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I. WHAT IS AN OPTICAL LATTICE?

These notes were prepared for the 2023 ICTP school on ultracold atoms, in Sao Paulo. Their intent is to introduce
graduate students to ultracold atoms in optical lattices. As a pedagogical document, no attempt is made to capture
the state of the art in research using optical lattices; the reader is instead referred to a number of published reviews
for this (Georges and Giamarchi, 2012; Gross and Bloch, 2017; Jessen and Deutsch, 1996; Lewenstein et al., 2012).
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Jean Dalibard’s lectures at the College de France include a pedagogical set of notes on optical lattices (2013), an
historical review of cold atoms (2014), and more. Absent from our discussion are two developing themes: periodically
driven optical lattices (Eckardt, 2017) and topological e↵ects.

This introductory section discusses how a periodic potential is made using interference patterns of laser light.
Subsequent sections discuss the eigenvalue problem of non-interacting particles in a lattice (§II), how to think of a
particle “at” a particular lattice site (§III), the deep-lattice limit (§V), and an introduction to many-body physics in
a lattice (§VI).

A. Two traveling waves

The light emitted by a continuous-wave laser is typically collimated into a beam that is 0.5 mm to 5 mm in diameter.
Within the intensity envelope of these beams, laser beams can be treated as monochromatic traveling waves of light.
At position r and time t, the electric field of a travelling wave can be written

E(r, t) = E0✏̂ exp(ik · r� i!t) (1)

where k is the wave vector, ✏̂ is the polarization unit vector, and E0 is the peak electric field. We have adopted complex
notation, but the electric field is a physical observable and thus must be real-valued! The complex notation is used just
for convenience (e.g., to avoid sinusoids), and maps back onto the (observed) electric field as Ereal = Re{E}. In fact,
since we will typically assume a monochromatic e

�i!t time dependence of the field, we will drop this as E = Ẽe
�i!t,

from which Ereal = Re{Ẽe
�i!t

}.
The energy density of an electromagnetic wave is u = ✏0|Ereal|

2. This will oscillate on a time scale not visible to
ordinary detectors, so it is convenient to take the time average and multiply by c to get units of intensity, power per
area: I(r) = c✏0|E(r, t)|2. Applying this to Eq. 1, we see that each travelling wave has an intensity I0 = 1

2
c✏0E

2
0
.

Now, we are ready to construct a one-dimensional optical lattice by forming a standing wave from two equal-intensity
overlapping travelling waves:

Ẽsw(r) = E0✏̂1e
ik1·r + E0✏̂2e

ik2·r
. (2)

The intensity of the standing wave is

Isw(r) = 2I0|{z}
incoherent

+ 2I0 Re{✏̂1 · ✏̂
⇤
2
e
i(k1�k2)·r}| {z }

interference

(3)

The first term on the r.h.s. is what would be expected if the power of the consituant travelling waves added incoherently.
The second term in Eq. 3 is an interference term. It appears for two beams that are phase-coherent. With sub-10-MHz
frequency stability easily achieved in a modern laser, the coherence length (`coh ⇠ c/�f) of light is in excess of 10m.
State-of-the art sources are kHz-line-width fibre lasers, so that the coherence lengths are many kilometres. Thus, we
will assume for now that the relative phase of any two interfering laser beams is under perfect experimental control.

The only remaining question is one of polarization. Figure 1 gives several possibilities for linearly polarized beams:
that ✏̂1 and ✏̂2 are parallel, or crossed linearly; and that the local magnetic field is parallel or perpendicular to the
electric field. The reason the B-field matters is that atoms respond di↵erently to � and ⇡ polarized light, as discussed
in Sec. A.2. If ✏̂1 and ✏̂2 are parallel, then an intensity pattern will develop. The linear polarization of Ẽsw addresses
the ⇡ matrix element if B||E (right column of Fig. 1) or equal parts �+ and �� if B ? E (centre column of Fig. 1).
On the other hand, if ✏̂1 and ✏̂2 are perpendicular, the interference term in Eq. 3 vanishes, and there is no intensity
pattern. The local polarization in Ẽsw has a pattern that goes from purely �+ to purely �� and back again, in one
wavelength (left column of Fig. 1).

What response do these standing-wave fields induce for atoms? This depends critically on the detuning � = !�!0

of the light from the resonant transition frequency of the atom !0. Typical detunings for OLs are tens to hundreds
of nm, in order to minimize Rayleigh scattering, which can cause atom heating or loss. For alkali atoms (6Li ,87Rb ,
40K , etc.) that are commonly used ultracold atoms, and in the limit where � is much larger than the fine-structure
splitting �FS, the induced potential in this limit can be written, at low magnetic field (Grimm et al., 2000), as

U(r) ⇡
3⇡c2

2!3
0

�

�

✓
1 +

1

3
PgFmF

�FS

�

◆
I(r) , (intermediate detuning �FS . |�|⌧ !0) (4)

where P = ±1 for �± light and = 0 for linearly polarized light, gF is the gyromagnetic ratio of the ground state,
mF is the magnetic quantum number. A beam that has equal parts �+ and �� creates two potentials, with P = +1
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FIG. 1 Polarizations of standing waves. Starting with linear polarizations, two equal-intensity counter-propagating trav-
elling waves create a standing wave of intensity or polarization gradient. Left: The “lin ? lin” configuration creates no net
intensity gradient, but does create an alternating �+ / �� polarization standing wave when the magnetic field is oriented in
z, parallel to the k vectors of the light. Centre: The lin k lin configuration creates a linear polarization and a standing wave
in intensity. When the magnetic field is perpendicular to the electric field, that linear polarization is an equal superposition of
�+ and �� fields. Right: When the magnetic field is parallel to the electric field polarization, the lin k lin standing wave is ⇡

polarized. Not shown here is a fourth possibility: lin perp lin polarization, like in the left-most column, but a B-field along x
or y. In that case, there is neither a polarization gradient nor an intensity gradient.

and �1, such that the polarization e↵ects cancel out. A magnetic potential is only created by an imbalance between
�

+ and �
� intensities, which can be created with a “lin perp lin” configuration (first column in Fig. 1). Even then,

the polarization sensitivity scales as the ratio of the fine-structure splitting �FS to the detuning (in alkali atoms).
Going forward, we will neglect optically induced magnetic potentials. The force on an atom is just the gradient of
this potential — i.e., the dipole force on an atom is proportional to the gradient in local intensity, and independent
of the direction of propagation of the beam.

A contribution to the optical potential not included in Eq. 4 is the counter-rotating term. When magnetic terms
are negligible (either because P = 0 or when |�|� �FS), the potential is

U(r) ⇡
3⇡c2

2!3
0

� �

! � !0| {z }
=�/�

+
�

! + !0| {z }
counter�rotating

�
I(r) (large-detuning limit) (5)

assuming that a single strong dipole transition dominates the static polarizability. In the quasi-static limit ! ⌧ !0,
which describes lattices made by CO2 lasers at 10µm for instance, we see that the counter-rotating term contributes
equally to the potential depth, so that Eq. 4 under-estimates the optical potential but as much as a factor of two.

In the true DC limit, electric fields create a static Stark shift:

UStark(r) ⌘ �
1

2
↵0|E|

2(r) where ↵0 = 2
X

k

���h0|d̂ · ✏̂|ki
���
2

Ek � E0

(6)

Extending this treatment to an oscillating electric field, we can replace ↵0 by a frequency-dependent polarizability
↵(!). Indeed the first-order perturbative treatment of a time-varying electric field has a similar form to Eq. 6, as
shown in App. A. Several characteristics of the static Stark shift carry forward to the e↵ect of a far-detuned laser
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FIG. 2 The polarisability ↵/↵0 is plotted versus !/!0. The contributions of the resonant enhancement (8) is shown as a
dashed green line; and the counter-rotating term is shown as a solid red line. These add to give the solid black line. Notice
that the 1/� scaling over-estimates polarisability for the ultraviolet limit ! � !0, because the counter-rotating term partially
counteracts it, resulting in a 1/�2 scaling. In the infrared ! ⌧ !0 limit, the polarisability approaches a constant ↵0, and the
field can be treated as quasi-electrostatic.

beam on an atom: in both cases, the energetic shift of the ground state is proportional to E
2, and thus proportional

to intensity I.
Equation (5) would predict that in the limit ! ! 0, the polarizability (�2U/E2) approaches

↵0 ⇡
6⇡c3✏0�

!
4
0

. (7)

Table I compares this to experimentally measured polarizabilities from several alkali metals. We see that at least for
the alkali metals, the agreement is better than 5%.

However, the static polarizability ↵0 ⇡ 3 ⇥ 10�39 C m2/V of atoms is not promising for static electric fields, since
fields greater than 105 V/m typically cause electrode discharge. This would limit a Stark shift to |�EStark| . kB2µK,
which is only marginally operable for ultracold atoms. Of course, laser light is at a finite frequency !L, so o↵ers some
resonant enhancement over the static limit. This enhancement factor (again in the far-detuned limit) is clear from
Eq. (5):

Udip

UStark

=
1

1� (!L/!0)2
=

1

1� (�0/�L)2
(8)

This is plotted in Fig. 2. A commonly used trapping wavelength is �L =1064 nm due to the availability of strong
sources at the YAG wavelength. The resonant enhancement factor for the alkali then varies between ⇠1.4 (for Na)
and ⇠2.9 (for Cs).

For far-detuned optical lattices, more significant than this resonant enhancement is the accessible magnitude of the
electric field (i.e., intensity) that one can achieve using a focused laser beam. For a single-mode Gaussian laser beam

TABLE I Static electric polarizability of alkali atoms. The measured value [ref] is compared to values calculated from (7).
Since the strongest dipole line in alkali is split by hyperfine interactions in the excited state, we use ! = !̄, where !̄ is a
weighted sum of the fine-structure-split lines: !̄ = (1/3)!1 + (2/3)!2, where !1 and !2 are the D1 and D2 lines, respectively.
Also, �̄ = (1/3)�1 + (2/3)�2, where �1 and �2 are the line widths of the D1 and D2 lines, respectively. The listed wavelengths
are �̄ = 2⇡c/!̄.

