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I. WHAT IS AN OPTICAL LATTICE?

These notes were prepared for the 2023 ICTP school on ultracold atoms, in Sao Paulo. Their intent is to introduce
graduate students to ultracold atoms in optical lattices. As a pedagogical document, no attempt is made to capture



the state of the art in research using optical lattices; the reader is instead referred to a number of published reviews
for this (Bloch, 2005; |Georges and Giamarchil, |2012; |Gross and Blochl [2017; [Jessen and Deutsch, 1996} [Lewenstein
et al., 2012). Jean Dalibard’s lectures at the College de France include a pedagogical set of notes on optical lattices
(2013), an historical review of cold atoms (2014), and more. Absent from our discussion are two developing themes:
periodically driven optical lattices (Eckardt} 2017) and topological effects.

This introductory section discusses how a periodic potential is made using interference patterns of laser light.
Subsequent sections discuss the eigenvalue problem of non-interacting particles in a lattice (§II}), how to think of a
particle “at” a particular lattice site ( - the deep-lattice limit ( , and an introduction to many—body physics in
a lattice (§VI)).

A. Two traveling waves

The light emitted by a continuous-wave laser is typically collimated into a beam that is 0.5 mm to 5 mm in diameter.
Within the intensity envelope of these beams, laser beams can be treated as monochromatic traveling waves of light.
At position r and time t, the electric field of a travelling wave can be written

E(r,t) = Egé€ exp(ik - v — iwt) (1)

where k is the wave vector, € is the polarization unit vector, and Fjy is the peak electric field. We have adopted complex
notation, but the electric field is a physical observable and thus must be real-valued! The complex notation is used just
for convenience (e.g., to avoid sinusoids), and maps back onto the (observed) electric field as Eyen = Re{E}. In fact,
since we will typically assume a monochromatic e~** time dependence of the field, we will drop this as E = Eeiwt
from which FE,eq = Re{E~e_m}.

The energy density of an electromagnetic wave is u = €| Ereal|?. This will oscillate on a time scale not visible to
ordinary detectors, so it is convenient to take the time average and multiply by ¢ to get units of intensity, power per
area: I(r) = ceg|E(r,t)|?. Applying this to Eq. |1} we see that each travelling wave has an intensity Iy = %ceOEg.

Now, we are ready to construct a one-dimensional optical lattice by forming a standing wave from two equal-intensity
overlapping travelling waves:

Eq(r) = Egé e™*1™ 4 Eyégethe (2)
The intensity of the standing wave is
I (r) = 2I) 4 21y Re{é; - &5tk Ty (3)
interference

The first term on the r.h.s. is what would be expected if the power of the consituant travelling waves added incoherently.
The second term in Eq.[3]is an interference term. It appears for two beams that are phase-coherent. With sub-10-MHz
frequency stability easily achieved in a modern laser, the coherence length (¢con ~ ¢/Af) of light is in excess of 10 m.
State-of-the art sources are kHz-line-width fibre lasers, so that the coherence lengths are many kilometres. Thus, we
will assume for now that the relative phase of any two interfering laser beams is under perfect experimental control.

The only remaining question is one of polarization. Figure [I] gives several possibilities for linearly polarized beams:
that €; and €, are parallel, or crossed linearly; and that the local magnetic field is parallel or perpendicular to the
electric ﬁeld The reason the B-field matters is that atoms respond differently to o and 7 polarized light, as discussed
in Sec. If €; and €, are parallel, then an intensity pattern will develop The linear polarization of E,, addresses
the 7 matrlx element if B||E (right column of Fig. ' or equal parts 0¥ and o~ if B L E (centre column of Fig. |1 .
On the other hand, if €& and €; are perpendicular, the interference term in Eq. [3| vanishes, and there is no intensity
pattern. The local polarization in Eg, has a pattern that goes from purely ot to purely o~ and back again, in one
wavelength (left column of Fig. [1)).

What response do these standing-wave fields induce for atoms? This depends critically on the detuning A = w —wy
of the light from the resonant transition frequency of the atom wy. Typical detunings for OLs are tens to hundreds
of nm, in order to minimize Rayleigh scattering, which can cause atom heating or loss. For alkali atoms (°Li *"Rb ,
40K | etc.) that are commonly used ultracold atoms, and in the limit where A is much larger than the fine-structure
splitting Apg, the induced potential in this limit can be written, at low magnetic field (Grimm et al., 2000), as

3rc® T
2w0 A

AFs

Ur) = A

(1 + ’PgFmF > I(r), (intermediate detuning Apg < |A| < wo) (4)
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FIG. 1 Polarizations of standing waves. Starting with linear polarizations, two equal-intensity counter-propagating trav-
elling waves create a standing wave of intensity or polarization gradient. Left: The “lin L lin” configuration creates no net
intensity gradient, but does create an alternating o+ / o— polarization standing wave when the magnetic field is oriented in
z, parallel to the k vectors of the light. Centre: The lin || lin configuration creates a linear polarization and a standing wave
in intensity. When the magnetic field is perpendicular to the electric field, that linear polarization is an equal superposition of
o+ and o— fields. Right: When the magnetic field is parallel to the electric field polarization, the lin || lin standing wave is 7
polarized. Not shown here is a fourth possibility: lin perp lin polarization, like in the left-most column, but a B-field along x
or y. In that case, there is neither a polarization gradient nor an intensity gradient.

where P = +1 for o* light and = 0 for linearly polarized light, gr is the gyromagnetic ratio of the ground state,
mp is the magnetic quantum number. A beam that has equal parts o™ and o~ creates two potentials, with P = +1
and —1, such that the polarization effects cancel out. A magnetic potential is only created by an imbalance between
ot and ¢~ intensities, which can be created with a “lin perp lin” configuration (first column in Fig. [1)). Even then,
the polarization sensitivity scales as the ratio of the fine-structure splitting Agg to the detuning (in alkali atoms).
Going forward, we will neglect optically induced magnetic potentials. The force on an atom is just the gradient of
this potential — i.e., the dipole force on an atom is proportional to the gradient in local intensity, and independent
of the direction of propagation of the beam.

A contribution to the optical potential not included in Eq. [d is the counter-rotating term. When magnetic terms
are negligible (either because P = 0 or when |A| > Agg), the potential is

N3ﬂ'62( T T

U ~
(r) 2w w—w0+ w + wp
—— ——

)I(r) (large-detuning limit) (5)

=T'/A counter—rotating

assuming that a single strong dipole transition dominates the static polarizability. In the quasi-static limit w < wy,

which describes lattices made by CO5 lasers at 10 um for instance, we see that the counter-rotating term contributes

equally to the potential depth, so that Eq. [4] under-estimates the optical potential but as much as a factor of two.
In the true DC limit, electric fields create a static Stark shift:

j<0|c2. élk)

‘2

1
Ustark(r) = _5040‘E|2(1') where ap =2

Extending this treatment to an oscillating electric field, we can replace ag by a frequency-dependent polarizability
a(w). Indeed the first-order perturbative treatment of a time-varying electric field has a similar form to Eq. @, as
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FIG. 2 The polarisability «a/ag is plotted versus w/wp. The contributions of the resonant enhancement is shown as a
dashed green line; and the counter-rotating term is shown as a solid red line. These add to give the solid black line. Notice
that the 1/A scaling over-estimates polarisability for the ultraviolet limit w > wo, because the counter-rotating term partially
counteracts it, resulting in a 1/ A? scaling. In the infrared w < wo limit, the polarisability approaches a constant cg, and the
field can be treated as quasi-electrostatic.

shown in App. [A] Several characteristics of the static Stark shift carry forward to the effect of a far-detuned laser
beam on an atom: in both cases, the energetic shift of the ground state is proportional to E2, and thus proportional
to intensity I.

Equation would predict that in the limit w — 0, the polarizability (—2U/E?) approaches

67T03 6()F
ag ~ Tl (7)
W

Table [I[] compares this to experimentally measured polarizabilities from several alkali metals. We see that at least for
the alkali metals, the agreement is better than 5%.

