

Axion-like Particles

QCD Axions

Axion DM

Sterile Neutrinos

Light
Force Carriers

Dark Photon

Asymmetric DM

RS DM

Warm DM

?

Hidden
Sector DM

WIMPless DM

Littlest Higgs

Self-Interacting
DM

Q-balls

T Tait

Solitonic DM

Quark
Nuggets

Techni-
baryons

Dynamical 
 DM

W E A K LY  I N T E R A C T I N G  M A S S I V E  
PA RT I C L E S

A X I O N S  A N D  A X I O N -
L I K E  PA RT I C L E S

M A S S  O F  D A R K  M AT T E R  U N K N O W N !

ALPs/Axions WIMPsSt 𝛎

Credit: B. Safdi

Manuel Gabi 



Models

17

A matter of perspective: plausible mass ranges
Candidates

90 orders of magnitude!

particle macroscopicfield

Credit: M. Cirelli

Search under 

‘theory’ lamppost

Some clues about its nature:


One mystery is why dark matter is stable - 
especially if it is heavy enough to be “cold” 
in the early universe 


• Sets stringent limits on DM-SM interactions

• Easiest route: impose some kind of symmetry 

to prevent DM from decaying 
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A matter of perspective: plausible mass ranges
Candidates

90 orders of magnitude!

particle macroscopicfield

Credit: M. Cirelli

Search under 

‘theory’ lamppost
Some clues about its nature:


Any DM model must explain the abundance of 
dark matter at the epoch of last scattering 


• Thermal: interactions set final abundance 


• Non-thermal: Initial condition from 
reheating? -Misalignment mechanism? -Phase 
transition? 
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A matter of perspective: plausible mass ranges
Candidates

90 orders of magnitude!

particle macroscopicfield

Credit: M. Cirelli

Search under 

‘theory’ lamppost
Some clues about its nature:


Any DM model must explain the abundance of 
dark matter at the epoch of last scattering 


• Thermal: interactions set final abundance 


• Non-thermal: Initial condition from 
reheating? -Misalignment mechanism? -Phase 
transition? 


Manuel 

This lecture 



A ‘special’ model: ‘Weakly interacting Massive  Particles’ (WIMPs) -> Thermal DM

A matter of perspective: plausible mass ranges
DM Candidates

‘only’ 90 orders of magnitude!
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Measured 
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If cross section ‘weak-like’ (assumed 1TeV scale), DM 
abundance today reproduced with only log dependence on mass
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Thermal decoupling, i.e. the fact that the 
present abundance of a given specie is 
determined by its interaction with the 
plasma in equilibrium up to the ‘freeze-
out’ moment, explains many of the events 
in the early Universe  


• Prime example - Cosmic Neutrino 
Background (CNB): decoupling of weak 
interactions for a relativistic particle

Thermal decoupling?
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Thermal dark matter


• In a thermal scenario (already at play for most of the events in the Early 
Universe), weak-scale annihilation cross section naturally yields the observed 
abundance of dark matter. 


• Suggestive of new physics not too far above the weak scale. 


• Stable WIMPs automatically occur in many scenarios for physics beyond the 
Standard Model, in particular in supersymmetry. 


•However, simplest scenarios are challenged by lack of detection on other fronts; 



A ‘special’ model: ‘Weakly interacting Massive  Particles’ (WIMPs)

A matter of perspective: plausible mass ranges
DM Candidates

‘only’ 90 orders of magnitude!
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In the Early Universe: DM kept 
in equilibrium w SM by self-
annihilations 〈σv〉thermal. 

Today, DM expected to 
annihilate with the same 
〈σv〉thermal, in places where 
its density is enhanced!

@ O(Mz)



A ‘special’ model: ‘Weakly interacting Massive  Particles’ (WIMPs)

A matter of perspective: plausible mass ranges
DM Candidates

‘only’ 90 orders of magnitude!
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annihilations 〈σv〉thermal. 

Today, DM expected to 
annihilate with the same 
〈σv〉thermal, in places where 
its density is enhanced!

@ O(Mz)
TeV  scale?

What fluxes? 


->〈σv〉thermal 



Outline

1. Pre history a detour 


2. (gravitational) evidence for dark matter


3. DM candidates


4. Experiments


5. Signal & Targets


6. The gamma-ray sky (astro ‘backgrounds’) 


7. Data Analysis strategy


8. Examples of search in particular targets (WIMPs)


- Galactic center


- dSphs


- Galaxy clusters
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Search strategy & tools
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What is the expected DM signal? - 𝛄’s and 𝛎’s travel in straight lines!

Flux (𝛄, 𝛎) = X

APS “April” Meeting, Atlanta, April 2, 2012J. Siegal-Gaskins

Astrophys Space Sci (2007) 309: 505–515 509

the Galactic center, in terms of DM annihilation. The dis-
covery of an EGRET source in the direction of Sgr A*
was in fact a potentially perfect signature of the existence
of particle DM, as thoroughly discussed in (Stecker 1988;
Bouquet et al. 1989; Berezinsky et al. 1994; Bergstrom
et al. 1998; Bertone et al. 2001; Cesarini et al. 2004;
Fornengo et al. 2004). However, it was subsequently real-
ized that the EGRET source could have been slightly offset
with respect to the position of Sgr A*, a circumstance clearly
at odds with a DM interpretation (Hooper and Dingus 2004).

Recently the gamma-ray telescope HESS has detected
a high energy source, spatially coincident within 1′ with
Sgr A* (Aharonian et al. 2004) and with a spectrum extend-
ing above 20 TeV. Although the spatial coincidence is much
more satisfactory than in the case of the EGRET source, the
“exotic” origin of the signal is hard to defend, since the im-
plied mass scale of the DM particle (well above 20 TeV,
to be consistent with the observed spectrum) appears to be
difficult to reconcile with the properties of commonly stud-
ied candidates, and the fact that the spectrum is a power-law,
then, points towards a standard astrophysical source (see e.g.
the discussion Profumo 2005). The galactic center, however,
remains an interesting target for GLAST, since it will ex-
plore a range of energies below the relatively high thresh-
old of HESS, where a DM signal could be hiding (Zahari-
jas and Hooper 2006). The recent claim that the profile of
large galaxies could be much more shallow than previously
thought (Mashchenko et al. 2006), should not discourage
further studies, especially in view of the possible enhance-
ment of the DM density due to interactions with the stellar
cusp observed at the Galactic center (Merritt et al. 2007).

The detection of a signal from the Galactic center would
be extremely interesting, but can it prove the existence of
DM? Realistically, one may hope to observe, at most, a
“bump” above the background. Without peculiar spectral
features it would be hard to claim discovery of DM, unless
a fit of the spectrum points towards a mass compatible with
the eventual findings of new physics searches at accelera-
tors. Figure 1 illustrates the difficulties associated with the
unambiguous identification of a DM signal. Any excess, at
any energy, could in principle be explained in terms of DM
particles with appropriate properties: the normalization of
the flux can be adjusted by changing the distribution of DM
particles, the energy scale can be varied over several orders
of magnitude, taking advantage of our ignorance on the DM
mass scale; even the slope can be modified, since different
annihilation channels lead to different spectra.