Element �̄/h �̄ ↵ from Eq. (7) measured ↵

(MHz) (nm) ( 10�39 C m2/V ) ( 10�39 C m2/V )

Lithium 5.9 671 2.7 2.7

Sodium 9.8 589 2.6 2.6

Potassium 6.0 768 4.7 4.8

Rubidium 6.1 785 5.1 5.3

Cesium 5.0 864 6.3 6.6
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propagating along z with a minimum waist at z = 0, the intensity is (see (Yariv, 1989), Ch. 6)

I(x, y, z) =
2P

⇡w2(z)
exp

⇢
�2

x
2 + y

2

w2(z)

��
where w(z) = w0

✓
1 +

z
2

z
2

R

◆1/2

and zR = ⇡w2

0
/� (9)

Here P is the optical power (in Watts), w(z) is the beam waist, w0 is the minimum beam waist, and zR is the Rayleigh
Range. Notice the easily confused (but commonly used) symbols: w refers to beam radius, while !L is an optical
frequency. At the focus of the beam, the intensity is

Imax = 2P/⇡w2

0
, (10)

which for a 5-W beam focused to a waist of 35µm creates an intensity of 5⇥ 109 W/m2. This is an rms electric field
of 1.4⇥ 106 V/m, a very di�cult field to create with physical electrodes. A single YAG beam with these parameters
creates a traveling-wave potential depth of 680µK for Potassium, for instance.

Finally, let’s put all this back in the context of OLs. Two travelling waves with parallel polarizations and peak
intensity I0 will make a standing-wave intensity pattern

Isw(r) = 2I0 + 2I0 cos(krel · r) (11)

where krel = k1 � k2. For two beams with k1,2 = ±kLx̂, krel · r = 2kLx. Using trig identities, we can also write

Isw(r) = 4I0

✓
1

2
+

1

2
cos(2kLx)

◆
= 4I0 cos2(kLx) (12)

Where did this “factor of 4” come from? One doubling comes from the use of two traveling waves; one doubling comes
from the interference e↵ect. The latter does not increase the total power, of course: the spatially averaged intensity
is still 2I0.

Using Eq. 5, this intensity 4I0 translates into a potential depth that we will define as VL. Whether the potential
minimum is at highest or lowest light intensity will depend on �; whichever the case, it’s mathematically convenient
to locate x = 0 at the bottom of the potential. So we will typically write

V (x) = VL sin2(kLx) = VL(1� cos 2kLx) (1D optical lattice potential) (13)

The period of this standing wave is �L/2, which is 2⇡/|krel| = ⇡/kL. It will be useful to rename this as a, the
lattice periodicity. For arbitrary angle between laser beams ✓,

a =
�L

2 sin(✓/2)
(Lattice period) (14)

which reduces to the minimum length �L/2 for ✓ = ⇡.

B. Interference patterns of multiple traveling waves

So far, we have shown that two traveling waves can create a sinusoidal confining potential. What happens if we
add additional beams?

To start with, let’s consider three equal-intensity beams. If their polarizations are parallel, then

Ẽ(r) = E0✏̂e
ik1·r + E0✏̂e

ik2·r + E0✏̂e
ik3·r (15)

and the intensity is

I(r) = I0

��eik1·r + e
ik2·r + e

ik3·r��2 (16)

We will see that the intensity patterns produced are not evident from what seems to be such a simple geometric
structure. For three beam at equal angles, we can calculate the intensity pattern in the (x, y) plane with k1 · r = kLx,
k2 · r = kLx cos(2⇡/3) + kLy sin(2⇡/3), and k3 · r = kLx cos(2⇡/3) � kLy sin(2⇡/3). The result is a honeycomb or
hexagonal pattern. Would you have guessed this?
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The situation gets even more complicated with four lattice beams in a co-planar arrangement. Now the geometry
of the intensity pattern depends on the relative phase of the beams. In general, one can show that the geometry of
n + 1 beams in n dimensions is robust to the relative phase, but no more than that. In other words, a tetrahedral
configuration of four beams in three dimensions creates a predictable pattern; but the geometry of the interference
pattern of five or more beams depends on phase.

A common “trick” used by experimentalists is to wash out interference patterns by using slightly di↵erent optical
frequencies for each 1D standing wave. Frequencies that are o↵set by tens of MHz (where 1 MHz = 106 cycles per
second = 2⇡ ⇥ 106 s�1) will not substantially change the period of the standing waves, since !L is typically in the
1014 s�1 regime. However, the interference terms will “walk” at a rate that is too fast for the atoms to follow1. A
related approach is to use polarizations of standing waves that are mutually orthogonal. In either case, one can create
a 2D potential that is

V (r) = V (x) + V (y) = VL,x sin2(kLx) + VL,y sin2(kLy) (2D square lattice potential) (17)

which is a separable potential with a square structure. Extending to three pairs of beams, for which cross-interferences
have been eliminated, we can create

V (r) = V (x) + V (y) + V (z) = VL,x sin2(kLx) + VL,y sin2(kLy) + VL,z sin2(kLz) (3D cubic lattice potential)

= VL

�
3� cos(2kLx)� cos(2kLy)� cos(2kLz)

�
in the isotropic case

(18)
which is a separable potential with a simple cubic structure. Due to its experimental and theoretical simplicity, this
is the “default” OL potential for ultracold atoms, used in the vast majority of labs. Natural crystals do not have the
same bias: simple cubic crystals are rare. The second line of Eq. 18 emphasizes that VL is not the peak depth, but
the modulation depth of each individual lattice.

Even without cross-interference patterns, multi-beam lattices can make surprising patterns. Consider laying two
potentials like Eq. 17 on top of each other at an angle of ⇡/4. If all pairs have equal intensity, then the potential is

V (r) = VL sin2(kLx) + VL sin2(kLy) + VL sin2(kL(x + y)/
p

2) + VL sin2(kL(x� y)/
p

2) (19)

It turns out that this is not a periodic potential! Although it has long-range order, there is no unit cell. Such a
potential is called a quasi-crystal. Famously, and incorrectly, Linus Pauling said, “there is no such thing as quasi-
crystals, only quasi-scientists.” Years later, Shectman won a Nobel for his work on quasi-crystals. In 2D, the only
possible crystalline orders are rectangular (of which cubic is a special case), centered rectangular, hexagonal, and
oblique (of which triangular is a special case). All of them can be made by optical lattices, but only the square lattice
has been well explored.

II. BAND STRUCTURE

The treatment of a non-interacting particles in a periodic potential is familiar to anyone who has studied solid state
physics. “Band structure” is the starting point for understanding electronic properties of metals and semiconductors.
The new perspective o↵ered by cold atom are that the particles might have bosonic statistics (unlike electrons), and
eigenstates of the problem can now be understood as atoms dressed by photons. There are also some simplifications:
the crystal is completely rigid, since single atoms have negligible back-action on the standing waves, so there are no
lattice phonons. Also, the spacing between lattice sites far exceeds the range of inter-particle potentials, at least of
dipole-dipole interaction are weak. We shall discuss interactions in §VI; in this section and the next, we focus on the
non-interacting problem.

The essence of the problem is the Hamiltonian

Ĥ =
p̂2

2m
+ V (r̂) (20)

where V (r) is the single-particle lattice potential. We will ignore the usual confining potential present in most cold-
atom experiments; for a treatment of this, see (Rey et al., 2005), and references therein. For simplicity we treat only

1 In the limit of deep lattices, the time scale of motional response of a single atom is set by the band gap, ⇠ ~/
p
ERVL, which for typical

atomic mass and lattice configurations is tens of microseconds. Washing out interference between optical beams is safely accomplished
with a ⇠ 102 MHz frequency di↵erence, such that the optical pattern walks through a full period on the nanosecond scale.
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the 1D sinusoidal problem in these notes, i.e.,

Ĥ =
p̂
2
x

2m
+ VL sin2(kLx̂) (21)

and refer the reading to numerous solid-state physics textbooks for a systematic treatment of three-dimensional band
structure.

A. Symmetry of the eigenstates: quasi-momentum

A periodic potential breaks the continuous translational symmetry that is present in free space. Noether’s Theorem
states that for every continuous symmetry, there is a conserved quantity. For the continuous translational symmetry,
it is momentum that is conserved, even in a many-body system. For instance, if two particles collide in free space,
they can exchange momentum, but the total momentum of the two particles is the same before and after the collision.

The optical lattice ruins all this and more: V (r) is not translationally invariant, so momentum is not conserved.
Seen another way: momentum can be transferred between the light and matter, so the atoms’ momentum is not
conserved. Furthermore, the lattice potential provides a fixed reference frame that destroys Galilean invariance: we
can always compare the speed of an atom to the (stationary) lattice potential, which now defines a natural choice for
v = 0.

However, a periodic potential does have a discrete translational symmetry. Shifting the potential by one spatial
period returns us to the original scenario. A natural question to ask is whether there is some conserved quantity that
is the complement of this newly restricted symmetry. Bloch (1929) and Floquet (1883) found that indeed, there is a
new quantity, “crystal momentum” or “quasi-momentum”, which characterizes the eigenstates |�i of Eq. 20. We will
first show the structure of the solution for the 1D case, and then return to the 3D case.

The translation operator T̂a is defined by

T̂a |xi = |x + ai such that T̂a�(x) = hx| T̂a |�i = hx� a|�i = �(x� aL) . (22)

Since momentum operator p̂x is (also defined as) the generator of translations in x, we can write

T̂a = e
�iap̂x/~ . (Spatial translation operator) (23)

Our 1D Hamiltonian Ĥx = p̂
2
x
/2m+V (x̂) commutes with T̂a when a is the period of the lattice because V (x) = V (x±a),

and p̂x commutes with T̂a for any a. Thus, when looking for the eigenvalues of Ĥx, we know they should also be
eigenstates of T̂a.

First, let’s show that T̂a is a unitary operator, whose inverse is its hermetian conjugate:

T̂
�1

a
= (e�iap̂x/~)�1 = e

+iap̂x/~ = T̂
†
a

(24)

Hermetian operators have the nice property that their eigenvalues have unity modulus2, we can write them as � = e
i✓,

and label the eigenstates with ✓; or, we could choose to write � = e
�iqaL , where aL is fixed (the period of the lattice),

and associate each eigenstate with a new variable q, a wave number that must have units of inverse length. Our
eigenstates are now |qi, with eigenvalues of T̂a that are T̂a |qi = e

�iqa
|qi.

