Cherenkov Telescope Array Astrophysics & the ASTRI Mini-Array

Elisabete M. de Gouveia Dal Pino IAG-USP

ICTP-SAIFR CTA Advanced School, March 27th, 2023

cta cherenkov telescope array

Contents

- CTA concept
- CTA performance
- CTA science: astrophysics and beyond
- ASTRI Mini-Array CTA Precursor

30 years ago

The High-Energy Gamma Ray Sky (1989) E > 100 GeV

(Galactic coordinates)

The TeV sky

Major TeV observatories

Why to build CTA?

CTA North ORM La Palma, Spain

CTA South ESO, Chile

Full Sky Coverage

Why to build CTA? Key Capabilities

SENSITIVITY x 10 ARCMINUTE ANGULAR RESOLUTION **10% ENERGY CTA North** RESOLUTION ORM La Palma, Spain WIDE ENERGY RANGE 20 GeV - 300 TeV **CTA South** ESO, Chile FoV x 2 **FULL SKY COVERAGE 30 s RESPONSE TO EXTERNAL ALERTS**

CTA Science Questions in Astrophysics and beyond

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Characteristics of relativistic jets, winds and explosions?
- Cosmic voids: their radiation fields and magnetic fields

Theme 3: Physics Frontiers

- What is the nature of Dark Matter?
- Is the speed of light a constant?
- Do axion-like particles (ALPs) exist?

Initial CTA Array: α -configuration

Science-based optimization

North: extragalactic oriented (high-E/z absorption)

LSTs ~20-200 GeV, MSTs 0.2-2 TeV, SSTs >2 TeV **CTA-South** LEGEND Medium-Sized Telescope (MST) Weather Station ۸ Small-Sized Telescope (SST) Stellar Photometer 4 Large-Sized Telescope (LST) Raman LIDAR Foundation Other Calibration Devices 10 SST Foundation

Shower-based optimization

CTA Science and Design

- Parabolic optical design
- 23 m mirror diameter
- PMT camera
- ~4 deg FoV
- 4 LSTs at the array center

- Davies-Cotton optical design
- 12 m mirror diameter
- PMT camera
- ~7 deg FoV
- MSTs are workhorse
- ~1km² area covered

- Schwarzschild-Couder optical design
- 4 m dual mirror
- SiPM camera
- ~8 deg FoV
- >50 SSTs
 ~4km² area coverage

- Infrastructure

Scuderi, ASTRI Project Commiti

CTA comparative performance

$\alpha\text{-configuration}$

CTA comparative performance

CTA comparative performance

$\alpha\text{-configuration}$

CTA Angular Resolution

CTA Performance: FOV & Resolution

CTA Science Questions in and beyond Astrophysics

Theme 1: Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Characteristics of relativistic jets, winds and explosions?
- Cosmic voids: their radiation fields and magnetic fields

Theme 3: Physics Frontiers

- What is the nature of Dark Matter?
- Is the speed of light a constant?
- Do axion-like particles exist?

Key Science projects

- 1. Galactic Centre
- 2. Galactic Plane Survey
- 3. Cosmic Ray PeVatrons
- 4. Star Forming Systems
- 5. LMC Survey
- 6. Extragalactic Survey
- 7. Active Galactic Nuclei
- 8. Transients
- 9. Clusters of Galaxies
- + Dark Matter Programme

arXiv:1709.07997

cherenkov telescope array

Science with the Cherenkov Telescope

Array

CTA Key Science Projects

See "Science with the Cherenkov Telescope Array" book by World Scientific, also @ arXiv:1709.07997

Cosmic Particle Accelerators

Particle acceleration to very high energies is associated with extreme environments:

• SN explosions, neutron stars, black holes, relativistic outflows

Major Questions:

- Are SNR the main CR accelerators in our Galaxy?
- Where in our Galaxy are particles accelerated to PeV (10¹⁵ eV) energies?
- What are the sources of UHECRs (E>10¹⁸ eV): AGNs?

To answer:

- Galactic and Extragalactic Surveys
- Deep Observations of nearby sources, galaxies and clusters
- Precision measurements of bright targets to probe physical processes

Cosmic Particle Accelerators

a census of cosmic particle accelerators

J.Fritz, W. Pietsch, R. Gendler

ACROSS ALL COSMIC SCALES

Hubble Heritage Team

Radia Galaxy 3C31 = NGC 383 Copyright NRAO/AUI 2006

H.E.S.S.