However, the static polarizability ap ~ 3 x 1073° Cm?/V of atoms is not promising for static electric fields, since
fields greater than 105 V/m typically cause electrode discharge. This would limit a Stark shift to |AEsiarc| < kp2 pK,
which is only marginally operable for ultracold atoms. Of course, laser light is at a finite frequency wy,, so offers some
resonant enhancement over the static limit. This enhancement factor (again in the far-detuned limit) is clear from

Eq. :

Ugip 1 B 1 (8)
Ustark 1= (wp/wo)? 1= (Xo/AL)?
This is plotted in Fig. A commonly used trapping wavelength is Ay =1064nm due to the availability of strong
sources at the YAG wavelength. The resonant enhancement factor for the alkali then varies between ~1.4 (for Na)
and ~2.9 (for Cs).
For far-detuned optical lattices, more significant than this resonant enhancement is the accessible magnitude of the
electric field (i.e., intensity) that one can achieve using a focused laser beam. For a single-mode Gaussian laser beam

TABLE I Static electric polarizability of alkali atoms. The measured value [ref] is compared to values calculated from .
Since the strongest dipole line in alkali is split by hyperfine interactions in the excited state, we use w = @, where @ is a
weighted sum of the fine-structure-split lines: @ = (1/3)w; + (2/3)w2, where w; and w2 are the D1 and D2 lines, respectively.
Also, T' = (1/3)T'1 + (2/3)T'2, where I'1 and T'; are the line widths of the D1 and D2 lines, respectively. The listed wavelengths
are A = 2me/w.

Element T'/h A a from Eq. (Eb measured o
(MHz) (nm) (107*°Cm?/V ) (107*Cm?/V )

Lithium 59 671 2.7 2.7
Sodium 9.8 589 2.6 2.6
Potassium 6.0 768 4.7 4.8
Rubidium 6.1 785 5.1 5.3

Cesium 5.0 864 6.3 6.6




propagating along z with a minimum waist at z = 0, the intensity is (see (Yarivj [1989), Ch. 6)

2P z? + y? 22\
I(x,y,2) = pavcr oo} exp{ [—2“/2(3)] } where w(z) = wo (1 + z%) and zr = Twi/\ 9)

Here P is the optical power (in Watts), w(z) is the beam waist, w is the minimum beam waist, and zg is the Rayleigh
Range. Notice the easily confused (but commonly used) symbols: w refers to beam radius, while wy, is an optical
frequency. At the focus of the beam, the intensity is

Imax = 2P/Tw? (10)

which for a 5-W beam focused to a waist of 35 um creates an intensity of 5 x 102 W/m?. This is an rms electric field
of 1.4 x 106 V/m, a very difficult field to create with physical electrodes. A single YAG beam with these parameters
creates a traveling-wave potential depth of 680 uK for Potassium, for instance.

Finally, let’s put all this back in the context of OLs. Two travelling waves with parallel polarizations and peak
intensity Iy will make a standing-wave intensity pattern

I (r) = 21y + 21 cos(kye - 1) (11)

where ko1 = k1 — ko. For two beams with k; o = £k &, kye - r = 2kz. Using trig identities, we can also write

1 1
I (r) = 41y (2 + 3 cos(2k‘mc)> = 41y cos? (kpx) (12)

Where did this “factor of 4” come from? One doubling comes from the use of two traveling waves; one doubling comes
from the interference effect. The latter does not increase the total power, of course: the spatially averaged intensity
is still 21;.

Using Eq. B this intensity 41, translates into a potential depth that we will define as V. Whether the potential
minimum is at highest or lowest light intensity will depend on A; whichever the case, it’s mathematically convenient
to locate x = 0 at the bottom of the potential. So we will typically write

V(z) = Vi sin®(kpx) = Vi,(1 — cos 2kpx) (1D optical lattice potential) (13)

The period of this standing wave is Ar/2, which is 27/|ksel| = 7/kr. It will be useful to rename this as a, the
lattice periodicity. For arbitrary angle between laser beams 6,

AL

a= Tem(0/2) (Lattice period) (14)

which reduces to the minimum length Ay /2 for § = 7.

B. Interference patterns of multiple traveling waves

So far, we have shown that two traveling waves can create a sinusoidal confining potential. What happens if we
add additional beams?
To start with, let’s consider three equal-intensity beams. If their polarizations are parallel, then

E(r) = Epée™ T 4 Epée'®> ™ 4 Fyéetks ™ (15)

and the intensity is

I(r) =1 |e““1'r + etk 4 eik3'r|2 (16)
We will see that the intensity patterns produced are not evident from what seems to be such a simple geometric
structure. For three beam at equal angles, we can calculate the intensity pattern in the (z,y) plane with k; -r = kpx,
ky-r = kpzcos(2m/3) + krysin(2n/3), and ks - r = krx cos(2n/3) — krysin(27/3). The result is a honeycomb or
hexagonal pattern. Would you have guessed this?



The situation gets even more complicated with four lattice beams in a co-planar arrangement. Now the geometry
of the intensity pattern depends on the relative phase of the beams. In general, one can show that the geometry of
n + 1 beams in n dimensions is robust to the relative phase, but no more than that. In other words, a tetrahedral
configuration of four beams in three dimensions creates a predictable pattern; but the geometry of the interference
pattern of five or more beams depends on phase.

A common “trick” used by experimentalists is to wash out interference patterns by using slightly different optical
frequencies for each 1D standing wave. Frequencies that are offset by tens of MHz (where 1 MHz = 10°¢ cycles per
second = 27 x 10%s71) will not substantially change the period of the standing waves, since wy, is typically in the
10*s~! regime. However, the interference terms will “walk” at a rate that is too fast for the atoms to followﬂ A
related approach is to use polarizations of standing waves that are mutually orthogonal. In either case, one can create
a 2D potential that is

V(r) =V(z)+V(y) = Vg ,sin®(kpz) + Vi, sin?(kry) (2D square lattice potential) (17)

which is a separable potential with a square structure. Extending to three pairs of beams, for which cross-interferences
have been eliminated, we can create

V(r) =V(z)+V(y) + V(z) =V sin®(krz) + Vi, sin®(kry) + Vi, sin®(kr2) (3D cubic lattice potential)

= VL (3 — cos(2kpx) — cos(2kLy) — cos(2krz)) in the isotropic case
(18)
which is a separable potential with a simple cubic structure. Due to its experimental and theoretical simplicity, this
is the “default” OL potential for ultracold atoms, used in the vast majority of labs. Natural crystals do not have the
same bias: simple cubic crystals are rare. The second line of Eq. [I§ emphasizes that V7, is not the peak depth, but
the modulation depth of each individual lattice.
Even without cross-interference patterns, multi-beam lattices can make surprising patterns. Consider laying two
potentials like Eq. [L7] on top of each other at an angle of 7/4. If all pairs have equal intensity, then the potential is

V(r) = Vpsin?(kpx) + Vi sin®(kpy) + Vi sin?(k (z 4+ y)/V2) 4+ Vi sin? (kr(z — y) /V/2) (19)

It turns out that this is not a periodic potentiall Although it has long-range order, there is no unit cell. Such a
potential is called a quasi-crystal. Famously, and incorrectly, Linus Pauling said, “there is no such thing as quasi-
crystals, only quasi-scientists.” Years later, a Nobel was awarded for work on quasi-crystals. In 2D, the only possible
crystalline orders are rectangular (of which cubic is a special case), centered rectangular, hexagonal, and oblique (of
which triangular is a special case). All of them can be made by optical lattices, but only the square lattice has been
well explored.

1. BAND STRUCTURE

The treatment of a non-interacting particles in a periodic potential is familiar to anyone who has studied solid state
physics. “Band structure” is the starting point for understanding electronic properties of metals and semiconductors.
The new perspective offered by cold atom are that the particles might have bosonic statistics (unlike electrons), and
eigenstates of the problem can now be understood as atoms dressed by photons. There are also some simplifications:
the crystal is completely rigid, since single atoms have negligible back-action on the standing waves, so there are no
lattice phonons. Also, the spacing between lattice sites far exceeds the range of inter-particle potentials, at least of
dipole-dipole interaction are weak. We shall discuss interactions in §VI} in this section and the next, we focus on the
non-interacting problem.

The essence of the problem is the Hamiltonian
. + V(#) (20)
2m
where V(r) is the single-particle lattice potential. We will ignore the usual confining potential present in most cold-

atom experiments; for a treatment of this, see (Rey et al., |2005)), and references therein. For simplicity we treat only

1 In the limit of deep lattices, the time scale of motional response of a single atom is set by the band gap, ~ h//ERrVL, which for typical
atomic mass and lattice configurations is tens of microseconds. Washing out interference between optical beams is safely accomplished
with a ~ 102 MHz frequency difference, such that the optical pattern walks through a full period on the nanosecond scale.



the 1D sinusoidal problem in these notes, i.e.,

2
o Dz .. 92 X
H == 4+Vysin“(kr2 21
oy T Vesin® (kL 2) (21)
and refer the reading to numerous solid-state physics textbooks for a systematic treatment of three-dimensional band
structure.