Without loss of generality, we can write these eigenstates in the form

hx|qi = �q(x) = e
iqx

uq(x) where uq(x� a) = uq(x) (Bloch waves) (25)

where we still need to find the form of the periodic function uq(x). Note that the full function �q(x) is not periodic:
there is a phase di↵erence e

iqa between between one period and the next. This reminds of us a plane wave, whose
phase also evolves by e

ika between any two points a apart, and thus q is called the quasi-momentum3.
What is the relationship between quasi-momentum and true momentum? The relationship is not simple. �q(x) is a

plane wave times a spatial modulation uq(x) that is periodic in x, and whose momentum components are non-trivial:

uq(x) =
X

j

c
q

j
e
2ijkLx (26)

for integer j and (recall) kL = ⇡/a. The Fourier-series representation of uq ensures its periodicity: replacing x by
x + a modifies the phase factor to be e

2ijkLa = e
ij2⇡ = 1.

2 Proof of this is as follows. Let’s take an eigenstate � of operator Û , with eigenvalue �, i.e., Û� = ��. The modulus |��|2 = |Û�|2 =
�⇤Û†Û�. But for unity operators, Û†Û = 1, so |��|2 = |�|2. However, this can only be true if |�|2 = 1. QED.

3 No relation to the quasi-crystals discussed in §I.B
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B. The eigenvalue problem

Solving the eigenvalue problem for each q entails finding the {c
q

j
}. Then,

�q(x) =
X

j

c
q

j
e
i(q+2jkL)x or |qi =

X

j

c
q

j
|p = q + 2jkLi (27)

We see that each quasi-momentum state consists of a comb of real momenta q, q ± 2kL, q ± 4kL, etc. whose spacing
is 2~kL, i.e., the momenta of two photons at the wavelength of the lattice.

The eigenstates and precise eigenvalues of the problem can be found by substituting Eq. 27 into Eq. 20. We have
already discussed why these states are labelled |qi; the remaining unknown function is uq(x), described by a series of
coe�cients cj . It is convenient to rescale everything in the problem by the energy scale ER = ~2

k
2

L
/2m, length aL,

and wave vector kL = ⇡/aL. The eigenvalue problem now distills down to a single matrix equation

X

`0

[Hq]``0c`0 =
Eq

ER

c` (28)

where

[Hq]``0 =
�
(
qaL

⇡
+ 2`)2 +

s

2

�
�`,`0 �

s

4
�`,`0�1 �

s

4
�`,`0+1 (29)

which is a tri-diagonal matrix that looks like

Hq !

0

BBBBB@

(qaL/⇡ + 4)2 �s/4 0 0 0

�s/4 (qaL/⇡ + 2)2 �s/4 0 0

0 �s/4 (qaL/⇡)2 �s/4 0

0 0 �s/4 (qaL/⇡ � 2)2 �s/4

0 0 0 �s/4 (qaL/⇡ � 4)2

1

CCCCCA
(30)

where we have only written out the central 5x5 elements of this infinite matrix. The eigenvectors are column vectors
of the coe�cients {c`}. From these, you can assemble the previously unknown function u(x) =

P
`
c` exp(2i`kLx).

Note that
P

|c`|
2 = 1.

Practically speaking, you will have to truncate this matrix to some ±`max. This can be safely down when (qaL/⇡+
2`max)2 � s/4, so that the plane-wave states are una↵ected by Bragg scattering of the lattice. In practice, `max = 3
can work for weak lattices, and `max = 10 can work for deep lattices. This matrix approach is general, and can be
generalized to complex and multi-dimensional lattice structure.

For the 1D sinusoidal potential, it turns out that this eigenvalue problem can be mapped to a set of analytic
functions developed by Mathieu, while studying vibrational modes of drumheads. The Mathieu equation is

d
2

dz2
y + ["� 2v cos(2z)] y = 0 (31)

and yields periodic solutions of even parity when " = a(r, v), and odd parity when " = b(r, v), where r is a “char-
acteristic exponent” that maps onto the quasi-momentum in our problem: r ! q/kL = ⇡q/aL. The solutions to
this di↵erential equation are special functions: “cosine-elliptic” y = ce(r, v, z) and “sine-elliptic” y = se(r, v, z),
respectively. For v = 0, ce! cos(

p
"z) and se! sin(

p
"z).

Mapping Eq. 31 to Eq. 21 with hx| Ĥ | i = hx|E | i uses v ! �VL/4ER and " ! E/ER � VL/2ER. We are left
with two continua of possible solutions:

�q(x) = ce(q/kL, v, kLx) with Eq = a(q/kL, v)ER + VL/2 (even parity)

�q(x) = se(q/kL, v, kLx) with Eq = b(q/kL, v)ER + VL/2 (odd parity)
(32)

where we have not specified the normalization. That there are two solutions to this equation poses a problem in a
sense: are there two eigenvalues for each q? In fact, a and b are di↵erent only for integer r, i.e., q = nkL. As we shall
see in the next section, these critical points are Bragg planes that correspond to gaps in the energy spectrum, where for
a single q, there are two possible eigenstates. The nth energy gap (between those eigenstates) is |a(n, v)� b(n, v)|ER.
Apart from those gaps, a(r, v) = b(r, v), however we still need to choose between the two parity of solutions (which are
di↵erent even for non-integer r). As we discuss in the next section, this is resolved by partitioning the eigenspectrum
into bands, enumerated with positive integers n. The band index n, shared by all quasi-momenta in the band, is
the number of Bragg planes (and thus gaps) crossed in going from q = 0 to the q in that band. Once the band is
established, one can choose the correct solution: odd n have odd-parity �q(x), and even n have even-parity �q(x).



9

-2 -1 0 1 2
0

1

2

3

4

5

6

7

momentum/ℏkL

en
er
gy

/E
R

FIG. 3 Opening of band gaps. A free-particle dispersion relation (VL = 0) is shown as a black dashed line. The eigenvalues of
Hq are shown for VL = 2ER (blue solid line) and for VL = 5ER (red solid line). Here we have o↵set the curves such that all
energies to overlap at q = 0.

C. Bragg scattering and band gaps

Before proceeding further to discuss the solutions of the eigenvalue problem, let’s pause to consider the physical
picture. Why does the |qi state in Eq. 27 consist of a comb of momenta spaced by two photon momenta?

The explanation comes from considering the wave-like properties of matter: the structure of |qi reflects the di↵rac-
tion of matter waves from a periodic potential. nth-order Bragg scattering occurs for a wave of wavelength � interacting
with a periodic structure of period a, when the (equal) incident and reflected angle ✓ satisfy

2a sin ✓ = n� . (33)

In our case, the wave is a de-Broglie wave with � ! �dB = h/|px| and retro-reflection in the standing wave has
✓ = ⇡/2, so that sin ✓ = 1. This gives |px| = n

h

2a
= nh/(2⇡/kL) = n~kL since a = ⇡/kL. Thus

px = ±n~kL (34)

are the resonant momenta at which atoms Bragg scatter o↵ of the optical lattice.
When Bragg scattering does occur, both momentum and energy are conserved. The first-order process is as follows:

an atom moving at momentum px,i > 0

Bragg scattering

�kL ��kL

2�kL

pi

pf = pi � 2�kL

is converted to a final momentum px,i � 2~kL,

Bragg scattering

�kL ��kL

2�kL

pi

pf = pi � 2�kL

which conserves momentum because the number of photons moving in the �x direction decreases by one, and the
number of photons moving in the +x direction increases by one. The optical field absorbs the momentum of the
scattered atom. If all photons have the same frequency, the energy of the light field is unchanged, so the energy of
the atom must also be unchanged; this can only happen when p

2

x,f
= p

2

x,i
, i.e., px,f = �px,i. Putting energy and

momentum conservation together, we find again the condition in Eq. 34 for n = 1.
Bragg scattering is a two-photon process4. Two-photon coupling generally occurs at a strength ~⌦Ram that is given

by the 2-photon (or Raman) Rabi frequency ,

⌦Ram =
⌦1⌦2

2�
, (35)

4 Note that this is not the same as a time-ordered sequence of two single-photon processes. Bragg scattering is also fully coherent, and it
does not involve spontaneous emission.
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where ⌦1 and ⌦2 are single-photon Rabi frequencies, given by Eq. A9. In this case, these single-photon Rabi frequencies
are (separately) based on the electric field for a travelling-wave beam and the electric dipole moment of the ground-to-
excited-state transition. The standing-wave lattice potential is also created from a second-order process in the electric
field, VL = ~⌦2

L
/4�, but where ⌦L comes from the total electric field, including all the interference terms discussed

in §I.A; whereas ⌦Ram, ⌦1, and ⌦2 are spatially constant. Thus ⌦1,2 = ⌦L/2, and ⌦Ram = VL/2~. Check factors.
Bragg scattering is the process in which a two-photon (or 2n-photon) transition changes the momentum of the

atom. Wave-function overlap requires momentum conservation, such that Bragg processes can only be driven by the
part of the optical field that provides the needed 2n~k. We can find what is needed for a ±2~kL change directly in
the standing-wave potential, by writing it as

VL sin2(kLx) =
VL

2
�

VL

4
e
2ikLx

�
VL

4
e
�2ikLx

. (36)

We see that only the VL/4 components could couple momentum states that di↵er by 2~kL; the spatially uniform VL/2
provides an energy o↵set to eigenstates. Since coupling strengths are always ±~⌦Rabi/2, we read o↵ the first-order
Bragg scattering Rabi frequency as

⌦B,1 =
�VL

2~ = ⌦Ram . (37)

Higher-order Bragg scattering also requires considering the detunings of intermediate states. Going from �2~kL
to +2~kL is a second-order process (so proportional to (�VL/2)2), through the intermediate virtual state |p = 0i,
whose detuning is 4ER. We’d thus expect the ~⌦B,2 to be (VL/2)2/(4ER) = 2�4

V
2

L
/ER. Indeed, more careful

treatments(Giltner et al., 1995; Müller et al., 2008) find that

⌦B,n =
⌦n

Ram

(8ER/~)n�1((n� 1)!)2
=

(�VL/2~)n
(8ER/~)n�1((n� 1)!)2

(38)

is the Rabi frequency for nth-order Bragg scattering, which couples px,i to px,i±2n~kL, through a 2n-photon coherent
process. The first-order ~⌦B,1 = VL/2, the second-order process is ~⌦B,2 = V

2

L
/32ER, etc.

