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• Quantum Mechanics as an Information Theory.

• Complete knowledge about a system. 

• Use of QM for information processing.

• Superposition: a much denser space than allowed by classical mechanics.

• Entanglement: nonlocal correlations at quantum level.

• Which hardware will we use?

• What can we learn about Quatum Mechanics along this process?
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• Living in a world ruled by Information.

• A transformation as big as the Industrial Revolution.

• Built on an exponential increase of processing resources.



• The pattern is reproduced in

storage capacity (memories),

bit rate in communication …

• But for how long can the silicon based CMOS stand the growth?

Dissipation, clock frequency, transistor size, switching voltage are 

imposing limits.

• Expected saturation by 2050.
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• Electronics and photonics are a proof of success in quantum information.

• But information itself remained treated in a classical way: 

we have just miniaturized relays and wires.

Bombe à Eniac (1946) à Intel 4040 (1971)
(bomba kryptologiczna)



•What will be the ultimate processing units?

•Will we be forced to change from classical to quantum “bits”?

0 1

Bit
Qubit

Cross the boundary between classical and quantum…



Quantum Mechanics
Birth of a revolution at the dawn of the 20th Century

Introduction of the 
concept of “quanta”



Quantum Optics

Quantization of the Electromagnetic Field (on the shoulders...)



Quantum Optics

Maxwell Equations

Wavevector

PolarizationAmplitude

Angular Frequency

Optics

Solution in a Box



Quantum OpticsOptics

Energy of the EM Field

Canonical Variables: going into Hamiltonian formalism



Quantum OpticsOptics

Energy of the EM Field

Canonical Variables: going into Hamiltonian formalism



Quantum OpticsOptics

Energy of the EM Field

A very familiar Hamiltonian! 
Sum over independent harmonic oscillators



Quantum Optics

Energy of the EM Field

Using creation and annihilation operators, associated with amplitudes uks



Amplitudes of Electric and Magnetic Fields

Quantum Optics

Energy of the EM Field



• Classical Description of the Electromagnectic Field:

Fresnel Representation of a single mode

Field Quadratures – Classical Description



E(t)=Re[a exp(iwt)]

E(t)=X cos(wt)+ Y sen(wt)

a = X + i Y
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Field Quadratures – Classical Description

For a fixed position

• Classical Description of the Electromagnectic Field:

Fresnel Representation of a single mode



The electric field can be decomposed as

And also as

X and Y are the field quadrature operators, satisfying

Thus,

Field Quadratures – Quantum Optics
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Field Quadratures – Quantum Optics

Thus,

Uncertainty relation implies in a 
probability distribution for a given 

pair of quadrature measurements

Field quadratures behave just as position and momentum operators!



Quantum Optics

Now we know that:
- the description of the EM field follows that of a set of 

harmonic oscillators, 
- the quadratures of the electric field are observables, and 
- they must satisfy an uncertainty relation.

But how to describe different states of the EM field? 

Can we find appropriate basis for the description of the field?

Or alternatively, can we describe it using density operators?

And how to characterize these states?



Quantum Optics – Number States
Eigenstates of the number operator

Number of excitations in a given harmonic oscillator à
number of excitations in a given mode of the field à

number of photons in a given mode!

Annihilation and creation operators:
Fock States:
Eigenvectors of the Hamiltonian



Quantum Optics – Number States

Complete, orthonormal, discrete basis

Disadvantage: except for the vacuum mode it is quite an unusual state of 
the field.

Can we find something better?



Quantum Optics – q - States
q-states in Fock space:
Describing the usual textbook solution of the harmonic oscillator
Hamiltonian with energy eigenstates.



Quantum Optics – q - States

So far, we have the ground state. 



Quantum Optics – q - States

Recursive operations on the ground state give us

Leading to the nth-order Hermitian polynomial



Quantum Optics – q - States



Quantum Optics – q - States



Quantum Optics – Number States

Disadvantage: except for the vacuum mode it is quite an unusual state of 
the field.

Can we find something better?

Quantum Optics – q - States

Eigenfunctions of the position operador: 

Continuous spectra.

Nice, but limited for representing non-pure (mixed) states.

We can do something better using the Fresnel plane 



Quantum Optics – Coherent States

Eigenvalues of the annihilation operator:

In the Fock State Basis:

Completeness: but is not orthonormal

Over-complete!

Moreover:
- corresponds to the state generated by a classical current,

- reasonably describes a monomode laser well above threshold,
- it is the closest description of a “classical” state.



Quantum Optics – Number States
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Precise number of photons

Growing dispersion of the quadratures



Quantum Optics – Number StatesQuantum Optics – Coherent State
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Quantum Optics – Coherent State
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Quantum Optics – Coherent State



Poissonian distribution of photons

Quantum Optics – Coherent State
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Mean value of number operator

Therefore, variance of photon number is equal to the mean number!
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Quantum Optics – Coherent Squeezed States

f

|a |



Quantum Optics – Squeezed State









Quantum Optics – Density Operators

We have states defined by

The Hamiltonian operator:

The position operator”

The annihilation operator: 

How can we represent a mixed state (e. g. a thermal state)?



Pure X Mixed States

Introducing the density operator (von Neumann – 1927)

Quantum Optics – Density Operators



Quantum Optics – Density Operators

Now we can represent a statistical mixture of pure states!




















