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Part 1
•            Introduction to mesoscopic physics

• The Aharonov-Bohm effect in disordered conductors.
• Phase coherence and effect of disorder. 
• Average coherence:                 effect and coherent 

backscattering.
• Phase coherence and self-averaging: universal 

fluctuations.
• Classical probability and quantum crossings.
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Weak disorder                  : independent scattering events 

The framework :



 Multiple scattering of waves  

k

k'

k

L L

2 characteristic lengths:
Wavelength:
Elastic mean free path:

Weak disorder                  : independent scattering events 

l



 Multiple scattering of waves  

k

k'

k

L L

2 characteristic lengths:
Wavelength:
Elastic mean free path:

Weak disorder                  : independent scattering events 

l



 Multiple scattering of waves  

k

k'

k

L L

2 characteristic lengths:
Wavelength:
Elastic mean free path:

Weak disorder                  : independent scattering events 

l



 Multiple scattering of waves  

k

k'

k

L L

2 characteristic lengths:
Wavelength:
Elastic mean free path:

Weak disorder                  : independent scattering events 

l

We shall be 
interested 
only by this 
limit



 Multiple scattering of waves  

k

k'

k

L L

2 characteristic lengths:
Wavelength:
Elastic mean free path:

Weak disorder                  : independent scattering events 

l



 Multiple scattering of waves  

k

k'

k

L L

2 characteristic lengths:
Wavelength:
Elastic mean free path:

Weak disorder                  : independent scattering events 

l

Weak disorder                  : independent scattering events 



A “canonical” 
mesoscopic effect

The Aharonov-Bohm effect

 Aharonov-Bohm (1959)
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The quantum amplitudes                             have phases: a1,2 = |a1,2|e
iδ1,2

δ1 = δ
(0)
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∫
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∫
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I(φ)

No magnetic field on 
the electrons : no 
Lorentz force and no 
orbital motion.

Aharonov-Bohm effect
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The intensity       is given byI(φ)

I(φ) = |a1 + a2|
2 = |a1|

2 + |a2|
2 + 2|a1a2| cos(δ1 − δ2)

= I1 + I2 + 2
√

I1I2 cos(δ1 − δ2)

The phase difference                            is modulated by the 
magnetic flux     :

∆δ(φ) = δ1 − δ2

φ

∆δ(φ) = δ
(0)
1 − δ

(0)
2 +

e

h̄

∮
A.dl = ∆δ(0) + 2π

φ
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φ0 = h/ewhere                     is the quantum of magnetic flux.

There is a continuous change of the state of interference:
        
                          Aharonov-Bohm effect (1959). 
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Implementation in metals : the conductance             is the analog of 
the intensity.

B

G(φ)

G(φ) = G0 + δG cos(∆δ(0) + 2π
φ

φ0
)

elastic mean free path
le

L

Phase coherent effects subsist in disordered  metals.
Reconsider the Drude theory. 

Webb et al. 1985
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Phase coherence and effect of disorder

The Webb experiment has been realized on a ring of size                  . 
For a macroscopic normal metal, coherent effects are washed out.
           
           It must exist a characteristic length        called phase coherence 
length beyond which all coherent effects disappear.  
           

Lφ
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Vanishing of quantum coherence results from the existence of incoherent and 
irreversible  processes  associated  to  the  coupling  of  electrons  to  their 
surrounding (additional degrees of freedom) :

Coupling to a bath of excitations: thermal excitations of the lattice (phonons)
Chaotic dynamical systems (large recurrence times, Feynman chain)
Impurities with internal degrees of freedom (magnetic impurities)
Electron-electron interactions,....

The understanding of decoherence is difficult. It is a great challenge in 
quantum mesoscopic physics. The phase coherence length        accounts in a 
generic way for decoherence processes. 

The observation of coherent effects requires

Lφ
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        Average coherence and multiple scattering

Phase coherence leads to interference effects for a given realization of 
disorder. 

The Webb experiment corresponds to a fixed configuration of disorder. 

Averaging over disorder            vanishing of the Aharonov-Bohm effect

G(φ) = G0 + δG cos(∆δ(0) + 2π
φ

φ0
)

What is the role of elastic disorder ? Does it erase coherent effects ?

Disorder seems to erase coherent effects....

⟨G(φ)⟩ = G0
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 Formulate the same question : 
disorder vs. coherent effects in optics

Weak disorder                  : independent scattering events 



An analogous problem: Speckle patterns in optics
Consider the elastic multiple scattering of light transmitted through a 
fixed disorder configuration.