Let’s now discuss how Bragg scattering breaks the energy continuum of a free-particle dispersion relation into
distinct energetic bands. The eigenvalues of Eq. 20 with V (x) = 0 are simply E = p

2
x
/2m, shown as a dashed line in

Fig. 3. The addition of a weak lattice will shift this curve by VL/2 (see Eq. 36), and leave most of the curve una↵ected,
expect for places where the resonance condition Eq. 34 is met. The strongest modification occurs for the first-order
Bragg resonance, so let’s consider that first.

A simple Hamiltonian for this is

HB,1 =

 
p
2

i
/2m ~⌦B,1/2

~⌦B,1/2 p
2

f
/2m

!
=

 
ER �VL/4

�VL/4 ER

!
(39)

This is easy to diagonalize: E = ER ± ~⌦B,1/2, such that an energy gap opens up with a width ~|⌦B,1| = VL/2 (see
±~kL in Fig. 3). This is a radical change to the structure of allowed energy eigenstates: none may exist with this
gap. We call the continuum of q and energies leading up to this first gap the lowest band, and the continuum above
this gap the first excited band. We will assign these bands the indices n = 0 and n = 1, respectively.

A similar phenomenon happens at p = �2~kL and p = +2~kL. These two states are coupled through second-order
Bragg scattering. Since the p = 0 virtual state is involved in this second-order process, we can find the gap by
diagonalizing

HB,2 =

0

B@
p
2

i
/2m �VL/4 0

�VL/4 0 �VL/4

0 �VL/4 p
2

f
/2m

1

CA =

0

B@
4ER �VL/4 0

�VL/4 0 �VL/4

0 �VL/4 4ER

1

CA (40)

or by using Eq. 38, which has already eliminated the o↵-resonant states:

HB,2 !

 
p
2

i
/2m ~⌦B,2/2

~⌦B,2/2 p
2

f
/2m

!
(41)

In either case, in the limit VL ⌧ ER, we find eigenvalues near 4ER that are split by V
2

L
/(32ER), i.e., at ±~⌦B,2/2

given by Eq. 38. For a weak optical lattice, this second gap is smaller than the first gap: see ±2~kL in Fig. 3. However
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FIG. 4 Band structure The same band structure plotted in Fig. 3 is shown here again, but for the “reduced zone scheme”,
where q goes only from �~kL = ⇡/aL to +~kL, but now E

(n)
q also contains a band index. The first three bands are labelled;

diagrams are shown for VL = 0, VL = 2, and VL = 5. Unlike in Fig. 3, we have not shifted energy curves to overlap at q = 0.

the same structural change occurs in the eigenspectrum, i.e., a first excited band of continuous energies below 4ER is
gapped from a second band of continuous energies above it. This is the dividing point between the n = 1 and n = 2
bands.

In sum, we find that coherent coupling of atomic momentum states breaks the continuum of p2
/2m free-particle

energies into an infinite number of bands. The gaps between the bands are proportional to atom-photon coupling
strengths required to couple the ±2n~kL momenta at the edges of the bands. In the next section, we discuss the
structure of these bands.

D. Band structure

A property of the infinite-dimensional matrix Hq is that the same eigenspectrum results when considering q or
any q + 2n⇡/a, for integer n. We can see this by examining the on-diagonal elements of Eq. 30: adding 2⇡/aL
to q simply shifts those entries down by one diagonal step. But since this is an infinite matrix, this leaves the
Hamiltonian unchanged. A similar property applies to the eigenstates: notice that the eigenvalues of T̂aL , � = e

�iqaL ,
are unchanged for q ! q + 2⇡/aL. The eigenstates |qi are always arbitrary up to an overall phase, but clearly the
eigenvalue problem is only distinct within a range q = (�⇡/aL,+⇡, aL). For this reason, the eigenspectrum is only
shown for q up to ±⇡/aL. This is called the “folded band” representation, and shown in Fig. 4.

Notice that the energies shown are identical for q and �q. This is due to time-reversal symmetry of the Hamilto-
nian. Time reversal changes p̂ to �p̂, but leaves r̂ unchanged. Since there is no magnetic field under consideration
(which would have contributed a p̂ ·A term), Ĥ is quadratic in p̂ and therefore unchanged. This carries through to
quasimomentum, as E(�q) = E(q). For this reason, applying a “modulo 2⇡” to qaL when plotting the E(q) spectrum
makes it looks as if the energy diagram were “folded”; hence the name.

At each q, the solutions to Eq. 28 can be sorted by increasing energy, and labelled with the band index n = 0, 1, 2, . . ..

We will refer to them as E
(n)

q . Figure 5 shows the range of solutions within each band as a function of depth. The
range of energies within each band is the band width Wn:

Wn = maxqE
(n)

q
�minqE

(n)

q
(42)

We will show below that for deep lattices, Wn is proportional to the site-to-site tunnelling strength. The gaps between
bands are BGn, defined as

BGn!n+1 = minqE
(n+1)

q
�maxqE

(n)

q
(43)

We note that for more complex lattice structure than the one considered here, full band gaps may not exist between
bands.

A feature of Fig. 4 is that the dispersion is flat at the edges of each band, i.e., dE(n)
/dq = 0. This feature arises from

the nature of the avoided crossing, as follows. As discussed in §II.C, nth-order Bragg resonances occur near resonant
momenta qn = nkL. Consider a small displacement �k = q�qn: here qi = qn+�k is coupled to qf = qi�2qn = �k�qn.
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FIG. 5 Bandwidths and band gaps. The range of solutions {E
(n)
q } is shown for a range of lattice depths. At one particular

depth, a panel from Fig. 4 is repeated, but this time labelling the widths W0, W1, and W2, as well as the first two gaps, BG0!1

and BG1!2. For comparison, the lattice depth is shown (red dashed line). We see that gaps appear even for energies above VL.

The e↵ective Hamiltonian is

H !

 
~2

2m
(qn + �k)2 ~⌦B,n/2

~⌦B,n/2
~2

2m
(�qn + �k)2

!
⇡ n

2
ER +

 
2nER(�k/kL)2 ~⌦B,n/2

~⌦B,n/2 �2nER(�k/kL)2

!
(44)

where we have dropped terms of order �2
k
. Diagonalizing this Hamiltonian, we find that for small �k,

E
(n)

q
⇡ n

2
ER �

~⌦B,n

2

✓
1 +

1

2
(
2n~kL
m⌦B,n

)2�2
k

◆
and E

(n+1)

q
⇡ n

2
ER +

~⌦B,n

2

✓
1 +

1

2
(
2n~kL
m⌦B,n

)2�2
k

◆
(45)

This shows that energy is quadratic in �k = q � qn near the band edge, and thus that dE
(n)

/dq = 0 at �k = 0.

E. Bloch states

Having solved the eigenvalue problem numerically, we can calculate both u
(n)

q (x) and �n,q(x). As mentioned before,
the overall phase of each eigenfunction can be chosen freely. A standard convention is to choose �n,q(x = 0) to be
real and positive for even n, and d�n,q(x)/dx|x=0 to be real and positive for odd n.

The simplest example of a Bloch state is the q = 0 state in the lowest band:

�n=0,q=0(x) 2

V(x)x

x

�n=0,q=0(x) 2

V(x)
x

�n=1,q=0(x) 2

V(x)
x

�n=2,q=0(x) 2

V(x)
x

here shown for VL = 20ER. We see that the amplitude of |�n,q|
2 is maximal at the bottom of the lattice potential

(which has been shifted downwards for clarity). For the n = 1 band, the on-site function aquires a node:

�n=0,q=0(x) 2

V(x)x

x

�n=0,q=0(x) 2

V(x)
x

�n=1,q=0(x) 2

V(x)
x

�n=2,q=0(x) 2

V(x)
x

and for the n = 2 band, two nodes:

�n=0,q=0(x) 2

V(x)x

x

�n=0,q=0(x) 2

V(x)
x

�n=1,q=0(x) 2

V(x)
x

�n=2,q=0(x) 2

V(x)
x

here shown for VL = 50ER. We will see in §III.D that in the limit of a deep lattice, the wave function at each site
approaches a harmonic oscillator. Already, these Bloch wavefunctions resemble the n = {0, 1, 2} harmonic oscillator
eigenstates.

As eigenstates of a Hermetian operator, the Bloch states form an orthogonal basis:

hn, q|n
0
, q

0
i = �n,n0�(q � q

0) (46)
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or, inserting 1 =
R
|xi hx|, an equivalent relation in the spatial domain is:

Z
+1

�1
dx�⇤

n,q
(x)�n0,q0(x) = �n,n0�(q � q

0) (47)

In this way Bloch states behave much like momentum eigenstates. For the examples of q = 0 states given above, the
orthogonality of di↵erent bands is already suggested in the nodal structure of the on-site wavefunction.

For di↵erent q states within the same band, it is instead the long-range structure that shows the character of the
eigenvector. We see this in the following sequence for n = 0 band Bloch functions (shown for VL = 50ER) at variable
q:

Re{�q=kL
(x)}

V(x)
xcos qx

Re{�q=0(x)}
V(x)

x

Re{�q=0.2kL
(x)}

V(x)
xcos qx

Re{�q=0.4kL
(x)}

V(x)
xcos qx

Note that negative q solutions are identical to positive q solutions for parity-symmetric lattices (V (�x) = V (x)),
so we only show examples of q � 0. In each plot, Re{�q} is compared to cos qx, which is the real part of the e

iqx

prefactor from Eq. 25. At the largest quasi-momentum in the lowest band, q = kL = ⇡/aL, the period of the wave
function is 2aL, which may at first seem strange. (Did you expect half this period, aL?) Going back to smaller lattice
depths lets us see why this is natural. As VL ! 0, the Bloch function becomes a plane-wave function. For example,
at VL = ER,

Re{�q=kL
(x)}

V(x)
xcos qx

Re{�q=0(x)}
V(x)

x

Re{�q=0.2kL
(x)}

V(x)
xcos qx

Re{�q=0.4kL
(x)}

V(x)
xcos qx

Re{�n=1,q=kL
(x)}

V(x)
x

50 ER:

1 ER:

Re{�n=0,q=kL
(x)}

V(x)
x

In this limit, a plane wave at the maximum q = kL is �q=kL ! exp(ikLx). The period of this function is 2⇡/kL,
which is �L = 2aL. Just across the band gap, one finds a wave function with the same period, but o↵set phase,

Re{�q=kL
(x)}

V(x)
xcos qx

Re{�q=0(x)}
V(x)

x

Re{�q=0.2kL
(x)}

V(x)
xcos qx

Re{�q=0.4kL
(x)}

V(x)
xcos qx

Re{�n=1,q=kL
(x)}

V(x)
x

50 ER:

1 ER:

Re{�n=0,q=kL
(x)}

V(x)
x

i.e., Re�n=1,q=kL ⇠ sin kLx instead of Re�n=0,q=kL ⇠ cos kLx, so that the two Bloch functions at the avoided crossing
(see Eq. 39) are orthogonal.