A. Symmetry of the eigenstates: quasi-momentum

A periodic potential breaks the continuous translational symmetry that is present in free space. Noether’s Theorem
states that for every continuous symmetry, there is a conserved quantity. For the continuous translational symmetry,
it is momentum that is conserved, even in a many-body system. For instance, if two particles collide in free space,
they can exchange momentum, but the total momentum of the two particles is the same before and after the collision.

The optical lattice ruins all this and more: V(r) is not translationally invariant, so momentum is not conserved.
Seen another way: momentum can be transferred between the light and matter, so the atoms’ momentum is not
conserved. Furthermore, the lattice potential provides a fixed reference frame that destroys Galilean invariance: we
can always compare the speed of an atom to the (stationary) lattice potential, which now defines a natural choice for
v =0.

However, a periodic potential does have a discrete translational symmetry. Shifting the potential by one spatial
period returns us to the original scenario. A natural question to ask is whether there is some conserved quantity that
is the complement of this newly restricted symmetry. Bloch (1929) and Floquet (1883) found that indeed, there is a
new quantity, “crystal momentum” or “quasi-momentum”, which characterizes the eigenstates |®) of Eq. We will
first show the structure of the solution for the 1D case, and then return to the 3D case.

The translation operator 7, is defined by

To|z) = |z +a) such that T,®(z) = (x| T, |®) = (x — a|®) = B(x —az). (22)

Since momentum operator p, is (also defined as) the generator of translations in x, we can write

T, = e~iap=/h (Spatial translation operator) (23)
Our 1D Hamiltonian H, = p2/2m+V () commutes with T,, when a is the period of the lattice because V' (z) = V(z+a),
and p, commutes with 7, for any a. Thus, when looking for the eigenvalues of H,, we know they should also be
eigenstates of Tj,.

First, let’s show that T, is a unitary operator, whose inverse is its hermetian conjugate:

T[;l — (efia[;m/h)fl — e+iaﬁm/h — j-g (24)

Hermetian operators have the nice property that their eigenvalues have unity modulu&ﬂ we can write them as \ = e,
and label the eigenstates with 6; or, we could choose to write A = e~ 1%L where ay, is fixed (the period of the lattice),
and associate each eigenstate with a new variable ¢, a wave number that must have units of inverse length. Our
eigenstates are now |q), with eigenvalues of T, that are T} |¢) = e~"1% |q).

Without loss of generality, we can write these eigenstates in the form

(z|q) = ®4(z) = " uy(x) where u,(z — a) = uq(x) (Bloch waves) (25)

where we still need to find the form of the periodic function u,(z). Note that the full function ®,(zx) is not periodic:
there is a phase difference €*9¢ between between one period and the next. This reminds of us a plane wave, whose
phase also evolves by e”*® between any two points @ apart, and thus g is called the quasi—momentunﬂ

What is the relationship between quasi-momentum and true momentum? The relationship is not simple. ®,(x) is a
plane wave times a spatial modulation u,(z) that is periodic in z, and whose momentum components are non-trivial:

ug(z) = Z cge%jk” (26)
J

2 Proof of this is as follows. Let’s take an eigenstate ¢ of operator U, with eigenvalue ), i.e., U¢ = Ap. The modulus |Ap|2 = |Ug|2 =
¢*UTU¢. But for unity operators, UTU = 1, so |[A¢|? = |¢|2. However, this can only be true if |A|2 = 1. QED.
3 No relation to the quasi-crystals discussed in §I.B]



for integer j and (recall) k;, = w/a. The Fourier-series representation of u, ensures its periodicity: replacing = by
z + a modifies the phase factor to be e?¥kre = ¢ii2m — 1,

The physical interpretation of Eqgs. 25 and [26] is useful: the eigenstates of an atom in an optical lattice is a massive
particle in which several momentum eigenstates are coupled. This wave function might be visualized as

co |@_q>>+ C+1 |@q+ 2hy) + C—1|@?—_2/%> T Ct2 |@

where the c¢; coefficients give the amplitudes of the coupled plane-wave states. The reason the coupling occurs with
pairs of photons is that these are off-resonant Raman-type events, where a photon is taken from one beam and put
into the other. This is discussed further in the next section.

Another perspective is to dress the uncoupled states to equal-momentum eigenstates. If we keep track of the
momentum in the light field, then total momentum is conserved. In this dressed picture, we have

ol o (2T e[S T+ a2

&=2 photons
This picture is useful because it includes the light in the eigenstate. (Of course, there is a background of N photons,
and we are only counting from that baseline.) In either picture, the important point is that gquasi-momentum is not
momentum: the Bloch state with ¢ has other momenta in its “entourage”.

B. The eigenvalue problem

Solving the eigenvalue problem for each ¢ entails finding the {cg-}. Then,

Zcq Har2ike)rorq) =l |k = q+ 2jkr) (27)
J
We see that each quasi-momentum state consists of a comb of real momenta q, g+2ky, g4k, etc. whose momentum
spacing is 2hky, i.e., the momenta of two photons at the wavelength of the lattice.

The eigenstates and precise eigenvalues of the problem can be found by substituting Eq. into Eq. We have
already discussed why these states are labelled |¢); the remaining unknown function is uy(x), described by a series of
coefficients ¢;. It is convenient to rescale everything in the problem by the energy scale Er = h?k? /2m, length ay,
and wave vector k;, = w/ar. The eigenvalue problem now distills down to a single matrix equation

E
> [Hylewer = =% (28)
¢ Er
where
a s s
(Hylow = ((q L yon? 4+ )m, — 001 = 000 (29)
which is a tri-diagonal matrix that looks like
(qar /7 + 4)? —s/4 0 0 0
—s/4 (qap/m+2)?  —s/4 0 0
Hy — 0 —s/4 (qar/m)? —s/4 0 (30)
0 0 —s/4  (qap/m—2)? —s/4
0 0 0 —5/4 (qar /7 — 4)?

where we have only written out the central 5x5 elements of this infinite matrix. The eigenvectors are column vectors
of the coefficients {¢;}. From these, you can assemble the previously unknown function u(z) = 3, ¢, exp(2ilkpx).
Note that >~ |ee|? = 1.

Practically speaking, you will have to truncate this matrix to some +£,,x. This can be safely down when (gar /7 +
20max)? > s/4, so that the plane-wave states are unaffected by Bragg scattering of the lattice. In practice, fpax = 3
can work for weak lattices, and . = 10 can work for deep lattices. This matrix approach is general, and can be
generalized to complex and multi-dimensional lattice structure.



For the 1D sinusoidal potential, it turns out that this eigenvalue problem can be mapped to a set of analytic
functions developed by Mathieu, while studying vibrational modes of drumheads. The Mathieu equation is

2
229 + [ —2vcos(2z)]y =0 (31)

and yields periodic solutions of even parity when ¢ = a(r,v), and odd parity when ¢ = b(r,v), where r is a “char-
acteristic exponent” that maps onto the quasi-momentum in our problem: r — ¢/kr = mq/ar. The solutions to
this differential equation are special functions: “cosine-elliptic” y = ce(r,v,2) and “sine-elliptic” y = se(r, v, 2),
respectively. For v = 0, ce = cos(v/z) and se — sin(y/22).

Mapping Eq. to Eq. with (z| H [¢) = (x| E|¢) uses v — —V;,/4Er and ¢ — E/Eg — Vi, /2Er. We are left
with two continua of possible solutions:

®,(x) =ce(q/kr,v,krx) with E, =a(q/kr,v)Er + Vi/2 (even parity)

32
O, (z) =se(q/kr,v,krx) with E;=b(¢/kr,v)Er+ Vi/2 (odd parity) (82)

where we have not specified the normalization. That there are two solutions to this equation poses a problem in a
sense: are there two eigenvalues for each ¢7 In fact, a and b are different only for integer r, i.e., ¢ = nkp. As we shall
see in the next section, these critical points are Bragg planes that correspond to gaps in the energy spectrum, where for
a single ¢, there are two possible eigenstates. The nth energy gap (between those eigenstates) is |a(n,v) —b(n, v)|Eg.
Apart from those gaps, a(r,v) = b(r, v), however we still need to choose between the two parity of solutions (which are
different even for non-integer r). As we discuss in the next section, this is resolved by partitioning the eigenspectrum
into bands, enumerated with positive integers n. The band index n, shared by all quasi-momenta in the band, is
the number of Bragg planes (and thus gaps) crossed in going from ¢ = 0 to the ¢ in that band. Once the band is
established, one can choose the correct solution: odd n have odd-parity ®,(x), and even n have even-parity ®,(z).

C. Bragg scattering and band gaps

Before proceeding further to discuss the solutions of the eigenvalue problem, let’s pause to consider the physical
picture. Why does the |g) state in Eq. [27| consist of a comb of momenta spaced by two photon momenta?