This doesn’t mean that the tentative identifications pre-
sented above are ruled-out: the signature of DM could have
been already found in one or several sets of data, and all
the above claims should be taken seriously and further in-
vestigated without prejudice, especially in view of the fact
that we don’t know what DM is! However, it is important to

Fig. 1 The problem with indirect searches: the lack of constraints on
the mass scale, the profile and the leading annihilation channel, leads
to uncertainties on the energy scale and on the spectrum normalization
and shape respectively

look for clear smoking-gun of DM annihilation, and study
theoretical scenarios with unambiguous signatures that can
be tested with present and future experiments. To this aim,
we summarize in the next section some recently proposed
ideas that go precisely in this direction, and that may shed
new light on the nature of particle DM.

4 New strategies

Before starting the discussion of new strategies for the un-
ambiguous detection of DM, we recall the first, and more
clear signature that one may hope to detect: distinctive spec-
tral features, and in particular annihilation lines. This has
been discussed thoroughly in literature, and although it ap-
pears unlikely that commonly discussed candidates such as
the supersymmetric neutralino, possess prominent enough
feature to be detected with current or upcoming experi-
ments, it is probably good to keep this possibility in mind,
and to search future gamma-data for signatures of this kind.

4.1 Gamma-ray background

Although most searches have focused on the identification
of point-sources associated with regions where DM accumu-
lates, it is interesting to ask what the gamma-ray background
produced by the annihilations of DM in all structures, at any
redshift, would be. The first calculation of this type was per-
formed in (Bergstrom et al. 2001), and then further studied
in (Taylor and Silk 2003; Ullio et al. 2002). The annihilation
background can be expressed as

Φ(E) = Ω2
DMρ2

c

8πH0

σv

m2
χ

∫ zmax

0
dz

∆2

h(z)
N(E′) (3)

Bertone 2007

Indirect dark matter signals

• annihilation or decay of dark 
matter can produce a variety of 
potentially detectable Standard 
Model particles

• spectrum of annihilation (or decay) 
products encodes info about 
intrinsic particle properties

• variation in the intensity of the 
signal along different lines of sight is 
determined exclusively by the 
distribution of dark matter
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Flux (CRs) = X

What is the expected DM signal? - charged particles

(
astrophysics

)
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    and      from  DM annihilations in halop̄ e+
Indirect Detection: basics

[credit: Cirelli,  M.]
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Flux (CRs) = X

What is the expected DM signal? - charged particles

(
astrophysics

)

the antiproton spectral index decreases more rapidly than
the proton spectral index and for the highest rigidity
interval, 60.3 ≤ jRj < 450 GV, the antiproton spectral
index is consistent with the proton spectral index.
Figure 3(a) presents the measured (p̄=p) flux ratio.

Compared with earlier experiments [2,6], the AMS results
extend the rigidity range to 450 GV with increased
precision. Figure 2 of Supplemental Material [18] shows
the low energy (< 10 GeV) part of our measured (p̄=p)
flux ratio. To minimize the systematic error for this flux
ratio we have used the 2.42 × 109 protons selected with the
same acceptance, time period, and absolute rigidity range
as the antiprotons. From 10 to 450 GV, the values of the
proton flux are identical to 1% to those in our publication
[16]. As seen from Fig. 3(a), above ∼60 GV the ratio
appears to be rigidity independent.
To estimate the lowest rigidity above which the (p̄=p)

flux ratio is rigidity independent, we use rigidity intervals
with starting rigidities from 10 GV and increasing bin by
bin. The ending rigidity for all intervals is fixed at 450 GV.
Each interval is split into two sections with a boundary
between the starting rigidity and 450 GV. Each of the two
sections is fit with a constant and we obtain two mean
values of the (p̄=p) flux ratio. The lowest starting rigidity of
the interval that gives consistent mean values at the
90% C.L. for any boundary defines the lowest limit.
This yields 60.3 GV as the lowest rigidity above which
the (p̄=p) flux ratio is rigidity independent with a mean
value of ð1.81" 0.04Þ × 10−4. To further probe the behav-
ior of the flux ratio we define the best straight line fit over a
rigidity interval as

ðp̄=pÞ ¼ Cþ kðjRj − R0Þ; ð4Þ

whereC is the value of the flux ratio atR0, k is the slope, and
R0 is chosen to minimize the correlation between the fitted
values of C and k, i.e., the mean of jRj over the interval
weighted with the statistical and uncorrelated systematic
errors. The solid red line in Fig. 3(a) shows this best straight
line fit above 60.3 GV, as determined above, together with
the 68% C.L. range of the fit parameters (shaded region).
Above 60.3 GV, R0 ¼ 91 GV. The fitted value of the slope,
k ¼ ð−0.7" 0.9Þ × 10−7 GV−1, is consistent with zero.
With the AMSmeasurements on the fluxes of all charged

elementary particles in cosmic rays, p̄, p, eþ, and e−, we
can now study the rigidity dependent behavior of different
flux ratios. The flux ratios and errors are tabulated in Tables
II and III of Supplemental Material [18]. For the antiproton-
to-positron ratio the rigidity independent interval is 60.3 ≤
jRj < 450 GV with a mean value of 0.479" 0.014. Fitting
Eq. (4) over this interval yields kðp̄=eþÞ ¼ ð−2.8" 3.2Þ×
10−4 GV−1. For the proton-to-positron ratio, the rigidity
independent interval is 59.13 ≤ jRj < 500 GVwith a mean
value of ð2.67" 0.05Þ × 103 and kðp=eþÞ ¼ ð−0.9"
1.0Þ GV−1. Both results are shown in Fig. 3(b) together
with the 68% C.L. range of the fit parameters (shaded
regions). In the study of the ratios, we have taken into
account the correlation of the errors due to uncertainty in
the ECAL energy scale in Φe" [15].
In Fig. 4 of Supplemental Material [18] we present our

measured antiproton-to-electron and proton-to-electron
flux ratios. Both of these flux ratios exhibit rigidity
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FIG. 3. (a) The measured (p̄=p) flux ratio as a function of the
absolute value of the rigidity from 1 to 450 GV. The PAMELA [6]
measurement is also shown. (b) The measured (p̄=eþ) (red, left
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PRL 117, 091103 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

26 AUGUST 2016

091103-7

[Aguilar+, PRL117 (2014)]

Only  spectral flux


(look for anti-particles)
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Gamma rays in the context - comparison with other CR species:

Fermi LAT

!"#$%&'(")*"+*,'++-&-).*!/*($-0'-(

! !"#$%&"''(#%"))*+*,"'*-)./(0"1!"#$%&!'(#&$)*!+,*!-./*!./#$0+!#1!'.(+2)%*-!