F. Band mapping

III. LOCALIZATION AND TUNNELLING

Let’s now put individual atoms into the modes derived in §II, and try to understand their spatial motion. Of course,
an atom in a Bloch state has no dynamics: Bloch state are eigenstates. However initializing particles in delocalized
states is not always natural for an experiment. For instance, interactions (discussed in §VI) may localize particles.
In this section we show how tunnelling – one of the most iconic quantum phenomona – is already present in band
structure.

A. Localization

How do we describe a localized particle in an optical lattice? As a warm-up, let’s ask this question without the
periodic potential; and then return to a system with band structure.

In an infinite system, the plane-wave eigenstates with E = ~2
k

2
/2m are �(x) = exp(ikx), neglecting normalization

for now. A localized wave function, centred at xc, has a position-space representation5

 xc(x) = hx|xci = �(x� xc) (48)

5 In this section and the next, we will neglect the normalization of wave functions, and restore them in §III.C.
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where �(·) is the Dirac delta function. In momentum space,

 xc(k) = hk|xci = exp(�ikxc) (49)

This uses all momentum states: localization to a single point in position space requires delocalization in momentum
space. We expect this, of course, from the Heisenberg uncertainly principle, which is just a consequence of Fourier
relations.

k

|�xc
(k) |2

k

|�xc
(k) |2

kL�kL 0 x

|�xc
(x) |2

xc

aL

k

�(k)

xc

k

�(k)

xc

x

|�xc
(x) |2

xc

We can summarize this as

|xci =

Z
k=+1

k=�1
dk e

i�(k)
|ki with �(k) = �kxc (50)

The particular phase chosen for each momentum state, �(k) = �kxc, is essential to coherently sum to the delta
function at xc.

For a particle in a single band of an optical lattice, we don’t have all momenta: only q (which for VL = 0, is the same
thing as k) between �⇡/aL and ⇡/aL = kL. Using these, how localized can the state be? What’s unclear is which
phases �(q) give the optimal localization. Kohn (Kohn, 1959) showed that the optimal choices can give exponential
localization, so long as band gaps exist.

Even though we do not have a band gap for VL = 0, it is illustrative to try to localize a particle with a single-band
range of momenta (since the math is particularly simple).

| xci =

Z
k=+⇡/aL

k=�⇡/aL

dk e
i�(k)

|ki (51)

If we choose �(k) = 0, then

hx| 0i =  0(x) =
2 sin kLx

x
= N sinc(kLx) (52)

where N is a normalization factor (which we are going to neglect for now). This is a “sinc” function, whose nodes
(given by kLx = ±⇡,±2⇡, etc.) are ±aL, ±2aL, etc. We could displace this wavefunction by choosing �(k) = �kxc,
which is equivalent to applying the translation operator T̂ (xc) = e

�ip̂xc/~, to | 0i. Together, this gives

| xci =

Z
k=+⇡/aL

k=�⇡/aL

dk e
�ikxc |ki (53)

whose momentum and position representations are as follows:

k

|�xc
(k) |2

k

|�xc
(k) |2

kL�kL 0 x

|�xc
(x) |2

xc

aL

k

�(k)

xc

k

�(k)

xc

x

|�xc
(x) |2

xc

In summary, we find that although we cannot make a wavefunction localized to a point (Eq. 48), we can still make
a “bump” at x = xc, using the range of momenta in the lowest band. The form of  xc(x) will recognized by anyone
familiar with the di↵raction-limited optics: a cylindrical lens creates an electric field at its foucus that has the same
form. The first node in the di↵raction-limited spot is at �.

A remarkable feature of |xci us that the displaced wave function is orthogonal to the original one at specific
displacements:

h 0| �xi =

 Z
+⇡/aL

�⇡/aL

dk
0
hk

0
|

! Z
+⇡/aL

�⇡/aL

dk e
�ik�x

|ki

!
= 2

sin(⇡�x/aL)

�x
(54)

which is = 0 when �x = ±aL,±2aL,±3aL, . . .. So even though this function is only “approximately localized”, and
has amplitude beyond a single lattice site, the | xci at any one site is orthogonal to the

�� x0
c

↵
at any other site.
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FIG. 6 Wannier States of the lowest band. Spatial representations of the Wannier states, Eq. 58, are shown here for
lattice depths VL/ER = 0, 4, 20. The solid line shows w0,0(x) which (as discussed in the text) is has a functional form identical
to all other w0,j(x), apart from a translation from x = 0 to x = xj = jaL. The yellow curves show w0,j=1(x), for example. The
lattice potential is shown (dashed, o↵set, and with unity amplitude) for reference.

B. Wannier functions: a spatially localized basis

In a standing wave, certain positions are privileged: the locations at which the potential V (x) is minimized,
xj = aLj (with integer j), which we will call the “locations” of the lattice sites. This is a fuzzy notion, since all
quantum-mechanical wave functions are extended, or more precisely, localization is energetically expensive. In the
limit VL � ER, the amplitudes of low-energy Bloch states are peaked around the {xj}, as seen in §II.E.

At lattice sites, the idea of “di↵raction limited localization” carries to a nonzero lattice, when using the Bloch basis
instead of plane waves. Motivated by the discussion of the previous section, we define the Wannier state localized at
x = xj = jaL as

|wji =

Z
kL

�kL

dq e
�iqxj |qi (55)

where |qi is the Bloch state, and we consider only the lowest band for now. Applying the translation operator T̂aL ,
Eq. 23, and using the defining characteristic of |qi that T̂aL |qi = e

�iqaL |qi, we find that

T̂aL |wji = |wj+1i (56)

localized at x = xj � aL. Because of this, we can reference all Wannier functions to the j = 0 one, so that each
band has a unique Wannier function, which we will call |wi (without reference to position). Including band indices
explicitly, we have

���w(n)

E
=

Z
kL

�kL

dq |q, ni and |wn,ji = T̂xj

���w(n)

E
(57)

The spatial representation of the Wannier state is

wn,j(x) = hx| T̂xj

���w(n)

E
= hx|

✓Z
dx

0
|x

0
i hx

0
|

◆Z
kL

�kL

dq T̂xj |qi =

Z
kL

�kL

dq e
�ixjq�n,q(x) (58)

Examples of these are shown in Fig. 6. Again, note that wn,j(x) = wn,0(x � xj) so that there is a unique Wannier
function for each band, copied at each lattice site. Because of this, we will sometimes drop the j index here too, and
write w

(n)(x). As mentioned above, one can show that there is a unique choice of the phases of Bloch states {�n,q(x)}
that results in Wanner functions that decay exponentially fast at infinity.6 If our goal is to represent spatially localized
particles, this is an important property! Two further properties may be useful: w

(n)(x) are real, and have definite
parity, i.e., w(n)(�x) = ±w

(n)(x).
Like Bloch functions, the Wannier basis forms an orthonormal set:

Z
dxwn,j(x)wn0,j0(x) = �n,n0�j,j0 (59)

6 For the sinusoidal potential we consider here, this choice is the same as was mentioned in §II.E: that �n,q(x = 0) to be real and positive
for even n, and d�n,q(x)/dx|x=0 to be real and positive for odd n. (Kohn, 1959) can find such a choice for a lattice potential with
mirror symmetry, and whose energy bands are disjoint.
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(compare to Eqs. 46 and 47). The proof is left as an exercise (see App. C).
Notice that |qi and |wji are Fourier transform pairs. We can invert Eq. 55, such that

|qi =
X

j

e
iqxj |wji or |q, ni =

X

j

e
iqxj

���w(n)

j

E
(60)

The key relation is

hq|wji = exp(�iqxj) and hwj |qi = exp(iqxj) (61)

This, along with inserting complete sets
R
dq |qi hq| or

P
|wji hwj |, is the basis of all transformations between these

two bases. Also, this reinforces the analogy to plane-wave states of the continuum, where hk|xi = exp(�ikx).
It may bother you that we are replacing a continuum (of Bloch states across a range of q) by a discrete set (of

Wannier states at each site). Are the number of states in these two bases the same? Some insight can be gained
by putting the lattice in a box of length MaL. Here, M is the number of lattice sites, and aL is the lattice period.
Within this box, quasi-momentum become discretized

q =
⇡

MaL
` = kL

`

M
with ` 2 �M/2 + 1, . . . ,M/2 (62)

with a maximum value ⇡/aL = kL. The locations of lattice sites are xj = jaL, with j taking the range �M/2 +
1, . . . ,M/2 (or 0 to M�1, if preferred). In any case, we see that there are M discrete values of q` for quasi-momentum,
which matches the number of sites xj . For larger lattices, these both approach infinity at the same rate. Of course,
this range of q covers only one Brillouin zone, and complete sets will also require a summation over bands, just like
the Wannier states. Discretization has two further appeals: it simplifies units, and is also immediately amenable to
numerical algorithms (which always require discretization). The continuum limit

P
q
! aL

R
dq/(2⇡) can always be

taken.

C. Tunnelling

Returning to the question of atomic motion: how does a particle in “one place” – which we now know means,
initialized in a Wannier state at one lattice site – evolves in time. In order to approach that problem, we will adopt
the formalism of second quantization (App. B). This formalism is convenient since it lets us talk about single particles;
more importantly, it lays the ground-work for a discussion of many particles in §VI, where particles interact, and where
we will need particles to obey the correct exchange statistics.