The explanation comes from considering the wave-like properties of matter: the structure of |¢) reflects the diffrac-
tion of matter waves from a periodic potential. nth-order Bragg scattering occurs for a wave of wavelength X interacting
with a periodic structure of period a, when the (equal) incident and reflected angle 6 satisfy

2asinf = n\. (33)

In our case, the wave is a de-Broglie wave with A — Agg = h/|p.| and retro-reflection in the standing wave has
0 = /2, so that sin# = 1. This gives |p,| = nd = nh/(2r/k;) = nhky, since a = 7 /kr,. Thus

ps = nhky (34)

are the resonant momenta at which atoms Bragg scatter off of the optical lattice.
When Bragg scattering does occur, both momentum and energy are conserved. The first-order process is as follows:

an atom moving at momentum p, ; > 0
hk, p; —hk,
is converted to a final momentum p, ; — 2hkr,

p=p-onk < MR ooy 2k

which conserves momentum because the number of photons moving in the —z direction decreases by one, and the
number of photons moving in the +z direction increases by one. The optical field absorbs the momentum of the
scattered atom. If all photons have the same frequency, the energy of the light field is unchanged, so the energy of
the atom must also be unchanged; this can only happen when pi_y ;= p_?m-, i.e., pzf = —Dgs. Putting energy and
momentum conservation together, we find again the condition in Eq. [34] for n = 1.

Bragg scattering is a two-photon processﬁ Two-photon coupling generally occurs at a strength AR, that is given

4 Note that this is not the same as a time-ordered sequence of two single-photon processes. Bragg scattering is also fully coherent, and it
does not involve spontaneous emission.
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FIG. 3 Opening of band gaps. A free-particle dispersion relation (Vz = 0) is shown as a black dashed line. The eigenvalues of
H, are shown for Vi = 2Eg (blue solid line) and for Vz, = 5ERr (red solid line). Here we have offset the curves such that all
energies to overlap at ¢ = 0.

by the 2-photon (or Raman) Rabi frequency ,

EeeS
QRam — T ) (35)

where Q; and ) are single-photon Rabi frequencies, given by Eq.[A9] In this case, these single-photon Rabi frequencies
are (separately) based on the electric field for a travelling-wave beam and the electric dipole moment of the ground-to-
excited-state transition. The standing-wave lattice potential is also created from a second-order process in the electric
field, Vz, = hQ2 /AA, but where 0, comes from the total electric field, including all the interference terms discussed
in §L.A} whereas Qram, 21, and Qg are spatially constant. Thus ;2 = Q/2, and Qram = Vi /2h. Check factors.

Bragg scattering is the process in which a two-photon (or 2n-photon) transition changes the momentum of the
atom. Wave-function overlap requires momentum conservation, such that Bragg processes can only be driven by the
part of the optical field that provides the needed 2nhk. We can find what is needed for a +2hk, change directly in
the standing-wave potential, by writing it as

Ve Vi e Vi ok

Vy sin?(kpz) = 5 1 1

(36)
We see that only the V7, /4 components could couple momentum states that differ by 2hky; the spatially uniform V7, /2
provides an energy offset to eigenstates. Since coupling strengths are always +hQRapi/2, we read off the first-order
Bragg scattering Rabi frequency as

-V
2h
Higher-order Bragg scattering also requires considering the detunings of intermediate states. Going from —2hky
to +2hky, is a second-order process (so proportional to (—V7/2)?), through the intermediate virtual state |p = 0),
whose detuning is 4Er. We'd thus expect the AQp 2 to be (V1,/2)?/(4ER) = 27*V?/ER. Indeed, more careful
treatments(Giltner et al.l [1995; Miller et al., 2008) find that

Qp1 = = ORram - (37)

_ Q’ﬁam _ (_VL/2h)n
50 = BEr/B) (0~ D)2~ BEr/B)1((n — 1)1)? (38)

is the Rabi frequency for nth-order Bragg scattering, which couples p, ; to p, ; =2nhky, through a 2n-photon coherent
process. The first-order hQp 1 = V1, /2, the second-order process is hifdp o = VL2/32ER7 ete.

Let’s now discuss how Bragg scattering breaks the energy continuum of a free-particle dispersion relation into
distinct energetic bands. The eigenvalues of Eq. 20| with V(z) = 0 are simply E = p2/2m, shown as a dashed line in
Fig.[3l The addition of a weak lattice will shift this curve by V7, /2 (see Eq. , and leave most of the curve unaffected,
expect for places where the resonance condition Eq. is met. The strongest modification occurs for the first-order
Bragg resonance, so let’s consider that first.
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FIG. 4 Band structure The same band structure plotted in Fig. [3|is shown here again, but for the “reduced zone scheme”,
where ¢ goes only from —hkr = 7/ar to +hkr, but now Eé") also contains a band index. The first three bands are labelled;
diagrams are shown for Vi, = 0, V, = 2, and Vi, = 5. Unlike in Fig. [3] we have not shifted energy curves to overlap at ¢ = 0.

A simple Hamiltonian for this is

H _ pf/?m hQB,l/Q _ ER —VL/4 (39)
PUTA\npa/2 pi/2m ~Vi/A Epg

This is easy to diagonalize: E = Ep £ h)p 1/2, such that an energy gap opens up with a width A|Qp 1| = Vi/2 (see
+hky in Fig. [3)). This is a radical change to the structure of allowed energy eigenstates: none may exist with this
gap. We call the continuum of ¢ and energies leading up to this first gap the lowest band, and the continuum above
this gap the first excited band. We will assign these bands the indices n = 0 and n = 1, respectively.

A similar phenomenon happens at p = —2hky, and p = +2hkr. These two states are coupled through second-order
Bragg scattering. Since the p = 0 virtual state is involved in this second-order process, we can find the gap by
diagonalizing

pf/Qm —VL/4 0 4ER —VL/4 0
HB,2 - —VL/4 0 —VL/4 = —VL/4 0 —VL/4 (40)
0 —VL/4 p?/Zm 0 —VL/4 4ER

or by using Eq. which has already eliminated the off-resonant states:

2
N (41)
’ hQB’2/2 pf/2m

In either case, in the limit V;, < Eg, we find eigenvalues near 4ER that are split by V7/(32ER), i.e., at £hQp /2
given by Eq.[38 For a weak optical lattice, this second gap is smaller than the first gap: see £2hky, in Fig.[3] However
the same structural change occurs in the eigenspectrum, i.e., a first excited band of continuous energies below 4FER is
gapped from a second band of continuous energies above it. This is the dividing point between the n = 1 and n = 2
bands.

In sum, we find that coherent coupling of atomic momentum states breaks the continuum of p?/2m free-particle
energies into an infinite number of bands. The gaps between the bands are proportional to atom-photon coupling
strengths required to couple the +2nhk; momenta at the edges of the bands. In the next section, we discuss the
structure of these bands.

D. Band structure

A property of the infinite-dimensional matrix H, is that the same eigenspectrum results when considering ¢ or
any ¢ + 2nw/a, for integer n. We can see this by examining the on-diagonal elements of Eq. adding 27 /ar,
to ¢ simply shifts those entries down by one diagonal step. But since this is an infinite matrix, this leaves the
Hamiltonian unchanged. A similar property applies to the eigenstates: notice that the eigenvalues of T, Ly A =e oL
are unchanged for ¢ — ¢ + 2w /ar. The eigenstates |q) are always arbitrary up to an overall phase, but clearly the
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FIG. 5 Bandwidths and band gaps. The range of solutions {Eén)} is shown for a range of lattice depths. At one particular
depth, a panel from Fig. [4]is repeated, but this time labelling the widths Wo, W1, and Wa, as well as the first two gaps, BGo—1
and BGi_,2. For comparison, the lattice depth is shown (red dashed line). We see that gaps appear even for energies above Vr.

eigenvalue problem is only distinct within a range ¢ = (—n/ar,+m,ar). For this reason, the eigenspectrum is only
shown for ¢ up to =n/ay. This is called the “folded band” representation, and shown in Fig. @

Notice that the energies shown are identical for ¢ and —g. This is due to time-reversal symmetry of the Hamilto-
nian. Time reversal changes p to —p, but leaves # unchanged. Since there is no magnetic field under consideration
(which would have contributed a p - A term), His quadratic in p and therefore unchanged. This carries through to
quasimomentum, as E(—q) = E(q). For this reason, applying a “modulo 27" to gar, when plotting the E(q) spectrum
makes it looks as if the energy diagram were “folded”; hence the name.