.-!.0+23'.(+2)%*-!4/#&$%#!/#&*%-!"2+,!56!72#%.+2#08

9:*2-),*(!*+!.%;<!=>>?@

/.++*(

.0+23/.++*(

A!',#+#0-

• gamma ray fluxes significantly lower than those of charged cosmic rays!

PROs:

• neutral! point back to their source

• Easier to catch than neutrinos (high(er) statistics)

• => with gamma-rays one can study individual identified sources and 

different sources classes

Challenge:

Gamma rays (much) rarer than 
charged Cosmic Rays 
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What tools?

x15 more sensitive than Milagro

Design improvements
Fermi LAT, AGILE IACTs (H.E.S.S., MAGIC, VERITAS) HAWC

100 TeV

Tibet AS𝛄, 
LHAASO

Entering the 
PeV domain!



36

What tools?

x15 more sensitive than Milagro

Design improvements
Fermi LAT, AGILE IACTs (H.E.S.S., MAGIC, VERITAS) HAWC

100 TeV

Tibet AS𝛄, 
LHAASO

• Large FoV 

(1/4 of the sky)


• Negligible CR 
contamination 
(gamma rays 
measured DIRECTLY) 


• Limited  effective 
area ~ m2


• Limited  angular 
resolution

~ few - 0.1 deg


• Large duty cycle
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What tools?

x15 more sensitive than Milagro

Design improvements
Fermi LAT, AGILE IACTs (H.E.S.S., MAGIC, VERITAS) HAWC

100 TeV

Tibet AS𝛄, 
LHAASO

Michele Doro - ISAPP 21 School 80

Credit: Nina McCurdy and Joel R. Primack/UC-HiPACC

Figure of merits of current
generation:
• FOV 5x5 deg
• 50 GeV- 100 TeV
• Eff.Area ~ 105-106 m2

• Dark time: ~1000 h/year

• ~10-50 h source for 
detection

• ~0.1 angular resolution
• ~10-20% energy

resolution

• Limited FoV ~ 5x5 
degrees

(‘pointing’  telescopes)


• Significant CR 
contamination 
(electrons!) 


• Large effective area

~105 m2


• Limited duty cycle

~ 1000 dark hours/year
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What tools?

x15 more sensitive than Milagro

Design improvements
Fermi LAT, AGILE IACTs (H.E.S.S., MAGIC, VERITAS) HAWC

100 TeV

Tibet AS𝛄, 
LHAASO

Particle detectors
! Detection of 

charged shower 
constituents 
through several 
instruments
!!, !", #, $

! Large arrays
! Higher altitudes
! All-day duty cycle
! Wide FOV
! TeV+ threshold

Michele Doro - ISAPP 21 School 101300, 7 m x 5 m steel Water Cherenkov 
Detectors (tanks) with 4 PMTs 42-3 HAWC-ICTP - May 5, 2016

• Large FoV 

• Significant CR 

contamination 

• Large  

effective area


• Large duty 
cycleHAWC
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Typical IACT
Field of view

Declination

RA



N
O

R
TH

150 m

WCDA

MD

ED

WFCTA

Extended Data Fig. 1 | Schematic drawing of the LHAASO layout7. Small red 
dots indicate the 5,195 scintillator counters, with a spacing of 15 m in the central 
area of 1 km2 and of 30 m in the skirt area of 0.3 km2 of KM2A. Big blue dots 
indicate the 1,188 muon detectors distributed in the central area with a spacing 

of 30 m. The three light-blue rectangles in the centre indicate WCDA, of 
78,000 m2 in total. Small black rectangles near WCDA indicate 18 telescopes of 
WFCTA.

KM2 array w 
scinitilators (red) and 
muon detectors (blue)

8 
telescopes 
of WFCTA 

HAWC-like,

3x  the effective area

—> wide en coverage + good 
CR background rejection

LHAASO - a combination of few techniques
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Future?

x15 more sensitive than Milagro

Design improvements
Fermi LAT, AGILE IACTs (H.E.S.S., MAGIC, VERITAS) HAWC

100 TeV

Tibet AS𝛄, 
LHAASO

LHAASO
Sichuan, China

Complementary Facilities Fermi-LAT

CTA-S

MAGIC
CTA-N

VERITAS

H.E.S.S.

7
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simulations of structure formation [5, 6, 7], it is inferred that
the particles constituting the cosmological DM had to be mov-
ing non-relativistically at decoupling from thermal equilibrium
in the early universe (‘freeze-out’), in order to reproduce the ob-
served large-scale structure in the Universe and hence the term
“cold DM” (CDM). This observational evidence has led to the
establishment of a concordance cosmological model, dubbed
ΛCDM [8, 9, 10], although this paradigm is troubled by some
experimental controversies [11, 12, 13, 14, 15, 16].

One of the most popular scenarios for CDM is that of weakly
interacting massive particles (WIMPs), which includes a large
class of non-baryonic candidates with mass typically between
a few tens of GeV and few TeV and an annihilation cross-
section set by weak interactions [see, e.g., Refs. 17, 18]. Nat-
ural WIMP candidates are found in proposed extensions of the
SM, e.g. in Super-Symmetry (SUSY) [19, 20], but also Lit-
tle Higgs [21], Universal Extra Dimensions [22], and Tech-
nicolor models [23, 24], among others. Their present veloci-
ties are set by the gravitational potential in the Galactic halo at
about a thousandth of the speed of light. WIMPs which were
in thermal equilibrium in the early Universe would have a relic
abundance varying inversely as their velocity-weighted annihi-
lation cross-section (for pure s−wave annihilation): ΩCDMh2 =

3 × 10−27cm3s−1/ (σannv) [19]. Hence for a weak-scale cross-
section (σannv) = 3 × 10−26cm3s−1, they naturally have the
required relic density ΩCDMh2 = 0.113 ± 0.004, where h =
0.704 ± 0.014 is the Hubble parameter in units of 100 km s−1

Mpc−1 [3]. The ability of WIMPs to naturally yield the DM
density from readily computed thermal processes in the early
Universe without much fine tuning is sometimes termed the
“WIMP miracle”.

In some SUSY theories, a symmetry called ‘R-parity’
prevents a too rapid proton-decay, and as a side-effect, also
guarantees the stability of the lightest SUSY particle (LSP),
which is thus a prime candidate for a WIMP. WIMPs can
annihilate to SM particles, and have hadron or leptons in
the final products of annihilation. Thus from cosmic DM
annihilations, one can expect emission of neutrinos, charged
cosmic rays, multi-frequency electromagnetic radiation from
charged products, and prompt gamma-rays [25]. The detection
of these final state particles can help to identify DM — this is
termed “indirect DM detection”. Gamma-rays are not deflected
by cosmic magnetic fields, and thus trace back to their origin.
Therefore, observation of a gamma-ray signal from cosmic
targets where DM is expected could prove conclusive about its
nature .