CTA, for same exposure

expect ~500 detected sources

Distance reach ~20 kpc

Galactic Plane Survey

CR able to produce 100 TeV photons should have E_{CR} ~ PeV:

PeVatrons

- Photons with E~100 TeV: produced preferentially by hadronic process (proton-photon, proton-proton interactions)
- Cross-section for IC interactions electron-photon decreases very quickly for E> 10 TeV (Klein-Nishina effect)

LHAASO discovered PeVatrons @ Galaxy

Cao et al., 2021, Nature

Source name	RA (°)	dec. (°)	Significance above 100 TeV ($\times \sigma$)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71 -0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

Discovery of 12 sources emitting at several hundreds of TeV, up to 1.4 PeV

Candidates: SNRs, galactic center, pulsar wind nebulae, young stellar clusters?

CTA -> can identify, probe morphology and spectra

CTA Galactic Plane Survey Science

Primary goals of CTA Galactic Science

- Provide a census of the VHE Galactic source populations (identify unknown and new sources)
 - Massive stars
 - Compact objects: galactic NSs and BHs
 - Pulsars and PWNe
 - Supernova remnants
 - Microquasars, binary systems
 - Young stellar clusters
- Identify PeVatrons among them
- To be performed down to ~ 2mCrab in the inner Galaxy and around the Cygnus region, and ~ 4mCrab elsewhere in the Galactic Plane
- Detailed Study of the diffuse emission
- Multi-purpose catalogue and legacy datasets

Galactic Particle Accelerators: ex. SNR

Resolve sub-structure within SNR shell important for understanding acceleration and emission

Simulated CTA TeV-bright supernova remnant **RX J1713–3946** for 2 emission scenarios:

CTA will be able to differentiate between these scenarios

Large Magellanic Cloud Survey

- More than 60 SNRs
- Resolving regions down to 20 pc size
- Diffuse emission view of particle transport

Current (H.E.S.S)

cherenkov telescope array

The extragalactic Survey

The first ever in the VHE band

- Unbiased survey of the sky
 - Coverage of 1/4 of full sky
 - Performed over 10 years
 - Complete to 5 mCrab
 - Blazar Luminosity Function
 - Probe new sources, e.g.:
 - Extreme blazars
 - Galaxy Clusters

- Serendipity transients discovery and follow-up potential, e.g. GRBs, TDEs, FRBs,...
- Monitoring (multi-band) and Follow-up of strong AGN flares
- Multi-messenger science: GW and neutrino triggers

CTA EXTRAGALACTIC TARGETS

Thanks to D. Mazin

CTA Differential Flux Sensitivit**cta**

cherenkov telescope array

CTA will be a high-energy transient monitor

Orders of magnitude advantage over Fermi-LAT in intra-day timescales: GRBs, AGN flares, binaries.

CTA -> ability to probe very short timescales in gamma-rays

Transients & Variability Phenomena

Credits: The LIGO Scientific Collaboration

Transients are a diverse population of astrophysical objects. Some are known to be prominent **emitters of high-energy gamma-rays**, while others are sources of non-photonic, multimessenger signals such as cosmic rays, **neutrinos and/or gravitational waves**.

Possible classes of targets

- Gamma-ray bursts
- Galactic transients
- High-energy neutrino transients
- Gravitational wave transients
- Radio, optical, and X-ray transients
- Serendipitous VHE transients
- AGNs, PWN, binaries, accretion & relativistic outflows

Variability with CTA

CTA ability to probe very short timescales in gamma-rays:

- explore connection between accretion and ejection phenomena in compact objects
- study phenomena in relativistic outflows: GRBs, AGN, PWN, binary systems
- In GRBs: high-statistics measurements for the first time >10 GeV; detect ~2 GRB/yr

CTA simulated light curve flare of PKS 2155–304 provides access to timescales << light-crossing time of the supermassive black hole

CTA Simulated light curve GRB 080916C, z =4.3

AGN monitoring

What is the jet made of? How is it launched? What causes the variability? What is the acceleration mechanism?

- Long-term monitoring of selected AGN over 10 years
- Follow-up of flaring AGN
- High-quality measurement of selected AGN spectra

Total observation time: about 3000 hours

AGN monitoring

What is the jet made of?

How is it launched?

What causes the variability?

What is the acceleration mechanism?

from: Science with CTA www.worldscientific.com/worldscibooks/10.1142/10986

AGN Blazars: most frequent extragalactic gamma-ray emitters high flux strong Doppler boosting (jet bulk Γ^{-5-10})

Photor

Neutrino

Strong variability in time at TeV: $t_v \sim 200 \text{ s}$ -> very compact and fast emitters $\Gamma_{em} > 50$

Ex.: PKS2155-304 (Aharonian et al. 2007)

AGN Variability Shock or Magnetic Reconnection Acceleration?