At each g, the solutions to Eq.[28|can be sorted by increasing energy, and labelled with the band indezn = 0,1,2, . ...
We will refer to them as Eé”). Figure |5 shows the range of solutions within each band as a function of depth. The
range of energies within each band is the band width W,:

W, = maqu(gn) — mian(g") (42)

We will show below that for deep lattices, W,, is proportional to the site-to-site tunnelling strength. The gaps between
bands are BG,,, defined as

BG,5nt1 = mian(g"'H) — maqu(gn) (43)

We note that for more complex lattice structure than the one considered here, full band gaps may not exist between
bands.

A feature of Fig. 4|is that the dispersion is flat at the edges of each band, i.e., dE(gn) /dq = 0. This feature arises from
the nature of the avoided crossing, as follows. As discussed in §I[I.C] nth-order Bragg resonances occur near resonant
momenta g, = nkr. Consider a small displacement 6 = g —gy,: here ¢; = g, +Jy, is coupled to g5 = ¢; —2¢,, = 0x — qn.-
The effective Hamiltonian is

T 2 2
H — 2m (Qn + 6’6) u2 hQB,n/z ) ~ TL2ER + 2nE‘R(ék/kL) hQB,n/Q , (44)
hQB,n/2 —(—qn + 5k) hQB’n/Q —ZnER((Sk/kL)

2m

where we have dropped terms of order §7. Diagonalizing this Hamiltonian, we find that for small dj,

hQ 1 2nhk hQ 1, 2nhk
B ~n?Bp — —2" (14 5 (a2 )20} d E") ~n’E D (14 S ()27 45
q n R 2 + 2(mQB)n) k an q n R+ 2 + 2(mQB,n) k ( )

This shows that energy is quadratic in 6, = ¢ — ¢,, near the band edge, and thus that dE™ /dg =0 at § = 0.

E. Bloch states

Having solved the eigenvalue problem numerically, we can calculate both u((ln) () and @, 4(x). As mentioned before,

the overall phase of each eigenfunction can be chosen freely. A standard convention is to choose ®,, 4(z = 0) to be
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real and positive for even n, and d®,, ,(z)/dx|s=0 to be real and positive for odd n.
The simplest example of a Bloch state is the ¢ = 0 state in the lowest band:

|(Dn=0,q=0(x)‘2 f 5 Z 5 { 5 Z 5 { 5 Z Sx

here shown for Vi, = 20Eg. We see that the amplitude of |®,, ,|? is maximal at the bottom of the lattice potential
(which has been shifted downwards for clarity). For the n = 1 band, the on-site function aquires a node:

[0 AN AN AN AN AN NN

and for the n = 2 band, two nodes:

2
[ @rmamao| WA SWA S SN S S

here shown for V;, = 50Er. We will see in §IILE] that in the limit of a deep lattice, the wave function at each site
approaches a harmonic oscillator. Already, these Bloch wavefunctions resemble the n = {0, 1,2} harmonic oscillator
eigenstates.

As eigenstates of a Hermetian operator, the Bloch states form an orthogonal basis:

<TL, Q|n/7 q,> = 5n,n’5(q - q/) (46)

or, inserting 1 = [ |z) (x|, an equivalent relation in the spatial domain is:

“+oo
/ dx @), (2)Ppr g (2) = 0p i d(q — q') (47)

— 00

In this way Bloch states behave much like momentum eigenstates. For the examples of ¢ = 0 states given above, the
orthogonality of different bands is already suggested in the nodal structure of the on-site wavefunction.

For different ¢ states within the same band, it is instead the long-range structure that shows the character of the
eigenvector. We see this in the following sequence for n = 0 band Bloch functions (shown for Vi, = 50Eg) at variable
q:

Re{®,_ )} LN ININININININININ NN 2

LCIIPHOVIRE = SSPAN S ——— A
Refd, g () e o S0 Y
¢, )} DD DT DT DT T

Note that negative ¢ solutions are identical to positive ¢ solutions for parity-symmetric lattices (V(—z) = V(x)),
so we only show examples of ¢ > 0. In each plot, Re{®,} is compared to cos gz, which is the real part of the e'%®
prefactor from Eq.

At the largest quasi-momentum in the lowest band, ¢ = k;, = m/ay, the period of the wave function is 2ar,, which
may at first seem strange. (Did you expect half this period, ar,?) Going back to smaller lattice depths lets us see why
this is natural. As Vp — 0, the Bloch function becomes a plane-wave function. For example, at V; = Ep,

Re{®,_g ()} - -

In this limit, a plane wave at the maximum ¢ is ®q—p, — exp(ikrx). It cannot have any higher momentum, without
being outside of the first band. But with ¢ = kr,, the period of this function is 27 /k,, which is 2ar,. Another argument
for why it would be nonsensical for the phase to a period of ay, is that it is only the difference between adjacent sites
that matters. If the phase-modulation factor were €/27%/%2  then one lattice site away the phase will have wrapped by
2m, which is no change at all. The fastest change of phase is a m phase shift between adjacent sites, which is what is
shown above, and has a period of 2ay,. A final argument returns to the Bragg condition. At the edge of the Brillouin
zone, Bragg scattering should be resonanent, and indeed from Eq. we expect A = 2ar.
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In the plots of ReV,, shown here, we have been discussing the lowest-band Bloch states. We expect a very
similar wave function at ¢ = kr in the first excited band in the limit V; — 0, since the energies are nearly
degenerate. However, they are also Bragg-coupled and (as eigenstates of a hermetian operator) should orthog-
onal (see Eq. . Indeed, for V = 1FEg, one finds a wave function with the same period, but offset phase:

Re{q)n:l.q:/\'L(x)} ~ AN ¥

—

ie., Re®p—1 q=k, ~ sinkpz instead of Re®,,—g 4=, ~ coskrx, so that the two Bloch functions at the avoided crossing
(see Eq. are orthogonal.

F. Band mapping

11l. LOCALIZATION AND TUNNELLING

Let’s now put individual atoms into the modes derived in §II] and try to understand their spatial motion. Of course,
an atom in a Bloch state has no dynamics: Bloch state are eigenstates. However initializing particles in delocalized
states is not always natural for an experiment. For instance, interactions (discussed in §VI) may localize particles.
In this section we show how tunnelling — one of the most iconic quantum phenomona — is already present in band

structure.

A. Localization

How do we describe a localized particle in an optical lattice? As a warm-up, let’s ask this question without the
periodic potential; and then return to a system with band structure.

In an infinite system, the plane-wave eigenstates with £ = h%k?/2m are ¢(z) = exp(ikz), neglecting normalization
for now. A localized wave function, centred at x., has a position-space representatio

bu. () = (@]Te) = 0(T — ) (48)
where §(-) is the Dirac delta function. In momentum space,
Ya. (k) = (klze) = exp(—ikzc) (49)

This uses all momentum states: localization to a single point in position space requires delocalization in momentum
space. We expect this, of course, from the Heisenberg uncertainly principle, which is just a consequence of Fourier
relations.

AGIE Pk 0 P
>
k o
We can summarize this as
k=+oc0 )
) = / kB (kY with [@(k) = ke (50)
k=—oc0
The particular phase chosen for each momentum state, ¢(k) = —kx., is essential to coherently sum to the delta

function at x..

For a particle in a single band of an optical lattice, we don’t have all momenta: only ¢ (which for Vi, = 0, is the same
thing as k) between —n/ar, and 7/ay = k. Using these, how localized can the state be? What’s unclear is which
phases ¢(q) give the optimal localization. Kohn (Kohn, [1959) showed that the optimal choices can give exponential
localization, so long as band gaps exist.

5 In this section and the next, we will neglect the normalization of wave functions, and restore them in §III.D)|
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Even though we do not have a band gap for V;, = 0, it is illustrative to try to localize a particle with a single-band
range of momenta (since the math is particularly simple).

k=+m/ar .
= [ ke k) 61)
k=—7/ar,
If we choose ¢(k) = 0, then
2sinkrx .
(z[¥o) = to(z) = TL = N'sinc(kpx) (52)

where A is a normalization factor (which we are going to neglect for now). This is a “sinc” function, whose nodes
(given by kpxz = +m, £27, etc.) are *ar, +2ay, etc. We could displace this wavefunction by choosing ¢(k) = —kx.,
which is equivalent to applying the translation operator T'(x.) = e~/ to |1)y). Together, this gives

k=+m/ar, )
[ths,) = / dk e~ %< |k) such that ¢, (z) = N sinc(kg(z — z.)) (53)
k=—m/ar
whose momentum and position representations are as follows:
ly 01 ) ly, @I
- N
- LR | X x

kr kL

In summary, we find that although we cannot make a wavefunction localized to a point (Eq. , we can still make
a “bump” at x = x., using the range of momenta in the lowest band. The form of ), (x) will recognized by anyone
familiar with the diffraction-limited optics: a cylindrical lens creates an electric field at its foucus that has the same
qualitative form.