In the context of gamma-ray astronomy, the differential flux
of gamma-rays from within a solid angle ∆Ω around a given
astronomical target where DM is expected, can be written as:

dΦ(∆Ω, Eγ)
dEγ

= BF ·
1

4π
(σannv)
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:

J̃ =
∫

∆Ω

dΩ
∫

los
ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
sic flux, among which we mention the inclusion of subhalos,
and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
substantially to the expected gamma-ray flux from a given ob-
ject. This effect is strongly dependent on the target: in dwarf
spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
spectacular, by up to a factor of several hundreds [29, 30, 31].
On the other hand, the Sommerfeld enhancement effect can
significantly boost the DM annihilation cross-section [32, 33].
This non-relativistic effect arises when two DM particles inter-
act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite
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Figure 1: A schematic of the different sources and energy distributions of γ-rays from WIMP annihilation. (a) Secondary photons arising
from the decay of neutral pions produced in the hadronization of primary annihilation products. (b) Internal bremsstrahlung photons
associated with charged annihilation products, either in the form of final state radiation (FSR) from external legs or as virtual internal
bremsstrahlung (VIB) from the exchange of virtual charged particles. (c) Monochromatic line signals from the prompt annihilation into
two photons or a photon and Z boson. This process occurs only at loop level, and hence is typically strongly suppressed.

destroy small scale structure and violate constraints from
galaxy clustering and the Lyman alpha forest. The attention
thus turns to extensions of the Standard Model, which
themselves are theoretically motivated by the hierarchy
problem (the enormous disparity between the weak and
Planck scales) and the quest for a unification of gravity
and quantum mechanics. The most widely studied class of
such models consists of supersymmetric extensions of the
Standard Model. Additionally models with extra dimensions
have received a lot of attention in recent years. Both of these
approaches offer good DM particle candidates: the lightest
supersymmetric particle (LSP), typically a neutralino in R-
parity conserving supersymmetry, and the lightest Kaluza-
Klein particle (LKP), typically the B(1) particle, the first

Kaluza-Klein excitation of the hypercharge gauge boson, in
Universal Extra Dimension models. For much more infor-
mation, we recommend the comprehensive recent review of
particle DM candidates by Bertone et al. [65].

The direct products of the annihilation of two DM
particles are strongly model dependent. Typical channels
include annihilations into charged leptons (e+e−,µ+µ−,
τ+τ−), quark-antiquark pairs, and gauge and Higgs bosons
(W+W−,ZZ,Zh,hh). In the end, however, the decay and
hadronization of these annihilation products results in
only three types of emissions: (i) high energy neutrinos
and antineutrinos, (ii) relativistic electrons and protons
and their antiparticles, and (iii) γ-ray photons. Additional
lower energy photons can result from the interaction of

1) featureless spectra for bulk of the channels
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simulations of structure formation [5, 6, 7], it is inferred that
the particles constituting the cosmological DM had to be mov-
ing non-relativistically at decoupling from thermal equilibrium
in the early universe (‘freeze-out’), in order to reproduce the ob-
served large-scale structure in the Universe and hence the term
“cold DM” (CDM). This observational evidence has led to the
establishment of a concordance cosmological model, dubbed
ΛCDM [8, 9, 10], although this paradigm is troubled by some
experimental controversies [11, 12, 13, 14, 15, 16].

One of the most popular scenarios for CDM is that of weakly
interacting massive particles (WIMPs), which includes a large
class of non-baryonic candidates with mass typically between
a few tens of GeV and few TeV and an annihilation cross-
section set by weak interactions [see, e.g., Refs. 17, 18]. Nat-
ural WIMP candidates are found in proposed extensions of the
SM, e.g. in Super-Symmetry (SUSY) [19, 20], but also Lit-
tle Higgs [21], Universal Extra Dimensions [22], and Tech-
nicolor models [23, 24], among others. Their present veloci-
ties are set by the gravitational potential in the Galactic halo at
about a thousandth of the speed of light. WIMPs which were
in thermal equilibrium in the early Universe would have a relic
abundance varying inversely as their velocity-weighted annihi-
lation cross-section (for pure s−wave annihilation): ΩCDMh2 =

3 × 10−27cm3s−1/ (σannv) [19]. Hence for a weak-scale cross-
section (σannv) = 3 × 10−26cm3s−1, they naturally have the
required relic density ΩCDMh2 = 0.113 ± 0.004, where h =
0.704 ± 0.014 is the Hubble parameter in units of 100 km s−1

Mpc−1 [3]. The ability of WIMPs to naturally yield the DM
density from readily computed thermal processes in the early
Universe without much fine tuning is sometimes termed the
“WIMP miracle”.

In some SUSY theories, a symmetry called ‘R-parity’
prevents a too rapid proton-decay, and as a side-effect, also
guarantees the stability of the lightest SUSY particle (LSP),
which is thus a prime candidate for a WIMP. WIMPs can
annihilate to SM particles, and have hadron or leptons in
the final products of annihilation. Thus from cosmic DM
annihilations, one can expect emission of neutrinos, charged
cosmic rays, multi-frequency electromagnetic radiation from
charged products, and prompt gamma-rays [25]. The detection
of these final state particles can help to identify DM — this is
termed “indirect DM detection”. Gamma-rays are not deflected
by cosmic magnetic fields, and thus trace back to their origin.
Therefore, observation of a gamma-ray signal from cosmic
targets where DM is expected could prove conclusive about its
nature .

In the context of gamma-ray astronomy, the differential flux
of gamma-rays from within a solid angle ∆Ω around a given
astronomical target where DM is expected, can be written as:
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:

J̃ =
∫

∆Ω

dΩ
∫

los
ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
sic flux, among which we mention the inclusion of subhalos,
and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
substantially to the expected gamma-ray flux from a given ob-
ject. This effect is strongly dependent on the target: in dwarf
spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
spectacular, by up to a factor of several hundreds [29, 30, 31].
On the other hand, the Sommerfeld enhancement effect can
significantly boost the DM annihilation cross-section [32, 33].
This non-relativistic effect arises when two DM particles inter-
act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:

J̃ =
∫

∆Ω

dΩ
∫

los
ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
sic flux, among which we mention the inclusion of subhalos,
and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
substantially to the expected gamma-ray flux from a given ob-
ject. This effect is strongly dependent on the target: in dwarf
spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
spectacular, by up to a factor of several hundreds [29, 30, 31].
On the other hand, the Sommerfeld enhancement effect can
significantly boost the DM annihilation cross-section [32, 33].
This non-relativistic effect arises when two DM particles inter-
act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite
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Figure 1: A schematic of the different sources and energy distributions of γ-rays from WIMP annihilation. (a) Secondary photons arising
from the decay of neutral pions produced in the hadronization of primary annihilation products. (b) Internal bremsstrahlung photons
associated with charged annihilation products, either in the form of final state radiation (FSR) from external legs or as virtual internal
bremsstrahlung (VIB) from the exchange of virtual charged particles. (c) Monochromatic line signals from the prompt annihilation into
two photons or a photon and Z boson. This process occurs only at loop level, and hence is typically strongly suppressed.

destroy small scale structure and violate constraints from
galaxy clustering and the Lyman alpha forest. The attention
thus turns to extensions of the Standard Model, which
themselves are theoretically motivated by the hierarchy
problem (the enormous disparity between the weak and
Planck scales) and the quest for a unification of gravity
and quantum mechanics. The most widely studied class of
such models consists of supersymmetric extensions of the
Standard Model. Additionally models with extra dimensions
have received a lot of attention in recent years. Both of these
approaches offer good DM particle candidates: the lightest
supersymmetric particle (LSP), typically a neutralino in R-
parity conserving supersymmetry, and the lightest Kaluza-
Klein particle (LKP), typically the B(1) particle, the first

Kaluza-Klein excitation of the hypercharge gauge boson, in
Universal Extra Dimension models. For much more infor-
mation, we recommend the comprehensive recent review of
particle DM candidates by Bertone et al. [65].

The direct products of the annihilation of two DM
particles are strongly model dependent. Typical channels
include annihilations into charged leptons (e+e−,µ+µ−,
τ+τ−), quark-antiquark pairs, and gauge and Higgs bosons
(W+W−,ZZ,Zh,hh). In the end, however, the decay and
hadronization of these annihilation products results in
only three types of emissions: (i) high energy neutrinos
and antineutrinos, (ii) relativistic electrons and protons
and their antiparticles, and (iii) γ-ray photons. Additional
lower energy photons can result from the interaction of
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FIG. 1: The spectrum of box-shaped gamma-ray features. The left panel displays the unconvoluted

(dashed) and convoluted (solid) box spectra for mDM = 100 GeV, m� = 60 GeV and ⇥�v⇤ = 3 �

10�26 cm3/s on top of the 2-yr Fermi-LAT data (borrowed from [23]) for the galactic centre region.

The right frame shows the convoluted box spectra for mDM = 100 GeV, ⇥�v⇤ = 3 � 10�26 cm3/s

and several values of m�.

We are interested in exploring box-shaped gamma-ray features in the energy range rele-

vant for typical WIMPs, i.e. from a few GeV to a few TeV, so we shall focus on Fermi-LAT

performance and data all through the manuscript. The energy resolution of the LAT instru-

ment is parameterised according to [32], giving �(E)/E = 8 (12)% at E = 1 (200) GeV. We

consider as our main target fields of view the galactic centre and halo regions as defined in

[23] (cf. Table 1 therein). The former features �⇥ = 1.30 sr,
�
�⇥ d⇥ Jann = 9.2� 1022 GeV2

cm�5 sr and
�
�⇥ d⇥ Jdec = 6.9 � 1022 GeV cm�2 sr, while the latter presents �⇥ = 10.4

sr,
�
�⇥ d⇥ Jann = 8.3 � 1022 GeV2 cm�5 sr and

�
�⇥ d⇥ Jdec = 2.2 � 1023 GeV cm�2 sr,

assuming a Navarro-Frenk-White (NFW) profile normalised to a local dark matter density

of 0.4 GeV/cm3. Following the findings of [23], we shall focus on the centre (halo) region

to derive constraints on annihilating (decaying) dark matter. For the centre region, figure 1

(left) shows the unconvoluted and convoluted box spectra taking mDM = 100 GeV, m� = 60

GeV (or �m/mDM = 0.4) and ⇥�v⇤ = 3� 10�26 cm3/s, as well as the 2-yr Fermi-LAT data

(borrowed from the analysis in [23]). Figure 1 (right) illustrates instead the e⇤ect of varying

the mass degeneracy parameter �m/mDM . The plots highlight the key phenomenological

features of the dark matter models under scrutiny. As discussed above, in the limit of van-
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★ photons from Final State Particles (FSR) or internal states (VIB) and annihilation to a γ-
ray line (two photons/Zγ) through loop processes) or box shaped emission, to four photos 
via an intermediate state.


★ low signals but easier to distinguish from astrophysics radiation



The signal
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simulations of structure formation [5, 6, 7], it is inferred that
the particles constituting the cosmological DM had to be mov-
ing non-relativistically at decoupling from thermal equilibrium
in the early universe (‘freeze-out’), in order to reproduce the ob-
served large-scale structure in the Universe and hence the term
“cold DM” (CDM). This observational evidence has led to the
establishment of a concordance cosmological model, dubbed
ΛCDM [8, 9, 10], although this paradigm is troubled by some
experimental controversies [11, 12, 13, 14, 15, 16].

One of the most popular scenarios for CDM is that of weakly
interacting massive particles (WIMPs), which includes a large
class of non-baryonic candidates with mass typically between
a few tens of GeV and few TeV and an annihilation cross-
section set by weak interactions [see, e.g., Refs. 17, 18]. Nat-
ural WIMP candidates are found in proposed extensions of the
SM, e.g. in Super-Symmetry (SUSY) [19, 20], but also Lit-
tle Higgs [21], Universal Extra Dimensions [22], and Tech-
nicolor models [23, 24], among others. Their present veloci-
ties are set by the gravitational potential in the Galactic halo at
about a thousandth of the speed of light. WIMPs which were
in thermal equilibrium in the early Universe would have a relic
abundance varying inversely as their velocity-weighted annihi-
lation cross-section (for pure s−wave annihilation): ΩCDMh2 =

3 × 10−27cm3s−1/ (σannv) [19]. Hence for a weak-scale cross-
section (σannv) = 3 × 10−26cm3s−1, they naturally have the
required relic density ΩCDMh2 = 0.113 ± 0.004, where h =
0.704 ± 0.014 is the Hubble parameter in units of 100 km s−1

Mpc−1 [3]. The ability of WIMPs to naturally yield the DM
density from readily computed thermal processes in the early
Universe without much fine tuning is sometimes termed the
“WIMP miracle”.

In some SUSY theories, a symmetry called ‘R-parity’
prevents a too rapid proton-decay, and as a side-effect, also
guarantees the stability of the lightest SUSY particle (LSP),
which is thus a prime candidate for a WIMP. WIMPs can
annihilate to SM particles, and have hadron or leptons in
the final products of annihilation. Thus from cosmic DM
annihilations, one can expect emission of neutrinos, charged
cosmic rays, multi-frequency electromagnetic radiation from
charged products, and prompt gamma-rays [25]. The detection
of these final state particles can help to identify DM — this is
termed “indirect DM detection”. Gamma-rays are not deflected
by cosmic magnetic fields, and thus trace back to their origin.
Therefore, observation of a gamma-ray signal from cosmic
targets where DM is expected could prove conclusive about its
nature .