We have already diagonalized the single-particle Hamiltonian. The total energy of a system the

E =
X

n,q

E
(n)

q
N̄n,q or E =

X

n

aL

2⇡

Z
kL

�kL

dq E
(n)

q
N̄n,q (63)

where E
(n)

q are the eigenvalues of the (first quantized) Hamiltonian Eq. 20, and N̄n,q is the number of particles at
momentum q in the nth band. We are simply adding up the number of particles in each of these states. This total E
is the expectation value of the many-body Hamiltonian

Ĥ =
X

n

aL

2⇡

Z
kL

�kL

dq E
(n)

q
N̂n,q =

X

n

aL

2⇡

Z
kL

�kL

dq E
(n)

q
â

†
n,q

ân,q (64)

where N̂ = â
†
â is the number operator, and â

† and â are the creation and anihilation operators for particles. Here
N̂n,q, â†

n,q
, and ân,q are dimensionless. Notice a shift in perspective here: until now, by Ĥ we meant the Hamiltonian

of a single particle; now, by Ĥ we mean the total energy of a many-body system, so that E is extensive.
Since Ĥ clearly breaks into bands, we can consider each band separately,

Ĥ =
X

n

Ĥ
(n)

band
with Ĥ

(n)

band
=

aL

2⇡

Z
kL

�kL

dq E
(n)

q
â

†
q
âq (65)

and often suppress the band index on â
†
q

and âq for simplicity of notation, when discussing a single-band problem.
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If â†
q

creates a Bloch state, what is its relation to the operator that creates a Wannier state? Let’s call it b̂
†
j
, such

that |wji = b̂
†
j
|vaci. From Eq. 55, with |qi = â

†
q
|vaci, we have

b̂
†
j
|vaci =

aL

2⇡

Z
kL

�kL

dq e
�iqxj â

†
q
|vaci (66)

These operators are thus Fourier Transform pairs. In discrete form, a symmetric representation is

b̂
†
j

=
1
p
M

X

q

e
�iqxj â

†
q

and â
†
q

=
1
p
M

X

j

e
iqxj b̂

†
j

(67)

A spatially localized creation operator is the sum of all delocalized creation operators. Similarly, the creation of a
particle in a single momentum state involves the (phased) creation of particles on all lattice sites. For the infinite
lattice, we instead write these in a somewhat assymmetric way:

b̂
†
j

=
aL

2⇡

Z
kL

�kL

dq e
�iqxj â

†
q

and â
†
q

=
X

j

e
iqxj b̂

†
j

(68)

In either case, the normalization factors are chosen such that any commutation relations between the âq operators is

preserved for the b̂j operators, and vice versa.

We can now rewrite our Hamiltonian in terms of spatially local operators b̂j and b̂
†
j
.

Ĥn =
aL

2⇡

Z
kL

�kL

dq Eqâ
†
q
âq

=
aL

2⇡

Z
kL

�kL

dq Eq

0

@
X

j

e
iqxj b̂

†
j

1

A

0

@
X

j0

e
�iqxj0 b̂j0

1

A

=
X

j,j0

 
aL

2⇡

Z
⇡/aL

�⇡/aL

dq Eq e
iqaL(j�j

0
)

!

| {z }
⌘�t(�j)

b̂
†
j
b̂j0

(69)

where t(�j) has units of energy, and depends only on �j = j � j
0. (We will justify the minus sign in its definition

shortly.) In order to understand its meaning, consider the action of b̂†
j
b̂j0 for j 6= j

0. This operator pair anihiliates a
particle at xj0 and creates a particle at xj. This is what is meant by “hopping” from site j

0 to site j. For states whose
energy is less than the lattice depth, such motion is classically forbidden: it is quantum-mechanical tunnelling.

The rate of tunnelling is related to the matrix element of Ĥn between two Wannier functions. We can see this by
writing

hw`| Ĥn |w`0i = �
X

j,j0

t(j � j
0) hw`| b̂

†
j
b̂j0 |w`0i = �t(`� `0) (70)

such that

� t(`� `0) = hw`|

✓
p̂
2
x

2m
+ VL sin2(kLx̂)

◆
|w`0i =

Z
dxw`(x)⇤

✓
�~2

2m

d
2

dx2
+ VL sin2(kLx)

◆
w`0(x) (71)

From this, and since Ĥ is hermetian, we can see that

t(��j) = t
⇤(�j) (72)

If the Wannier functions can be chosen to be real (see earlier discussion) then furthermore t(��j) = t(�j).
We do not need to use Eq. 71 to find the tunnelling coe�ents. It is already evident in the dispersion relation for

each band! From the definition of t(�j) in Eq. 69,

� t(�j) =
aL

2⇡

Z
⇡/aL

�⇡/aL

dq Eq e
iqaL�j (73)
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FIG. 7 Tunnelling beyond nearest neighbour. The tunnelling energies , calculated using Eq. 73, are shown as a function
of lattice depth. The main figure shows a linear scale, and the inset shows the same data on a log scale. In principle, atoms
can tunnel at infinitely long range. However the relative strength of any �j greater than 1 is suppressed at a faster exponential
rate than nearest-neighbour tunnelling. The dashed line is Eq. 77.

This is a conversion of Eq into a Fourier series. As we have discussed above, E(n)

q are periodic functions of q, with
period 2⇡/aL, and have boundary conditions dE/dq = 0 at band edges; it is thus a cosine series:

Eq = Eq � 2
X

�j=1

t(�j) cos(aLq�j) (74)

In sum, the dispersion relation E
(n)

q for the nth band reveals the tunnelling rates between sites in real space.

D. The tight-binding limit

As an optical lattice becomes deeper, nearest-neighbour tunnelling becomes more and more dominant. We can see
this in Fig. 7, where t(1) t(2), and t(3) are shown for the lowest band, as a function of lattice depth. We see that t(1)
dominates, by a factor of 10 already at VL ⇡ 3ER, and by a factor of 100 at VL ⇡ 10ER.

In the limit where only t(�j) is significant, then we drop the �j argument, such that the lowest-band energy is

Eq ⇡ Eq � 2t cos(aLq) “Tight-binding limit”, t(2)⌧ t(1) (75)

Notice, looking at Fig. XX, that E
(0)

q looks like an inverted cosine, with is minimum at q = 0, and thus t > 0 as
defined here. As defined in Eq. 42, the band width is the di↵erence between maximum and minimum energy. Thus

W0 = 4t (Tight binding) (76)

which is useful rule of thumb to remember.
In the deep-lattice limit, one can show (Campbell, 1955) that its tunnelling strength in the ground band is

t ⇡
W

4
⇡

4s3/4

p
⇡

exp
⇣
�2s1/2

⌘
ER for s� 1 (77)

with s = VL/ER. The exponential decrease is characteristic of quantum tunnelling through a high barrier. This
approximation is shown as a dashed line in Fig. 7

In the tight-binding limit, one typically shifts zero energy to coincide with Ē
(n=0)

q , and writes

ĤTB = �t
X

<j,j0>

b̂
†
j0 b̂j = �t

X

j

(b̂†
j+1

b̂j + b̂
†
j
b̂j+1) = �t

X

j

b̂
†
j+1

b̂j + h.c. (78)

where each of these forms is equivalent: < j, j
0
> is a notation that means “neighbouring sites” (useful when going

to higher dimensions or more complex geometries); and h.c. means “hermetian conjugate”.



19

Another insightful form of the TB hamiltonian comes from recognizing that b̂j+1b̂
†
j

is one-site discrete translation
operator, which could also be written (back into first-quantized form) as |wj+1i hwj |. In either case, we can then

write the one-site translation operator as T̂+ =
P

b̂j+1b̂
†
j

or
P

|wj+1i hwj |, which now acts on all sites. The TB
Hamiltonian is then

ĤTB = �t(T̂+ + T̂
†
+
) (79)

Bloch states in the TB limit take a particularly simple form. The periodic u(x) function is just the sum of all
on-site Wannier functions, such that

|ui =
X

j

|wji and |qi =
X

j

e
iqaLj

|wji (Tight binding) (80)

We can solve for the energy of this eigenstate with ĤTB |qi = Eq |qi, such that

Eq = �t(eiqaL + e
�iqaL) = �2t cos(aLq) (Tight binding) (81)

Thus we recover the single-cosine dispersion relation of Eq. 75.

E. Quantum Random Walks

If a single atom is initialized in a lattice site at xj , what are the populations at later times? Let’s write out a
quantum “register” that has the occupations of the first five sites:

|initi = |0i�2
|0i�1

|1i
0
|0i

+1
|0i

+2
(82)

Applying the TB hamiltonian, Eq. 78, the particle can either hop to the left or hop to the right:

Ĥ |initi = �t |0i�2
|1i�1

|0i
0
|0i

+1
|0i

+2
� t |0i�2

|0i�1
|0i

0
|1i

+1
|0i

+2
(83)

Taking one more discrete “step”:

Ĥ
2
|initi = �t2 |1i�2

|0i�1
|0i

0
|0i

+1
|0i

+2
+ 2t2 |0i�2

|0i�1
|1i

0
|0i

+1
|0i

+2
� t

2
|0i�2

|0i�1
|0i

0
|0i

+1
|1i

+2
(84)

etc.
Remarkably, this experiment has been done. Fig. 8 shows a measurement of the time evolution of an atom in a

single free direction, as a function of time (Preiss et al., 2015). The occupations of sites are measured as a function
of time. Atoms can be thought of as hopping from site to site with a characteristic time is 2⇡/t.

IV. CURRENTS

We saw in the last section that a particle initialized in a single Wannier state will hop from site to site via tunnelling.
Microscopically, movement of particles will alway rely on this process. However bulk transport of electrons through a
crystal is not usually caused by initialization in a single Wannier state; rather, the movement of charge is induced by
an electric field, whose force on particles induces a mass current. In this section, we will consider the speed at which
non-equilibrium distributions move, and also find the equivalent of Newton’s laws for particles in a lattice.