A remarkable feature of |z.) us that the displaced wave function is orthogonal to the original one at specific

displacements:
+m/ar +7/ar i . A
olwaeh = ([ ) ([ ey | < p2mRL/0L) (51)
—m/ar —7/ar Ax
which is = 0 when Az = +ay,+2ar,+3ar,.... So even though this function is only “approximately localized”, and

has amplitude beyond a single lattice site, the |1, ) at any one site is orthogonal to the Wr’c > at any other site.

B. Wannier functions

In a standing wave, certain positions are privileged: the locations at which the potential V(x) is minimized,
x; = arj (with integer j), which we will call the “locations” of the lattice sites. This is a fuzzy notion, since all
quantum-mechanical wave functions are extended, or more precisely, localization is energetically expensive. In the
limit Vz, > Epg, the amplitudes of low-energy Bloch states are peaked around the {z;}, as seen in

At lattice sites, the idea of “diffraction limited localization” carries to a nonzero lattice, when using the Bloch basis
instead of plane waves. Motivated by the discussion of the previous section, we define the Wannier state localized at
T =T; = jar, as

kr
lwj) = [ dge™"" |q) (55)
—kr
where |g) is the Bloch state, and we consider only the lowest band for now. Applying the translation operator T, L
Eq. and using the defining characteristic of |¢) that T}, |¢) = e~%% |q), we find that

Toy lwj) = |wj41) (56)

localized at * = x; — ar. Because of this, we can reference all Wannier functions to the j = 0 one, so that each
band has a unique Wannier function, which we will call |w) (without reference to position). Including band indices
explicitly, we have

’w(")> = dq |g,n) and |wy, ;) = TLJ

w(”)> (57)
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FIG. 6 Wannier States of the lowest band. Spatial representations of the Wannier states, Eq. are shown here for
lattice depths Vi, /Er = 0,4, 20. The solid line shows wo,o(z) which (as discussed in the text) is has a functional form identical
to all other wo ;(z), apart from a translation from « = 0 to x = z; = jar. The yellow curves show wq, j—1(z), for example. The
lattice potential is shown (dashed, offset, and with unity amplitude) for reference.
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FIG. 7 Momentum representation of Wannier States. The first row shows w(o)(x) and w(l)(az), which are the spatial
representation of the Wannier states for the lowest and first excited bands. The second row shows (as a grey dashed line) the
Fourier transform, of those, compared to the “comb teeth” of two particular Bloch states (of the same band): ¢ = 0.5,n = 0 on
the left, and ¢ = 0.1,n = 1 on the right. The spatial representation of those states are shown on the final row (boxed in blue).

The spatial representation of the Wannier state is
kL kL

na(0) = G oy o) = o1 (fas' 1 1) [ ey = [ e ) (59)
—kr —kr

Examples of these are shown in Fig. [6] Again, note that wy ;(x) = wn,o(z — x;) so that there is a unique Wannier

function for each band, copied at each lattice site. Because of this, we will sometimes drop the j index here too, and

write w(™ (). As mentioned above, one can show that there is a unique choice of the phases of Bloch states {®,, ,()}

that results in Wanner functions that decay exponentially fast at inﬁnityﬁ If our goal is to represent spatially localized

particles, this is an important property! Two further properties may be useful: w( (x) are real, and have definite
parity, i.e., w(™ (—z) = £w™ (z).

We can find a useful perspective on the Bloch states by considering the momentum-space representation of the

Wannier states. At first you might think that the Bloch states are already this; after all, we emphasized the Fourier-

like relations between |g) and |w;) at the end of the previous section. However, instead of |¢) (w;|, we will ask about

6 For the sinusoidal potential we consider here, this choice is the same as was mentioned in that ®p,q(x = 0) to be real and positive
for even n, and d®p, ¢(r)/dz|z=0 to be real and positive for odd n. (Kohn| |1959) can find such a choice for a lattice potential with
mirror symmetry, and whose energy bands are disjoint.
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k) (w;| (i.e., projections onto eigenstates of p, not H). From Eq. 57| and

kr
@ (k) = (k| w™) = / da > clklg+2ik) e, ¢ =d" (k= q+2jkL) (59)
Lk

In other words, (™ (k) is the continuous function that includes all the “comb teeth” of the Bloch functions. For
Vi — 0, ﬁ)(o)(n) would only be a square function of unity between —kj, and kr; see Fig. 7| for some examples at finite
lattice depth.

We can then rewrite any Bloch function in terms of w:

lg,n) =Y 0" g+ 2jkr) g+ 2jkz) (60)
J

i.e., we can simply draw from w at discrete momenta to form the Bloch state. Figure [7] shows two examples of this.
Since |ug,n) = €7 |¢,n), we can also write the periodic function u(z) in the Bloch wave (see Eq. :

[ugn) = >0 (q + 2jke) [2jkr) (61)

J

So, even though the momentum components of |u) are not displaced by ¢, the amplitude of their coefficients is still
drawn from @ at x which are displaced by ¢. This is why |ug ) is in general dependent on g.

In what limit might u,., be independent of ¢? Only when @™ (q + 2jkz) ~ @™ (2jkz). This would require that
w(k) is broad compared to kr, which implies that it is w(z) is narrow compared to ay. We shall discuss in that
such a limit is realized for (V7,/Eg)"/* > 1.

Returning to the distinction between u(x) and w(z): from |u,) = e =" |¢), we can write

lug,n) = Z e'(73=%) |wjn) (62)
J

This means that the probability density is

[ugn(@)? =Y 1w, (2)w;n ()

7.3 (63)
= Zw?n(x) +2 Zcos(an)wj (x)w;(x —ar)+2 Zcos(2an)wj(m)wj (x —2ar) + ...

J J

where we have used w * (z) = w(x), and assumed even n in the second line. (A similar expression can be found for
odd n.) If |lwj(x —2ar)| < |w;(x)|, due to the localization of w;(x), then we can neglect the cross terms; in this limit,
|u(z)|? is just the sum of Wannier probability densities at each site. Looking back to the plots of Bloch waves shown
in the periodic u(z) part does look a lot like a sum of the Wannier functions, displaced over each site. However
this is only strictly true in the deep lattice limit, where w(x) is narrow compared to ay. Note that this is the same
condition discussed in the previous paragraph for ug,, to be independent of q.

C. A spatially localized basis for atoms in a lattice

Like Bloch functions, the Wannier basis forms an orthonormal set:

/dx Wy (2) W 3o () = B (64)

(compare to Egs. [46| and . The proof is left as an exercise (see App. .
Notice that |¢) and |w;) are Fourier transform pairs. We can invert Eq. such that

ja) =Y ijwy)  or gn) =) ¢
; j

w{™) (65)
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The key relation is

| (alw;) = exp(—igz;) and  (wjlg) = expliga;) | (66)

This, along with inserting complete sets [ dg|q) (g or 3" |w;) (wj|, is the basis of all transformations between these
two bases. Also, this reinforces the analogy to plane-wave states of the continuum, where (k|z) = exp(—ikz).

It may bother you that we are replacing a continuum (of Bloch states across a range of ¢) by a discrete set (of
Wannier states at each site). Are the number of states in these two bases the same? Some insight can be gained
by putting the lattice in a box of length May. Here, M is the number of lattice sites, and aj, is the lattice period.
Within this box, quasi-momentum become discretized

s
MaL

q= Esz% with £e -M/2+1,...,M/2 (67)
with a maximum value m/a;, = kr. The locations of lattice sites are x; = jar, with j taking the range —M/2 +
1,...,M/2 (or 0 to M —1, if preferred). In any case, we see that there are M discrete values of g, for quasi-momentum,
which matches the number of sites ;. For larger lattices, these both approach infinity at the same rate. Of course, this
range of g covers only one Brillouin zone, and complete sets will also require a summation over bands. Discretization
has two further appeals: it simplifies units, and is also immediately amenable to numerical algorithms (which always
require discretization). The continuum limit >°  — az, [ dg/(27) can always be taken.

D. Tunnelling

Returning to the question of atomic motion: how does a particle in “one place” — which we now know means,
matialized in a Wannier state at one lattice site — evolves in time. In order to approach that problem, we will adopt
the formalism of second quantization (App. . This formalism is convenient since it lets us talk about single particles;
more importantly, it lays the ground-work for a discussion of many particles in §VI} where particles interact, and where
we will need particles to obey the correct exchange statistics.