In the context of gamma-ray astronomy, the differential flux
of gamma-rays from within a solid angle ∆Ω around a given
astronomical target where DM is expected, can be written as:
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:

J̃ =
∫

∆Ω

dΩ
∫

los
ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
sic flux, among which we mention the inclusion of subhalos,
and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
substantially to the expected gamma-ray flux from a given ob-
ject. This effect is strongly dependent on the target: in dwarf
spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
spectacular, by up to a factor of several hundreds [29, 30, 31].
On the other hand, the Sommerfeld enhancement effect can
significantly boost the DM annihilation cross-section [32, 33].
This non-relativistic effect arises when two DM particles inter-
act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:
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ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
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and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
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spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
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act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
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and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
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are weaker than those obtained from the Fermi-LAT satellite
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where (σannv) is the annihilation cross-section (times the rela-
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γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
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in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite

3

simulations of structure formation [5, 6, 7], it is inferred that
the particles constituting the cosmological DM had to be mov-
ing non-relativistically at decoupling from thermal equilibrium
in the early universe (‘freeze-out’), in order to reproduce the ob-
served large-scale structure in the Universe and hence the term
“cold DM” (CDM). This observational evidence has led to the
establishment of a concordance cosmological model, dubbed
ΛCDM [8, 9, 10], although this paradigm is troubled by some
experimental controversies [11, 12, 13, 14, 15, 16].

One of the most popular scenarios for CDM is that of weakly
interacting massive particles (WIMPs), which includes a large
class of non-baryonic candidates with mass typically between
a few tens of GeV and few TeV and an annihilation cross-
section set by weak interactions [see, e.g., Refs. 17, 18]. Nat-
ural WIMP candidates are found in proposed extensions of the
SM, e.g. in Super-Symmetry (SUSY) [19, 20], but also Lit-
tle Higgs [21], Universal Extra Dimensions [22], and Tech-
nicolor models [23, 24], among others. Their present veloci-
ties are set by the gravitational potential in the Galactic halo at
about a thousandth of the speed of light. WIMPs which were
in thermal equilibrium in the early Universe would have a relic
abundance varying inversely as their velocity-weighted annihi-
lation cross-section (for pure s−wave annihilation): ΩCDMh2 =

3 × 10−27cm3s−1/ (σannv) [19]. Hence for a weak-scale cross-
section (σannv) = 3 × 10−26cm3s−1, they naturally have the
required relic density ΩCDMh2 = 0.113 ± 0.004, where h =
0.704 ± 0.014 is the Hubble parameter in units of 100 km s−1

Mpc−1 [3]. The ability of WIMPs to naturally yield the DM
density from readily computed thermal processes in the early
Universe without much fine tuning is sometimes termed the
“WIMP miracle”.

In some SUSY theories, a symmetry called ‘R-parity’
prevents a too rapid proton-decay, and as a side-effect, also
guarantees the stability of the lightest SUSY particle (LSP),
which is thus a prime candidate for a WIMP. WIMPs can
annihilate to SM particles, and have hadron or leptons in
the final products of annihilation. Thus from cosmic DM
annihilations, one can expect emission of neutrinos, charged
cosmic rays, multi-frequency electromagnetic radiation from
charged products, and prompt gamma-rays [25]. The detection
of these final state particles can help to identify DM — this is
termed “indirect DM detection”. Gamma-rays are not deflected
by cosmic magnetic fields, and thus trace back to their origin.
Therefore, observation of a gamma-ray signal from cosmic
targets where DM is expected could prove conclusive about its
nature .

In the context of gamma-ray astronomy, the differential flux
of gamma-rays from within a solid angle ∆Ω around a given
astronomical target where DM is expected, can be written as:

dΦ(∆Ω, Eγ)
dEγ

= BF ·
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4π
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:

J̃ =
∫

∆Ω

dΩ
∫

los
ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
sic flux, among which we mention the inclusion of subhalos,
and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
substantially to the expected gamma-ray flux from a given ob-
ject. This effect is strongly dependent on the target: in dwarf
spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
spectacular, by up to a factor of several hundreds [29, 30, 31].
On the other hand, the Sommerfeld enhancement effect can
significantly boost the DM annihilation cross-section [32, 33].
This non-relativistic effect arises when two DM particles inter-
act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite
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particle physics cosmologyIn the case of WIMPs

★ DM density distribution needed

★ From N-body simulations

★ Or observations of gravitation  field tracers



Where to look - DM density map (N-body simulations)
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(Centers) of Galaxies in 
the local group


— the M31 halo extends 

few degs on the sky 



Targets

‘M31’

Galaxy clusters



Targets

‘M31’

Together with analysis of individual targets, target assembles can be used in various 
statistics frameworks:


— cumulative extragalactic signal


— angular anisotropies


— cross-correlations between gamma ray maps and DM tracer maps (weak lensing, 
galaxy  catalogues..)


[TNG100 simulation]



Main uncertainties in DM signal prediction

‘M31’N-body simulations and 
observations agree on large 
scales (>~galaxies). However, 
DM density distribution poorly 
constrained on small scales!


Critical because signal is usually 
DOMINATED by small scales 
(e.g. center of our Galaxy) or by 
annihilation in small halos (which 
are the most concentrated)


Simulations 

Observations 



N-body simulations: issues 01   


‣ limited resolution-> small distances and small masses unresolved.

simulations of structure formation [5, 6, 7], it is inferred that
the particles constituting the cosmological DM had to be mov-
ing non-relativistically at decoupling from thermal equilibrium
in the early universe (‘freeze-out’), in order to reproduce the ob-
served large-scale structure in the Universe and hence the term
“cold DM” (CDM). This observational evidence has led to the
establishment of a concordance cosmological model, dubbed
ΛCDM [8, 9, 10], although this paradigm is troubled by some
experimental controversies [11, 12, 13, 14, 15, 16].

One of the most popular scenarios for CDM is that of weakly
interacting massive particles (WIMPs), which includes a large
class of non-baryonic candidates with mass typically between
a few tens of GeV and few TeV and an annihilation cross-
section set by weak interactions [see, e.g., Refs. 17, 18]. Nat-
ural WIMP candidates are found in proposed extensions of the
SM, e.g. in Super-Symmetry (SUSY) [19, 20], but also Lit-
tle Higgs [21], Universal Extra Dimensions [22], and Tech-
nicolor models [23, 24], among others. Their present veloci-
ties are set by the gravitational potential in the Galactic halo at
about a thousandth of the speed of light. WIMPs which were
in thermal equilibrium in the early Universe would have a relic
abundance varying inversely as their velocity-weighted annihi-
lation cross-section (for pure s−wave annihilation): ΩCDMh2 =

3 × 10−27cm3s−1/ (σannv) [19]. Hence for a weak-scale cross-
section (σannv) = 3 × 10−26cm3s−1, they naturally have the
required relic density ΩCDMh2 = 0.113 ± 0.004, where h =
0.704 ± 0.014 is the Hubble parameter in units of 100 km s−1

Mpc−1 [3]. The ability of WIMPs to naturally yield the DM
density from readily computed thermal processes in the early
Universe without much fine tuning is sometimes termed the
“WIMP miracle”.