Outgoing light builds a speckle pattern i.e., an interference picture:
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Integration over the motion of the scatterers leads to self-averaging

Averaging over disorder erases the speckle pattern:

Time averaging



 There is an equivalent for the 
Aharonov-Bohm effect

Weak disorder                  : independent scattering events 
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incoherent between themselves.
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The signal modulated at         disappears 
but, instead, it appears a new contribution 
modulated at φ0/2

After all, disorder does not seem to erase 
coherent effects, but to modify them....
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Elastic disorder is not related to decoherence : disorder does not destroy phase 
coherence and does not introduce irreversibility.

What about speckle patterns ?

Averaging over disorder does not produce incoherent intensity only, but 
also an angular dependent part, the coherent backscattering, which is a 
coherence effect. We may conclude:
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r3,r4

f(r1, r2)f∗(r3, r4)ei(k.r1−k
′.r2)e−i(k.r3−k

′.r4)
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Generally, the interference term vanishes due to the 
sum over                  , except for two notable cases:r1 and r2

k + k
′
≃ 0 :  Coherent backscattering

r1 − r2 ≃ 0 : closed loops, weak localization and           periodicity 
of the Sharvin effect. 
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Elastic disorder is not related to decoherence : disorder does not destroy phase 
coherence and does not introduce irreversibility.

What about speckle patterns ?

Averaging over disorder does not produce incoherent intensity only, but 
also an angular dependent part, the coherent backscattering, which is a 
coherence effect. We may conclude:
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The                 experiment                  Sharvin
2

L

Lz

a

Experiment analogous to that of Webb but 
performed on a hollow cylinder of height larger 
than         pierced by a Aharonov-Bohm flux. 
Ensemble of rings identical to those of Webb but 
incoherent between themselves.

Lφ

The signal modulated at         disappears 
but, instead, it appears a new contribution 
modulated at φ0/2

After all, disorder does not seem to erase 
coherent effects, but to modify them....

φ0



 Quantum complexity

Weak disorder                  : independent scattering events 



Random quantum systems 
(quantum complexity)

Disorder does not break phase coherence and it 

does not introduce irreversibility

It introduces randomness and complexity:

all symmetries are lost, there are no good 

quantum numbers.

Each quantum observable of a quantum 

complex system depends on the specif ic 

realization of disorder.
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Transmission of  
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Mesoscopic quantum systems

• Most (all ?) quantum systems are complex 

• Complexity (randomness) and decoherence 
are separate and independent notions.

• Complexity: loss of symmetries (good 
quantum numbers)

• Decoherence: irreversible loss of quantum 
coherence L ≫ Lϕ

A mesoscopic quantum system is a coherent 
complex quantum system with L ≤ Lϕ
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An Exemple 



Classical limit :             
The system is a collection of 
statistically independent subsystems.
A macroscopic observable defined in each subsystem 
takes independent random values in each of the N 
pieces.

Law of large numbers:  any macroscopic observable is 
equal with probability one to its average value.

The system performs an average over realizations of the 
disorder.

 

L ≫ Lϕ

N = (L/Lϕ)d
≫ 1

Phase coherence and self-averaging: 
               universal fluctuations.
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For              , we expect deviations from 
self-averaging which reflect the underlying 
quantum coherence. 

Need:

• a good understanding of the phase 
coherence length 

• a description of fluctuations and coherence 
in a quantum complex system.

• If disorder is strong enough, the system 
may undergo a quantum phase transition

L ≪ Lϕ

Lϕ
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Exemple: electrical conductance of a metal

A metal can be modeled as a quantum gas of electrons 
scattered by an elastic disorder.

At T=0 and in the absence of decoherence, it is a complex 
quantum system.

Due to disorder there is a finite conductance  which is a 
quantum observable.

Classically, the conductance of a cubic sample  of volume      
is given by Ohm’s law:                      where    is the 
conductivity.               

G = σL
d−2

L
d

σ
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Quantum conductance fluctuations

Classical self-averaging limit :

where                       and  
           is the average over disorder.

δG

G
=

1

N
=

(

Lϕ

L

)d/2

δG =

√

G2
− G

2

...

In contrast,  a mesocopic quantum system is such 
that : 

Fluctuations are quantum, large and independent of 
the source of disorder : they are called universal. 

In the mesoscopic limit, the electrical conductance is 
not self-averaging.

δG ≃

e2

h

G = σL
d−2

δG
2
∝ L

d−4
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Gold ring Si-MOSFET NUMERICS ON 
THE ANDERSON MODEL