Particles are accelerated stochastically - Fermi process

Shock Acceleration

1st-order Fermi

(Bell 1978; Begelman & Eichler 1997):

Reconnection Acceleration

As in shocks: 1st-order Fermi

(de Gouveia Dal Pino & Lazarian 2005; del Valle, de Gouveia Dal Pino, Kowal 2016):

Magnetic Reconnection acceleration may prevail

Photo

Particels are accelerated by magnetic reconnection Neutrino up to 10¹⁶⁻²⁰ eV @ inner magnetically dominated regions

> Medina-Torrejon, de Gouveia Dal Pino+, ApJ 2021 Medina-Torrejon, de Gouveia Dal Pino, Kowal 2023

Gamma-ray absorption by extragalactic background light (EBL)

- cherenkov telescope array
- Extragalactic Background Light (EBL): integrated IR and optical emission from stars and galaxies through evolution of the universe (very hard to measure)
- EBL interacts with gamma-rays: photon-photon -> pair production

CTA:

- measure EBL precisely @ z=0 for large number of objects
- large sample of blazars z=0-2: evolution of EBL

Gamma-ray absorption by extragalactic background light (EBL)

arXiv:2010.01349

Gamma-ray propagation & absorption: pair echo and halo & cosmic magnetic field

Pair production by TeV photons interacting in voids: allows to measure weak magnetic fields (IGMF)

- Secondary gamma-rays produced by primary pairs via inverse-Compton scattering on the EBL -> cascade from further pair and inverse-Compton interactions
- Deflections of secondary pairs in the IGMF form:
 - pair halo (around the primary source)
 - pair echoes: that arrive with time delay relative to primary emission
- IGMF > 10⁻¹² G: full isotropisation of the emission: pair halo
- IGMF < 10⁻¹² G: extended emission

CTA will detect secondary pair emission for IGMF ~ 10⁻¹⁶ - 10⁻¹² G (for sources @ ~ 100Mpc)

Gamma-ray propagation & absorption: pair echo and halo & cosmic magnetic fields

cherenkov telescope array

Gamma-ray propagation: photon-axion oscillations

- Axion Like Particles (ALPs): massless particles predicted by quantum chromodynamics (and also DM candidates)
- ALPS: convert into photons (and vice versa) when traverse ambient MF
- For very distant AGN: conversion of ALP into gammaray enhances the TeV photon flux (which competes with the absorption on the EBL)

Clue:

To probe ALPs we need distant AGN embedded in measurable MFs -> a distant AGN in the center of a galaxy cluster: e.g. NGC1275 in Perseus cluster (75 Mpc)

Gamma-ray propagation: photon-axion oscillations

CTA constraints on ALPs:

m_a versus ALP-coupling to photons g_{av}

- Green regions: exclusion in the ALP parameter space by CTA from flaring state of the radio galaxy NGC 1275
- Purple and blue: exclusion regions from current-generation instruments
 - Salmon: hints for ALPs from additional cooling of white dwarfs (WD) and increased transparency of the Universe to TeV γ-rays
- Green lines: other projected sensitivities
- Dark orange: parameter space for QCD axion

arXiv:2010.01349

Searching for Dark Matter annihilation

Does dark matter annihilate producing gamma rays? What is the (dark) matter content?

CTA prospects for CDM signatures:

Around the Galactic centerIn dwarf galaxiesIn clusters of galaxies

Dark matter search in galactic center

abundance

Characteristic spectral signature known from particle physics

Dark matter annihilation

Gamma-Rays & DM in galaxy clusters

Galaxy clusters able retain VHECR for Hubble time-> produce gamma-rays

CTA will probe gamma-ray and DM: Perseus cluster (in prep.)

Figure 1. Trajectories of CRs through a cluster of mass $\sim 10^{15} M_{\odot}$ selected from our background simulation. The thick line corresponds to a CR with energy of 10 PeV, and the thin line to a CR with energy 500 PeV.

Diffuse Gamma-Ray emission from clusters z=0-5 ^{the thin line to a CR with energy 500 PeV.} (Hussain, Alves-Batista, de Gouveia Dal Pino & Dolag, Nature Comms. 2023, in press)

Photon propagation: LIViolation

Quantum Gravity effects (at Planck scales): arrival time delays between photons of different energies travelling large distances (due to wavelength dependent refractive index of the vacuum) -> LIV - variation of light speed

$$\Delta t \simeq \left(\frac{\Delta E}{\xi_{lpha} E_{
m Pl}}\right)^{lpha} rac{L}{c}$$

$$E_{
m Pl} = \sqrt{\hbar c/G_{
m N}} \simeq 1.22 imes 10^{19} ~
m GeV$$

lpha~1-2 ξ_{lpha} - factor of Planck energy for QG

A CTA Precursor @ Tenerife

9 SST-2M telescopes: INAF (Italy) + Brazil, South Africa, Spain, Switzerland

3 structures: Brasil - IAG-USP (FAPESP funding)

Currently in construction Installation Teide Observatory (Tenerife, Canary Islands): 2022-2025

Mini-Array

ASTRI mini-array: mini but not small...