In some SUSY theories, a symmetry called ‘R-parity’
prevents a too rapid proton-decay, and as a side-effect, also
guarantees the stability of the lightest SUSY particle (LSP),
which is thus a prime candidate for a WIMP. WIMPs can
annihilate to SM particles, and have hadron or leptons in
the final products of annihilation. Thus from cosmic DM
annihilations, one can expect emission of neutrinos, charged
cosmic rays, multi-frequency electromagnetic radiation from
charged products, and prompt gamma-rays [25]. The detection
of these final state particles can help to identify DM — this is
termed “indirect DM detection”. Gamma-rays are not deflected
by cosmic magnetic fields, and thus trace back to their origin.
Therefore, observation of a gamma-ray signal from cosmic
targets where DM is expected could prove conclusive about its
nature .

In the context of gamma-ray astronomy, the differential flux
of gamma-rays from within a solid angle ∆Ω around a given
astronomical target where DM is expected, can be written as:

dΦ(∆Ω, Eγ)
dEγ

= BF ·
1
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where (σannv) is the annihilation cross-section (times the rela-

tive velocity of the two WIMPs),
∑
i BRi dNi

γ/dEγ = dNγ/dEγ
is the photon flux per annihilation summed over all the possible
annihilation channels i with branching ratios BRi, and mχ is the
mass of the DM particle. The ‘astrophysical factor’ J̃ is the in-
tegral over the line of sight (los) of the squared DM density and
over the integration solid angle ∆Ω:

J̃ =
∫

∆Ω

dΩ
∫

los
ds ρ2(s,Ω). (1.2)

The remaining term BF in Eq. (1.1) is the so-called ‘boost fac-
tor’ which is a measure of our ignorance of intrinsic flux con-
tributions that are not accounted for directly in the formula.

There are various known mechanisms for boosting the intrin-
sic flux, among which we mention the inclusion of subhalos,
and the existence of a ‘Sommerfeld enhancement’ of the cross-
section at low velocity regimes in models where the DM parti-
cles interact via a new long-range force. All numerical N−body
simulations of galactic halos have shown the presence of sub-
halos populating the host halo [see, e.g., Refs. 5, 26]. Such
density enhancements, if not spatially resolved, can contribute
substantially to the expected gamma-ray flux from a given ob-
ject. This effect is strongly dependent on the target: in dwarf
spheroidal galaxies (dSphs) for example the boost factor is only
of O(1) [27, 28], whereas in galaxy clusters the boost can be
spectacular, by up to a factor of several hundreds [29, 30, 31].
On the other hand, the Sommerfeld enhancement effect can
significantly boost the DM annihilation cross-section [32, 33].
This non-relativistic effect arises when two DM particles inter-
act in a long-range attractive potential, and results in a boost
in gamma-ray flux which increases with decreasing relative ve-
locity down to a saturation point which depends on the DM and
mediator particle mass. This effect can enhance the annihilation
cross-section by a few orders of magnitude [27, 28].

The current generation of IACTs is actively searching for
WIMP annihilation signals. dSphs are promising targets for
DM annihilation detection being among the most DM domi-
nated objects known and free from astrophysical background.
Constraints on WIMP annihilation signals from dSphs have
been reported towards Sagittarius, Canis Major, Sculptor and
Carina by H.E.S.S. [34, 35, 28], towards Draco, Willman 1 and
Segue 1 by MAGIC [36, 37, 38], towards Draco, Ursa Minor,
Boötes 1, Willman 1 and Segue 1 by VERITAS [39, 40],
and again towards Draco and Ursa Minor by Whipple [41].
Nevertheless, the present instruments do not have the required
sensitivity to reach the “thermal” value of the annihilation
cross-section (σannv) = 3× 10−26cm3s−1. A search for a WIMP
annihilation signal from the halo at angular distances between
0.3◦ and 1.0◦ from the Galactic Centre has also recently been
performed using 112 h of H.E.S.S. data [42]. For WIMP
masses well above the H.E.S.S. energy threshold of 100 GeV,
this analysis provides the currently most constraining limits
on (σannv) at the level of a few×10−25 cm3s−1. H.E.S.S.,
MAGIC and VERITAS have also observed some galaxy
clusters, reporting detection of individual galaxies in the
cluster, but only upper limits on any CR and DM associated
emission [43, 44, 45, 46, 47, 48]. Even though IACT limits
are weaker than those obtained from the Fermi-LAT satellite
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recall for WIMPs
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Figure 1: DM profiles and the corresponding parameters to be plugged in the functional forms
of eq. (1). The dashed lines represent the smoothed functions adopted for some of the computations
in Sec. 4.1.3. Notice that we here provide 2 (3) decimal significant digits for the value of rs (⇥s):
this precision is su⇥cient for most computations, but more would be needed for specific cases, such
as to precisely reproduce the J factors (discussed in Sec.5) for small angular regions around the
Galactic Center.

Next, we need to determine the parameters rs (a typical scale radius) and �s (a typical
scale density) that enter in each of these forms. Instead of taking them from the individual
simulations, we fix them by imposing that the resulting profiles satisfy the findings of
astrophysical observations of the Milky Way. Namely, we require:

- The density of Dark Matter at the location of the Sun r� = 8.33 kpc (as determined
in [48]; see also [49] 3) to be �� = 0.3 GeV/cm3. This is the canonical value routinely
adopted in the literature (see e.g. [1, 2, 51]), with a typical associated error bar of
±0.1 GeV/cm3 and a possible spread up to 0.2 ⇧ 0.8 GeV/cm3 (sometimes refereed
to as ‘a factor of 2’). Recent computations have found a higher central value and
possibly a smaller associated error, still subject to debate [52, 53, 54, 55].

- The total Dark Matter mass contained in 60 kpc (i.e. a bit larger than the distance to
the Large Magellanic Cloud, 50 kpc) to be M60 ⌅ 4.7⇥ 1011M�. This number is based
on the recent kinematical surveys of stars in SDSS [56]. We adopt the upper edge of
their 95% C.L. interval to conservatively take into account that previous studies had
found somewhat larger values (see e.g. [57, 58]).