A. Currents and transport

For neutral particles, the analogue of electrical current is transport of mass. In free space, spatial velocity is related
to the center-of-mass momentum by v = p/m. Things are not so simple in a lattice: as discussed in §II, momentum
p and quasi-momentum q are not the same, such that v 6= q/m. Sometimes (such as in the first band), these two
quantities do not even have the same sign! More generally, a single |qi state has multiple components with the same
total momentum only if one includes the dressing by the photon field; however the momentum of photons is not
associated with any mass-current. This makes the discussion of mass transport in optical lattices complex – and
interesting!
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Strongly Correlated Quantum Walks in Optical Lattices

Philipp M. Preiss,1 Ruichao Ma,1 M. Eric Tai,1 Alexander Lukin,1 Matthew
Rispoli,1 Philip Zupancic,1, ⇤ Yoav Lahini,2 Rajibul Islam,1 and Markus Greiner1, †

1Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, USA
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Full control over the dynamics of interacting, indistinguishable quantum particles is an important
prerequisite for the experimental study of strongly correlated quantum matter and the implemen-
tation of high-fidelity quantum information processing. Here we demonstrate such control over the
quantum walk - the quantum mechanical analogue of the classical random walk - in the strong
interaction regime. Using interacting bosonic atoms in an optical lattice, we directly observe fun-
damental e↵ects such as the emergence of correlations in two-particle quantum walks, as well as
strongly correlated Bloch oscillations in tilted optical lattices. Our approach can be scaled to larger
systems, greatly extending the class of problems accessible via quantum walks.

Quantum walks are the quantum-mechanical ana-
logues of the classical random walk process, describing
the propagation of quantum particles on periodic poten-
tials [1, 2]. Unlike classical objects, particles performing
a quantum walk can be in a superposition state and take
all possible paths through their environment simultane-
ously, leading to faster propagation and enhanced sensi-
tivity to initial conditions. These properties have gen-
erated considerable interest in using quantum walks for
the study of position-space quantum dynamics and for
quantum information processing [3]. Two distinct mod-
els of quantum walk with similar physical behavior were
devised: The discrete time quantum walk [1], in which
the particle propagates in discrete steps determined by
a dynamic internal degree of freedom, and the contin-
uous time quantum walk [2], in which the dynamics is
described by a time-independent lattice Hamiltonian.

Experimentally, quantum walks have been imple-
mented for photons [4], trapped ions [5, 6], and neutral
atoms [7–9], among other platforms [4]. Until recently,
most experiments were aimed at observing the quantum
walks of a single quantum particle, which are described
by classical wave equations.

An enhancement of quantum e↵ects emerges when
more than one indistinguishable particle participates
in the quantum walk simultaneously. In such cases,
quantum correlations can develop as a consequence of
Hanbury Brown-Twiss (HBT) interference and quantum
statistics, as was investigated theoretically [10, 11] and
experimentally [12–17]. In the absence of interactions
or auxiliary feed-forward measurements of the Knill-
Laflamme-Milburn type [18] this problem is believed to
lack full quantum complexity, although it can still be-
come intractable by classical computing [11].

The inclusion of interaction between indistinguishable
quantum walkers [19, 20] may grant access to a much
wider class of computationally hard problems, such as
many-body localization and the dynamics of interacting
quantum disordered systems [21]. Similarly, in the pres-
ence of interactions the quantum walk can yield universal
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FIG. 1. Coherent single-particle quantum walks. (a) Left:
Starting from a localized initial state (I), individual atoms
perform independent quantum walks in an optical lattice (II).
Right: The single-particle density distribution expands lin-
early in time, and atoms coherently delocalize over � 20 sites
(lower panel shows the averaged density distribution at the
end of the quantum walk and a fit to equation (2) with the
tunneling rate J as a free parameter). Error bars: standard
error of the mean. (b) In the presence of a gradient, a single
particle undergoes Bloch oscillations. The atom initially delo-
calizes (II) but maintains excellent coherence and re-converges
to its initial position after one period (III). Densities are av-
erages over � 700 and � 200 realizations for a) and b), re-
spectively.

and e�cient quantum computation [22].

The classical simulation of such correlated quantum
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FIG. 8 Tunnelling of a single particle. In a two-dimensional optical lattice, particles are localized to a central column and
restricted to tunnel only horizontally (along x, as labelled). Each atom undergoes a coherent quantum random walk; a single
image collapses the wave function of each row, enabling a statistical measurement of occupations. (Preiss et al., 2015)

We will define the total current as the particle number (N) times the velocity of the centre of mass (CM): J = NvCM,
where

v̂CM =
i

~ [Ĥ, X̂CM] Ĵ =
iN

~ [Ĥ, X̂CM] (85)

in which the CM position operator is

X̂CM =
1

N

X

`

x`n̂` =
X

`

x`b̂
†
`
b̂` . (86)

This definition of Ĵ gives the correct time dependence of expectation values, which we can see from the Ehrenfest
Theorem,

d

dt
hÔi =

i

~ h[Ĥ, Ô]i+ h
@Ô

@t
i (87)

applied to Ô = X̂CM .Since there is no explicit time dependence to X̂CM , we need only to calculate the commutator
of [Ĥ, X̂CM ].

Ĵ =
i

~
X

hjki

X

`

[tjk b̂
†
j
b̂k, x`b̂

†
`
b̂`] =

i

~
X

hjki

tjk(xk � xj)b̂
†
j
b̂k (88)

where we have used [b̂†
j
b̂k, b̂

†
`
b̂`] = (�k,` � �j,`)b̂

†
j
b̂k. For the general case, we can now use the site-indepenence of

tjk = t(j � k) = t(k � j) and write a simpler form. We will here just write down the tight-binding limit,

ĴTB = �
itaL

~
X

`

(b̂`b̂
†
`+1
� b̂`+1b̂

†
`
) = �

taL

~
X

`

ib̂`b̂
†
`+1

+ h.c. (89)

which has the units of taL/~, a velocity. Notice that, apart from units, Ĵ has a form much like ĤTB itself, but with a
minus sign between hopping terms. This means there must be an assymmetry between neighbouring site occupations
for there to be a net current – which makes sense!

One also write down a local current operator, ĵ` = �i(taL/~)b̂`b̂†
`+1

+ h.c., which satisfies a continuity equation

d

dt
n̂` + a

�1

L
(ĵ` � ĵ`) = 0 (90)
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where (d/dt)n̂` = (i/~)[Ĥ, n`]. This has the form of a typical continuity equation: the rate of change of local density
is given by the spatial gradient of a current. If the current from the left and right are balanced, then the local density
does not change. We will not work further with the local current in these notes, but instead consider the extensive
transport that come from a global force.

B. Group velocity of a wave packet

The band structure energy diagrams we have derived, giving Eq, are also called “dispersion relations”, which refers
to the spatial dynamics of a wave packet. Let us consider a coherent superposition of Bloch states that are clustered
about a central q0 with a width of �q. A typical treatment considers a gaussian weighting, for example:

| (t = 0)i =
X

f(q) |qi with f(q) = exp
⇥
�(q � q0)

2
/�

2

q

⇤
(91)

Important for this discussion is that

�q ⌧ kL such that �x � aL (92)

ie, this must be a delocalized wave packet. We can therefore expand the local energy about q0:

E
(n)

q
⇡ E

(n)

q
+ (q � q0)

dE
(n)

q

dq

�����
q=q0

+ (q � q0)
2
d
2
E

(n)

q

dq2

�����
q=q0

(93)

We will find that each of these terms has a physical implication: the initial energy of | i, the velocity of its propagation,
and its inertial response to an external force.

Let’s first consider the spatial displacement of | i. It will be useful to define

v
(n)

g
(q0) =

1

~
dE

(n)

q

dq

�����
q=q0

(94)

The time evolution of  is

Û | (t = 0)i =
X

q

f(q)eiĤt/~
|qi = e

�i!0t
X

q

f(q)eivgqt |qi (95)

where we have pulled out the common phase factor !0 = Eq0/~�q0vg. The remaining phase is equivalent to a discrete
translation of each |qi state every ⌧ = aL/vg, which we can see by substituting t = ⌧�j for integer �j:

e
ivgqt |qi = e

ivgq⌧�j
|qi = e

iqaL�j
|qi = T̂aL�j |qi (96)

The time evolution of the wave packet is thus a pure translation at these intervals, plus a phase factor

| (t = ⌧�j)i = e
�i!0tT̂aL�j | (t = 0)i for ⌧ = aL/vg (97)

Seen stroboscopically at these time intervals, | i propagates at the group velocity vg defined in Eq. . Note that a
wave packet made in di↵erent bands will have a di↵erent vg even if at the same quasi-momentum q0.

So far, this discussion has been quite di↵erent in style from the discussion of Ĵ in §IV. Why is dE/dq related to
current? Consider

dEq

dq
=

d

dq
hq| Ĥ |qi =

✓
d

dq
hq|

◆
Ĥ |qi+ hq| Ĥ

✓
d

dq
|qi

◆
(98)

where we have used the fact that Ĥ has no explicit dependence on q, and used a product rule. We can evaluate each
derivative by inserting a complete set of Wannier states:

d

dq
|qi =

d

dq

X

j

e
ixjq |wji = i

X

j

xje
ixjq |wji = i

X

j

xj |wji hwj |qi = iNX̂CM q̂ (99)

where we have used Eq. 86. This gives us,

dEq

dq
=
⇣
�iN hq| X̂CM

⌘
Ĥ |qi+ hq| Ĥ

⇣
iNX̂CM |qi

⌘
= iN hq| [Ĥ, X̂CM ] |qi = ~ hq| Ĵ |qi (100)

Comparing to the definition of group velocity above, where Eq was the dispersion relation for a single particle, we
have

vg = hĴi/N (101)
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C. External forces

Consider the modification of our original Hamiltonian Eq. 20 by the addition of an external force:

ĤF =
p̂
2

2m
+ VL sin2(kLx̂)� Fx̂ (102)

This is no longer a translationally invariant hamiltonian, and thus Bloch states |qi are not longer eigenstates. Instead,
for a weak force, one can show that the quasi-momentum of each Bloch state changes in time as

d

dt
q(t) =

1

~F (103)

In other words, quasi-momentum changes linearly in time with an applied external force. In this way, ~q again behaves
like free-space momentum p.

This problem was originally considered by Zener, who also found that if the force (or resultant q̇) was too large, the
problem became more complex: a particle that began in one band could end up in another one, due to non-adiabatic
evolution of the quantum state, especially near small band gaps. Let’s ignore this for now, and continue to work in
the paradigm of a problem that can be broken into bands.