We have already diagonalized the single-particle Hamiltonian. The total energy of a system the

kL
n) N7 _ ar, n) N7
BEL e o B=l e [ E N (65)

where Eé”’ are the eigenvalues of the (first quantized) Hamiltonian Eq. and N, , is the number of particles at
momentum ¢ in the nth band. We are simply adding up the number of particles in each of these states. This total F
is the expectation value of the many-body Hamiltonian

kL k'L
A_E ar (n) N _E ar (n)z1 4
H= . ZW/deqEq Mg = ~ 27r/deQEq frafina (69)

where N = a'a is the number operator, and @' and @ are the creation and anihilation operators for particles. Here

qu, d;th, and a,, 4 are dimensionless. Notice a shift in perspective here: until now, by H we meant the Hamiltonian
of a single particle; now, by H we mean the total energy of a many-body system, so that F is extensive.

Since H clearly breaks into bands, we can consider each band separately,
2 r(n) r(n) ar, kL (n) &t
. n) At A
H= Z Hband with Hband = % 5 dq Eq aqaq (70)
n —RL
and often suppress the band index on &:5 and a, for simplicity of notation, when discussing a single-band problem.
If d:fl creates a Bloch state, what is its relation to the operator that creates a Wannier state? Let’s call it ZA);, such
that |w;) = 5; |vac). From Eq. , with |¢) = af |vac), we have
kr

bl [vac) = <L | dge~i1s 4} vac) (71)
J or 1, q
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These operators are thus Fourier Transform pairs. In discrete form, a symmetric representation is

1 p 1 A
—— > emal  and Al =—— > b (72)
q q J
VM < vM 5
A spatially localized creation operator is the sum of all delocalized creation operators. Similarly, the creation of a
particle in a single momentum state involves the (phased) creation of particles on all lattice sites. For the infinite
lattice, we instead write these in a somewhat assymmetric way:

pt—
b; =

T

—iqxj At At iqr; 1t
P = o _deqe iak and aq—zj:eq 7b; (73)

In either case, the normalization factors are chosen such that any commutation relations between the a, operators is
preserved for the b; operators, and vice versa.
We can now rewrite our Hamiltonian in terms of spatially local operators b; and b;.

kr
H, =& [ dqE,aba,
2w —kr,
k
= (g m, [t | [ e,
2 —kr, J 7 (74)
ar, m/ar ) . .
:Z 27/ dq B, e10t(=3") b;bj/
- Q0 —m/ar
J:d

=—t(2))

where t(Aj7) has units of energy, and depends only on Aj = j — j'. (We will justify the minus sign in its definition
shortly.) In order to understand its meaning, consider the action of I;;fl;j/ for j # j'. This operator pair anihiliates a
particle at xj and creates a particle at x;. This is what is meant by “hopping” from site j” to site j. For states whose
energy is less than the lattice depth, such motion is classically forbidden: it is quantum-mechanical tunnelling.

The rate of tunnelling is related to the matrix element of H, between two Wannier functions. We can see this by
writing

(we| Hy [wer) = = t(j = ') (wel blbys [wer) = —t(£ =€) (75)
7,3’
such that
P ) - P )
() = (] (2m +Vysin <m>) we) = [z wnle)” (de T Vysin <ka>) wel@)  (76)
From this, and since H is hermetian, we can see that
t(=Ag) = t°(Aj) (77)

If the Wannier functions can be chosen to be real (see earlier discussion) then furthermore t(—Aj) = t(Aj).
We do not need to use Eq. to find the tunnelling coeffients. It is already evident in the dispersion relation for
each band! From the definition of ¢(Aj) in Eq.

L ag [T , .
—t(Aj) = ?/ dg E4 cos(iqar,Aj) (78)

—m/ar

where we have additionally used the fact that F_;, = E,. In fact, since Eg") are periodic functions of q, with period
27/ar, and have boundary conditions dE/dg = 0 at band edges, we can invert this relation to write E; as a cosine
Fourier series:

E, = E, —2t(1) cos(arq) — 2t(2) cos(2arq) — . .. or E,—E,=-2 Z t(Aj) cos(arqAj) (79)
Aj=1

In sum, the dispersion relation Eé") for the nth band reveals the tunnelling rates between sites in real space.
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FIG. 8 Tunnelling beyond nearest neighbour. The tunnelling energies , calculated using Eq. are shown as a function
of lattice depth. The main figure shows a linear scale, and the inset shows the same data on a log scale. In principle, atoms
can tunnel at infinitely long range. However the relative strength of any Aj greater than 1 is suppressed at a faster exponential
rate than nearest-neighbour tunnelling. The dashed line is Eq. 82

E. The tight-binding limit

As an optical lattice becomes deeper, nearest-neighbour tunnelling becomes more and more dominant. We can see
this in Fig. |8} where ¢(1) #(2), and ¢(3) are shown for the lowest band, as a function of lattice depth. We see that ¢(1)
dominates, by a factor of 10 already at V}, ~ 3FEg, and by a factor of 100 at V;, ~ 10Eg.

In the limit where only ¢(Aj) is significant, then we drop the Aj argument, such that the lowest-band energy is

E,~ E, —2tcos(arq) “Tight-binding limit”, #(2) < (1) (80)

Notice, looking at Fig. |4} that Eéo) looks like an inverted cosine, with is minimum at g = 0, and thus ¢ > 0 as defined
here. As defined in Eq. the band width is the difference between maximum and minimum energy. Thus

Wo =4t  (Tight binding) (81)

which is useful rule of thumb to remember.
In the deep-lattice limit, one can show (Campbell, [1955) that its tunnelling strength in the ground band is

W 4s3/4

~ —
~ ~

TRV

with s = V;/ERr. The exponential decrease is characteristic of quantum tunnelling through a high barrier. This
approximation is shown as a dashed line in Fig.

In the tight-binding limit, one typically shifts zero energy to coincide with Eénzo), and writes

exp(—?sl/Q)ER for s >1 (82)

HTB = —t Z l;;r-/i)j = 7252(?)34_16]' + ZAJ;»ZA)]‘_;,_l) = 7tZi)}+1i7j + h.c. (83)
J J

<4,j'>

where each of these forms is equivalent: < j,j' > is a notation that means “neighbouring sites” (useful when going
to higher dimensions or more complex geometries); and h.c. means “hermetian conjugate”.

Another insightful form of the TB hamiltonian comes from recognizing that Ej+1i); is one-site discrete translation
operator, which could also be written (back into first-quantized form) as |wj41) (w;|. In either case, we can then

write the one-site translation operator as Ty = Zl;j+113; or > |wjt1) (wj|, which now acts on all sites. The TB
Hamiltonian is then

Hrp = —t(Ty +1T1) (84)

Bloch states in the TB limit take a particularly simple form. The periodic u(z) function is just the sum of all
on-site Wannier functions, such that

lu) = Z |wj) and lg) = Zeiq‘“j |wj) (Tight binding) (85)
J J
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FIG. 9 Tunnelling of a single particle. In a two-dimensional optical lattice, particles are localized to a central column and
restricted to tunnel only horizontally (along z, as labelled). Each atom undergoes a coherent quantum random walk; a single
image collapses the wave function of each row, enabling a statistical measurement of occupations. (Preiss et al., |2015)

We can solve for the energy of this eigenstate with Hrpp lg) = Eq|q), such that
E, = —t(e" 4 ¢7"90) = 2t cos(arq) (Tight binding) (86)

Thus we recover the single-cosine dispersion relation of Eq.

F. Quantum Random Walks

If a single atom is initialized in a lattice site at x;, what are the populations at later times? Let’s write out a
quantum “register” that has the occupations of the first five sites:

|init) = ‘0>72 ‘0>71 |1>0 |0>+1 |0>+2 (87)
Applying the TB hamiltonian, Eq. the particle can either hop to the left or hop to the right:
H [init) = =£]0)_5 [1) 1 0} 10) 41 10) 15 = £10) _50)_; [0)¢ [1) 41 10) 45 (88)
Taking one more discrete “step”:

H? |init) = —2[1)_0)_; 0)10) 41 10) 45 +26%(0) 5 [0)_ [1) 10} 1 10) 45 — £210)_5 10)_ [0) [0}y [1)1,  (89)

etc.

Remarkably, this experiment has been done. Fig. [0] shows a measurement of the time evolution of an atom in a
single free direction, as a function of time (Preiss et all 2015). The occupations of sites are measured as a function
of time. Atoms can be thought of as hopping from site to site with a characteristic time is 27 /t.