The parameters that we adopt and the profiles are thus given explicitly in fig. 1. Notice that
they do not di�er much (at most 20%) from the parameter often conventionally adopted in
the literature (see e.g. [2]), so that our results presented below can be quite safely adopted
for those cases.

of spherical symmetry, in absence of better determinations, seems to be still well justified. Moreover, it is
the current standard assumption in the literature and we therefore prefer to stick to it in order to allow
comparisons. In the future, the proper motion measurements of a huge number of galactic stars by the
planned GAIA space mission will most probably change the situation and give good constraints on the
shape of our Galaxy’s DM halo, e.g. [46], making it worth to reconsider the assumption. For what concerns
the impact of non-spherical halos on DM signals, charged particles signals are not expected to be a�ected,
as they are sensistive to the local galactic environment. For an early analysis of DM gamma rays al large
latitudes see [47].

3The commonly adopted value used to be 8.5 kpc on the basis of [50].
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[Cirelli, M.+, JCAP, 2011]

resolution of 
simulations

small masses

(sub)halos resolved down to >~105 Msol. 


WIMPs could produce halos as small as 10-6 Msol.

Uncertainty in DM density distribution



N-body simulations: issues 02   


‣ baryonic feedback baryons can dominate gravitational potential at  small 
scales 


‣ Challenge - simulations need to cover a large span of scales

A number of simulations recover realistic disk Galaxies (great progress!), 
but still a number of open issues
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[TNG simulation]

Uncertainty in DM density distribution



Observations - subhalos   

different approach is to measure motion of stellar objects to determine the 
gravitational potential of DM. For example:


‣ dwarf spheroidal Galaxies: the smallest DM halos (108, 109 Msol)  that 
host stars

Brightness
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Globular 
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dSphs

Local�Dwarf�Spheroidal�Galaxies
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Large�satellite�galaxies Mass�>600,000�suns!
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TevPA2013 R.P.�Johnson 13
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Uncertainty in DM density distribution



different approach is to measure motion of stellar objects to determine the 
gravitational potential of DM. For example:


‣ dwarf spheroidal Galaxies: Assuming virialization, each population 
traces the gravitational potential, and we can use the spherical Jeans 
equation to link the measured velocity dispersion and the dSph 
gravitational potential 
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[Walker+, 2007]

Moore (2009)

• Dark matter content determined from 
stellar velocity dispersion
– Classical dwarfs: spectra for several 

thousand stars
– Ultra-faint dwarfs: spectra for fewer 

than 100 stars

• Fit stellar velocity distribution of each 
dwarf (assuming an NFW profile)

• Calculate the J-factor by integrating 
out to a radius of 0.5 deg (ref. [3])
– Encloses the half-light radii of the 

dwarfs
– Minimizes uncertainty in the J-factor
– Large enough to be insensitive to the 

inner profile behavior (core vs. cusp)
• Include the J-factor uncertainty in the 

gamma-ray analysis
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TABLE 1
Summary of dSph Velocity Samples and NFW Parameters

Galaxy Nnew Ntot Ndsph b
Mvir

(107 M,)
Mrmax

(107 M,)
M600

(107 M,)

Carina . . . . . . . . 1833 2567 899 !0.5 20 3.5 2.0
Draco . . . . . . . . 512 738 413 !1 400 9.0 6.9
Fornax . . . . . . . 1924 2085 2008 !0.5 100 18 4.6
Leo I . . . . . . . . . 371 483 416 !0.5 100 7.3 4.5
Leo II . . . . . . . . 128 264 213 0 40 4.3 2.8
Sculptor . . . . . . 1089 1214 1091 !0.5 100 8.2 4.3
Sextans . . . . . . . 947 1032 504 !2 30 5.4 2.5

Fig. 2.—Left: Projected velocity dispersion profiles for seven Milky Way dSph satellites. Overplotted are profiles corresponding to mass-follows-light (King
1962) models (dashed lines; these fall to zero at the nominal “edge” of stellar distribution), and best-fitting NFW profiles that assume b p constant. Short, vertical
lines indicate luminous core radii (IH95). Distance moduli are adopted from Mateo (1998). Right: Solid lines represent density, mass, and profiles correspondingM/L
to best-fitting NFW profiles. Dotted lines in the top and middle panels are baryonic density and mass profiles, respectively, following from the assumption that
the stellar component (assumed to have ) has exponentially falling density with scale length given by IH95.M/L p 1

equal numbers of dSph members. Thus the number of stars,
including interlopers, in each bin may vary, but for all bins,

. We use a Gaussian maximum-likelihoodN 1/2bin ˆS P ∼ (N )ip1 dsph dsphi

method (see Walker et al. 2006a) to estimate the velocity dis-
persion within each bin.

Left-hand panels Figure 2 display the resulting velocity dis-
persion profiles, which generally are flat. The outer profile of
Draco shows no evidence for a rapidly falling dispersion, con-
trary to evidence presented by Wilkinson et al. (2004) but

consistent with the result of Muñoz et al. (2005).6 In fact the
outer profiles of Draco, Carina, and perhaps Sculptor show
gently rising dispersions. While it is likely that at least in Carina
this behavior is associated with the onset of tidal effects (Muñoz
et al. 2006), McConnachie et al. (2007) point out that the
tendency of some dSphs to have systematically smaller velocity
dispersions near their centers is perhaps the result of distinct
and poorly mixed stellar populations (Tolstoy et al. 2004; Bat-
taglia et al. 2006; Ibata et al. 2006). Either explanation com-
plicates a thorough kinematic analysis; in the present, simplified
analysis we assume all stars belong to a single population in
virial equilibrium.

Dashed lines in Figure 2 are velocity dispersion profiles
calculated for single-component King models (King 1962) con-
ventionally used to characterize dSph surface brightness pro-
files. The adopted King models are those fit by Irwin & Hatz-
idimitriou (1995, hereafter IH95) and normalized to match the

6 We have not included the unpublished data of Wilkinson et al. (2004) or
Muñoz et al. (2005) in our calculations of the velocity dispersion profiles of
Draco.

Walker et al. 2007 (ref. [2])

R [pc]500 1000
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Observations - subhalos   

Uncertainty in DM density distribution



‣ in the very centers of halos gravitational potential is usually dominated by 
baryons, or hard to determine.

Observations - galaxy center   

Uncertainty in DM density distribution



In a nutshell   

We use N-body simulations AND observation of DM tracers to track DM 
density profile. Both methods ‘fail’ at small scales


‣ small (sub)halos have few or NO stars/unresolved in simulations and 


‣ in the very centers of halos gravitational potential is usually dominated by 
baryons, or hard to determine/unresolved in simulations


➡ Considerable uncertainties remain!

Uncertainty in DM density distribution



Summary


— gamma rays are a great messenger (also for  DM search :)


— N-body simulations tell us ‘where to look’ 


— uncertainties in signal prediction on small scales  


— predicted signals often extended on the sky