Expected performance:

- Sensitivity: better than current IACTs (E > 10 TeV):
 - Extend spectra of already detected sources and measure cut-offs
 - Characterize morphology of extended sources at the highest VHE
- Energy/Angular resolution: < ~10% / < ~ 0.05° (E ~ 10 TeV)
- Wide FoV (≥ 10°), with homogeneous off-axis acceptance
 - Optimal for multi-target fields, surveys, and extended sources
 - Enhanced chance for serendipity discoveries

We extend current IACTs differential sensitivity up to several tens of TeV and beyond

Investigate possible spectral features at VHE, such as the presence of **spectral cut-offs** or the detection of emission at several tens of TeV expected from **Galactic PeV sources**

Stefano Vercellone, ASTRI & LHAASO Workshop, 7-8/03/2023

FOV, Angular and Energy Resolution

Sensitivity: better than current IACTs (E \gtrsim 3 TeV)

- Broad-band spectrum
- Spectral cut-off constraints

Energy/Angular resolution: ~10% / ~0.05° (E ~10 TeV)

• Extended sources morphology

10° field of view with excellent off-axis performance

- Multi-target fields
- Serendipitous discoveries

Science with the ASTRI Mini-Array

cherenkov telescope array

LHAASO Sources at PeV energies

Cao et al., 2021, Nature

Sourcename	RA (°)	dec. (°)	Significance above 100 TeV ($\times \sigma$)	E _{max} (PeV)	Flux at 100 TeV (CU)
LHAASO J0534+2202	83.55	22.05	17.8	0.88 ± 0.11	1.00(0.14)
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 -0.10 ^{+0.16}	0.73(0.17)
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07	0.74(0.15)
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)

Discovery of **12 sources** emitting at several hundreds of TeV, up to 1.4 PeV

Crab aside, the majority of remaining sources represent diffuse γ -ray structures with angular extensions up to 1°

The actual sources responsible for the ultra high-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving the origin of these extreme accelerators open

The ASTRI Mini-Array will investigate these and future UHE sources, providing both the opportunity for their <u>precise</u> identification and important information on their <u>morphology</u> and spectra

• GRBs confirmed as a new class of TeV emitters thanks to the MAGIC detection of GRB 190114C (z=0.42)

- SSC component extending into the TeV energy range
- LHAASO detection of GRB 221009A (z=0.15) well above 10 TeV challenges the standard physics model

The ASTRI Mini-Array

- might have detected emission from GRB 190114C
- is able to confirm afterglow emission at *E* >1 TeV from close (z < 0.4) GRBs if observations start within the first tens of seconds up to few minutes from the onset of the burst
- can measure the spectral cut-off, either originated by the EBL absorption or intrinsic, if greater than 1 TeV

The expected number of follow-ups on observable GRBs is about 1 per month

Simulation of the emission from three GRB 190114C-like bursts, at three different redshifts (z = 0.078, z = 0.25 and z = 0.42)

Simulations of GRB 221009A will start very soon

ASTRI mini-array: mini but not small...

The ASTRI Mini-Array will start scientific observations in 2025 from the Observatorio del Teide with a 4 (core science) + 4 (observatory science) year programme

Its **10° field of view** will allow us to investigate both extended sources (e.g., SNRs) and crowded/rich fields (e.g., the Galactic Center) with a single pointing

Its **3' angular resolution** at 10 TeV will allow us to perform detailed morphological studies of extended sources

Its **sensitivity extending above 100 TeV** will make it the most sensitive IACT in the energy range 5-200 TeV in the Northern hemisphere before CTAO-N

Brazil in the construction of SSTs for CTA-South

Brasil in the SST-CTA Program:

Currently: ~60 members in CTA-Br (~29 -> in SST–CTA from IAG-USP, EACH-USP, Mackenzie, UFABC, IFUSP, CBPF)

Aim: production in Brazil **of optical support of the 40** (ASTRI based) SST structures of CTA-South array (αconfiguration) (FAPESP)

CTA Observatory is coming

31 Countries 200+ institutes 1400+ members One aim!

CTA Observatory is coming

CLd

31 Countries 200+ institutes 1400+ members One aim!

- by Summer / September 2023
- last about 5 yr

Early science operations foreseen during the construction phase

(cta