An intuitive picture for why dq/dt = F/~ comes from considering the relative phase evolution of adjacent lattice
sites. For a weak gradient, we can approximate the on-site Wannier functions as unchanged apart from a site-to-site
phase evolution. For two quantum states shifted in energy by �E, their relative phase evolution is �(t) = �(�E)t/~,
which in this case is �(t) = FaLt/~. Across the entire lattice, we then have phases at xj evolving as �j(t) = Fxjt/~.
The time dependence of a particular Bloch state is then

Û(t) |qi =
X

j

e
iqxj Û(t) |wji =

X

j

e
iqxje

iFxjt/~ |wji =
X

j

e
i(q+Ft/~)xj |wji = |q + Ft/~i (104)

agreeing with Eq. 103.
In fact, this intuitive picture can be made more rigorous by considering the following unitary transformation of the

problem:

Û1(t) = exp{�ix̂p0(t)/~} with p0(t) = Ft (105)

and we will also call p0(t) = �A(t), for reasons that become clear in a moment. In general, through a unitary

transformation, the wave function is transformed to
��� e 
E

= U | i, which obeys the Schrödinger equation under a new

Hamiltonian,

eH = UHU
† + i~dU

dt
U

† (106)

In our case

U1x̂U
†
1

= x̂ , U1p̂U
†
1

= p̂ + p0(t) , i~dU1

dt
U

†
1

= x̂
d

dt
p0(t) (107)

such that

HF !
eHF =

(p̂�A(t))2

2m
+ V (x̂)� Fx̂ + ṗ0x̂

=
(p̂ + Ft)2

2m
+ V (x̂)

(108)

Now that we have eHF , we have recovered a periodic problem again. We can apply everything as we did before, for
instance making use of Bloch functions, quasi momentum, etc. What do those eigenstates say about the solutions in
our original frame of reference? We can, for instance, take |eqi and transform it back to |qi using U

†
1
:

|qi = U
†
1
|q̃i = e

+ix̂p0(t)/~
X

j

cj |q̃ + 2n~kLi =
X

j

cj |q̃ + 2n~kL + p0(t)i = |q̃ + p0(t)i = |q̃ + Ft/~i (109)

where we have used the fact that eix̂p0(t)/~ is a translation operator in momentum. Since q̃ is time-independent in the
transformed frame, we see that under ĤF , solutions are of the form qin + Ft/~. QED.
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It’s interesting to note that in the frame created by U1, one can also write out a Tight-Binding Hamiltonian:

HF,TB = �t
X

j

(b̂†
j+1

b̂j + h.c.)� F (t)
X

j

(jaL)b̂†
j
b̂j  !

eHF,TB = �t
X

j

(eiaLA(t)/~
b̂
†
j+1

b̂j + h.c.) (110)

where again, A(t) = �Ft when the force is static. This looks like we’ve made a complex tunnelling strength,

t �! te
�iaLFt/~ = te

��(t) (111)

again following our intuitive picture that adjacent sites acquire a time-dependent phase in the presence of a force.

D. E↵ective mass

If an external force changes q, what current can it cause? We have already seen that ~q̇ = F and ~vg = dEq/dq.
Combining these,

dvg

dt
=

dvg

dq

dq

dt
=

1

~
d
2
Eq

dq2

dq

dt
=

1

~2

d
2
Eq

dq2
F (112)

This gives us the lattice equivalent of “F = ma”, which we will write a = F/m:

dvg

dt
= (m⇤

q
)�1

F with
1

m⇤
q

⌘
1

~2

d
2
Eq

dq2
(e↵ective mass) (113)

We can best see the relationship between the second derivative of the dispersion relation and mass when considering
a free particle: if E = p

2
/2m = ~2

q
2
/2m (for zero lattice depth), then m

⇤ = m for all q. For deeper lattices, we can
characterize the lowest band by m

⇤
0
, the band curvature at q = 0. For tight banding, for instance,

(m⇤
q
)�1 =

1

~2

d
2

dq2
(�2t cos qaL) =

2ta2

L

~2
cos qaL such that m

⇤
0

=
~2

2ta2

L

(tight binding) (114)

Note that one comes the same conclusion when finding t(1) from Eq. 73 applied to a free-particle dispersion relation.
The fact that t can be written proportionally to an inverse mass emphasizes the identification of tunnelling as a kinetic
energy in the problem.

A strange thing about e↵ective mass is that it does not need to be positive, or even finite. Since m
⇤
q
⇠ 1/ cos(qaL),

it diverges at qaL = ⇡/2, halfway across the band, and comes to a value of �m⇤
0

at the band edges. The dispersion
relation at the band edges can be approximated as an inverted parabola, such that an interpretation as a “normal”
massive particle breaks down. Perhaps a q ⇡ ±kL/2 things make a bit more sense: a small change in q (induced by
an external F ) will not change vg here, because vg ⇠ sin(qaL) at its maximum there. See Fig. XX.

Finally, consider a thermal distribution of Bloch states, such as one would expect to find in equilibrium. We’ll call
this distribution f

eq. If an external impluse shifts the entire distribution by some �q = F�t, then a new distribution
will deviate from the old one by

f
dev(q) = f

eq(q + �q)� f
eq(q) ⇡

@f
eq

@q
�q (115)

What current results? Notice that in equilibrium, there is no current, because f(q) = f(�q), so an group velocity a
that |q| will cancel out. Thus

J =

Z
dq vgf(q) =

Z
dq vgf

dev(q) =

Z
dq vg

@f
eq

@q
�q (116)

Using integration by parts, and the fact that f
eq
vg = 0 at the band edges, we can replace vg@f

eq
/@q by f

eq
@vg/@q

under the integral. This gives,

J = �q

Z
dq f

eq
@vg

@q
= �q

Z
dq f

eq~ 1

m⇤
q

= ~�q

⌧
1

m⇤
q

�
(117)

where by h1/m⇤
q
i we are indicating the thermally averaged e↵ective mass across the band. When temperature is high

enough that the occupation is equal everywhere in the band, then h1/m⇤
q
i ! 0, since any shift in q creates balanced

positive and negative currents.
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FIG. 9 Deep-lattice limit. (a) The band structure of a 1D optical lattice for depths of 6ER, 60ER and 600ER. In each plot,
E

(n)(q) is shown for n = 0 (blue), n = 1 (green), n = 2 (red), and n = 3 (lavender). The dashed lines indicate the harmonic
approximation of energy levels, (n + 1

2 )~!0, which overestimate the lattice energy levels at all depths. (b) The on-site Wannier
functions for the lowest three bands are shown at VL = 60ER. Here, the Wannier functions are well approximated by the
harmonic-oscillator wavefunctions (dashed lines). [figure credit: V. Venu (Venu, 2022) ]

V. THE ISOLATED-SITE LIMIT

For a su�ciently deep optical lattice, all tunnelling shuts down, and one is left with an array of isolated sites. A
single particle in such a site experiences a harmonic oscillator potential (§V.A).

A. Harmonic approximation

When strongly confined in a single optical lattice site, the excursion of the atoms is much smaller than the lattice
period: kLx⌧ 1. Because of this, we can expand the lattice potential:

VL sin2(kLx) ⇡ VL(kLx)2 �
1

3
VL(kLx)4 +

2

45
VL(kLx)6 + . . . (118)

The first term is simply a quadratic confinement. When comparing to Vho = 1

2
m!

2
0
x

2, we see that

!0 =

r
2VLk

2

L

m
= 2
p
VLER = 2!Rs

1/2 (119)

where !R = ER/~ is the recoil energy in frequency units. and For 40K in a 1064 nm lattice, !R = 2⇡ ⇥ 4.5 kHz; so
the characteristic oscillation frequency is tens to hundreds of kHz.

The energy of a harmonic oscillator is

E
(n)

ho
= !0(n +

1

2
) (120)

and becomes a reasonable prediction of Ē(n)

q , the average energy of each band. Figure 9 compares them.
Similarly, we know that the wave functions in a harmonic oscillator are given by Hermite polynomials. The final

panel in Fig. 9 compares the Wannier states of the deep lattice to these. In particular, the ground state is

w
(0)
⇡ (⇡a2

ho
)�1/4 exp

⇢
�x

2

2a2

ho

�
(121)

where the harmonic oscillator length is

aho =

r
~

m!0

=

0

@
s

~2

2mER

1

A
1/2

s
�1/4 =

aL

⇡s1/4
(122)
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FIG. 10 Anharmonicity. The di↵erence between the expected energy gap, ~!0, and the actual band gap is shown versus
lattice depth. We find that even in the deep-lattice limit, a remnant anharmonicity of �(n + 1)ER remains, shown as dashed
lines.

We see that self-consistency of the original approximation, kLx⌧ 1, requires that s
1/4
� 1.

This leaves us with a characteristic hierarchy of energy and length scales:

ER ⌧ {~!0 ⇡ BG}⌧ VL and aL � aho (123)

We can also use this to estimate the number of bound states in a deep lattice. If the spacing is ~!0, then

number of deeply bound states ⇡
VL

~!0

=
sER

2ERs
1/2

=
1

2
s
1/2 (124)

where we have neglected the zero-point energy. Looking back at Fig. 5, we can see that as VL exceeds the energy
of a particular energy range, the gaps are perhaps larger, but it would not be evident from the band structure, a

priori, which energies were “trapped”. Perhaps the E
(n)

q < VL vs. E(n)

q > VL distinction is instead that particles with
energies above the lattice depth can move classically between sites; whereas those with energies below must tunnel.
The appearance of gaps above VL reminds us that quantum reflection can occur even for purely attractive potentials.
In this case, we have already outlined how the Bragg scattering an every integer multiple of ~kL is a polynomial
function of VL (see Eq. 38).

Anharmonicity of sinusoidal confinement provides the first deviation from the predictions laid out above. Through
perturbation theory, one finds
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A (125)

We can then see that the band gap between two successive bands is, neglecting terms that fall o↵ as V
�1/2

L
or faster,

V
(n+1)

OL
� V

(n)

OL
⇡ ~!0 � (n + 1)ER (126)

such that it is always less than ~!0. A comparison is shown in Fig. 10.

B. Higher bands

Fig. 11 shows the width of the lowest bands versus lattice depth. We see that eventually the lowest band becomes
flat: this means that tunnelling is insignificant. However, even after the ground band is “frozen out”, the first excited
band may still be active: see Fig. 11.
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