IV. CURRENTS

We saw in the last section that a particle initialized in a single Wannier state will hop from site to site via tunnelling.
Microscopically, movement of particles will alway rely on this process. However bulk transport of electrons through a
crystal is not usually caused by initialization in a single Wannier state; rather, the movement of charge is induced by
an electric field, whose force on particles induces a mass current. In this section, we will consider the speed at which
non-equilibrium distributions move, and also find the equivalent of Newton’s laws for particles in a lattice.
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A. Currents and transport

For neutral particles, the analogue of electrical current is transport of mass. In free space, spatial velocity is related
to the center-of-mass momentum by v = p/m. Things are not so simple in a lattice: as discussed in momentum
p and quasi-momentum ¢ are not the same, such that v # ¢/m. Sometimes (such as in the first band), these two
quantities do not even have the same sign! More generally, a single |¢) state has multiple components with the same
total momentum only if one includes the dressing by the photon field; however the momentum of photons is not
associated with any mass-current. This makes the discussion of mass transport in optical lattices complex — and
interesting!

We will define the total current as the particle number (N) times the velocity of the centre of mass (CM): J = Nvcw,
where

1 aA oA

oM = £ [H, Xcm] J=

5 [H, XcMm] (90)

in which the CM position operator is
N 1 . e
XCM = ﬁ;mng = ;’Jigbzbe (91)

This definition of J gives the correct time dependence of expectation values, which we can see from the Ehrenfest
Theorem,

d A i, 00
7(0) = 7 {H, O + {2 (92)

applied to O = Xc.Since there is no explicit time dependence to Xe M, we need only to calculate the commutator
of [H, XCM] .

ZZ chb bk7332b be] = Zfﬂc BTZA% (93)
(Jk
where we have used [bTbk,b bg] (Ok,e — 0 g)bTbk For the general case, we can now use the site-indepenence of

tin =t —k)=tk- j) and write a simpler form We will here just write down the tight-binding limit,

itar, P tar, taL o o
Jrp = 5 (beb} ., — bey1b}) = 5 ibeb,, + h.c. 3 — (T4 —iT-) (94)
¢ ¢

which has the units of tar, /k, a velocity. Notice that, apart from units, J has a form much like Hrp itself, but with a
minus sign between hopping terms. This means there must be an assymmetry between neighbouring site occupations
for there to be a net current — which makes sense!

One also write down a local current operator, j, = —i(tar,/ h)lsgl;} 41 1 h.c., which satisfies a continuity equation
d A A
e tag Yo — je-1) =0 (95)

where (d/dt)g = (i/h)[H,ns]. This has the form of a typical continuity equation: the rate of change of local density
is given by the spatial gradient of a current. If the current from the left and right are balanced, then the local density
does not change. We will not work further with the local current in these notes, but instead consider the extensive
transport that come from a global force.

B. Group velocity of a wave packet
The band structure energy diagrams we have derived, giving F,, are also called “dispersion relations”, which refers

to the spatial dynamics of a wave packet. Let us consider a coherent superposition of Bloch states that are clustered
about a central gy with a width of o,. A typical treatment considers a gaussian weighting, for example:

Y=Y fl@)lg)  with [f(g) =exp[—(q—q)’/o7] (96)
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Important for this discussion is that
04 < ki, such that o, > ar (97)

ie, this must be a delocalized wave packet. We can therefore expand the local energy about go:

E(”) 1 dQE( )

EM) ~ g _ q (g — an)? d 98
p ¢ +(2—q) dq +2(q ) i ; (98)
9=q0 9=90
—_——— —_———
=hvg :h2/m;

As we will explain in the remainder of this section and the next, each of these terms has a physical implication: the

initial energy of |¢); the velocity of its propagation, v,; and its inertial response to an external force, my.

Let’s first consider the spatial displacement of |1). We define the group velocity of the wave packet to be

1 dE{™
vl - 1 99
(0) = 5 (99)
9=qo
The time evolution of ¢ is
Ul =0)) = Y fla)e' /" |q) = e7" Z F@)e™* ™ |q) (100)

q

where we have pulled out the common phase factor wy = Ey,/h— qov,. The remaining phase is equivalent to a discrete
translation of each |g) state every T = ar, /vy, which we can see by substituting ¢t = 7Aj for integer Aj:

eivgqt |q> — eivquAj |q> — eiqaLAj |q> — TaLAj |q> (101)
The time evolution of the wave packet is thus a pure translation at these intervals, plus a phase factor
[t =TA))) = e‘iwotTaLAj [(t = 0)) for T=ar/v, (102)

Seen stroboscopically at these time intervals, |1)) propagates at the group velocity v, defined in Eq. Note that a
wave packet made in different bands will have a different v, even if at the same quasi-momentum gg.

So far, this discussion has been quite different in style from the discussion of J in Why is dE/dq related to

current? Consider
dE, d N d N . (d
— = _—(gq|H|q) = | — H H(— 1
T (a| H q) (dq <Q|) la) + (q| (dq q>) (103)

where we have used the fact that H has no explicit dependence on ¢, and used a product rule. We can evaluate each
derivative by inserting a complete set of Wannier states:

d il" - T ; . . S ~
|Q> dqz i wy) :zzj:xje i w;) :zzj:xj lw;) (wi|q) = iNXcmq (104)
where we have used Eq. This gives us,
dE, N N PN ) A A

Comparing to the definition of group velocity above, where E; was the dispersion relation for a single particle, we
have

vy = (J)/N (106)
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C. External forces

Consider the modification of our original Hamiltonian Eq. [20| by the addition of an external force:

-2
Hp = 2 4 vy sin®(kpa) — Fi (107)
2m
This is no longer a translationally invariant hamiltonian, and thus Bloch states |g) are not longer eigenstates. Instead,
for a weak force, one can show that the quasi-momentum of each Bloch state changes in time as

L4 =3 F (108)

In other words, quasi-momentum changes linearly in time with an applied external force. In this way, hq again behaves
like free-space momentum p.

This problem was originally considered by Zener, who also found that if the force (or resultant ¢) was too large, the
problem became more complex: a particle that began in one band could end up in another one, due to non-adiabatic
evolution of the quantum state, especially near small band gaps. Let’s ignore this for now, and continue to work in
the paradigm of a problem that can be broken into bands.

An intuitive picture for why dg/dt = F/h comes from considering the relative phase evolution of adjacent lattice
sites. For a weak gradient, we can approximate the on-site Wannier functions as unchanged apart from a site-to-site
phase evolution. For two quantum states shifted in energy by AFE, their relative phase evolution is ¢(t) = —(AFE)t/h,
which in this case is ¢(t) = Fart/h. Across the entire lattice, we then have phases at x; evolving as ¢,(t) = Fx;t/h.
The time dependence of a particular Bloch state is then

Ut)g) = e ™iU(t) |ws) =Y e et/ P ;) =N e O FUM ;) = |q + Ft/h) (109)
j j j

J J

agreeing with Eq. [I08]
In fact, this intuitive picture can be made more rigorous by considering the following unitary transformation of the
problem:

Uy (t) = exp{—idpo(t)/h}  with po(t) = Ft (110)

and we will also call po(t) = —A(t), for reasons that become clear in a moment. In general, through a unitary

transformation, the wave function is transformed to ‘1;> = U |¢), which obeys the Schrodinger equation under a new

Hamiltonian,
H=UHU"+ ihcfi—[t]UT (111)
In our case
naUl =i, UgU =pipo(t). U] =2 S p) (112)
such that
Hp — Hp = @_ZﬂJFV(@)—F@WO@
m Z]t)g A (113)
= o + V()

Now that we have H F, we have recovered a periodic problem again. We can apply everything as we did before, for
instance making use of Bloch functions, quasi momentum, etc. What do those eigenstates say about the solutions in
our original frame of reference? We can, for instance, take |§) and transform it back to |g) using U;:

lq) = U 1g) = e 0 W/MN i |G+ 2nhky) =Y c; |q + 2nhky + po(t)) = |G+ po(t)) = |g + Ft/h) (114)
J J

where we have used the fact that ei‘%po(t}/ " is a translation operator in momentum. Since § is time-independent in the
transformed frame, we see that under Hp, solutions are of the form ¢, + Ft/h. QED.
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It’s interesting to note that in the frame created by Uy, one can also write out a Tight-Binding Hamiltonian:

HF,TB = —tz<6}+18j + h.C.) — F(t) Z(]CLL)BII;J — fIF,TB = —t Z(eiaLA(t)/hlA);JrllA)j + h.C.) (115)

J J J

where again, A(t) = —F't when the force is static. This looks like we’ve made a complex tunnelling strength,
t — te~tarFt/h — o=o(t) (116)

again following our intuitive picture that adjacent sites acquire a time-dependent phase in the presence of a force.

D. Effective mass

If an external force changes ¢, what current can it cause? We have already seen that h¢ = F and hv, = dE,/dg.
Combining these,

dvg dvgdg 1d°E,dg 1 d*E,

279 = — = 117
dt dg dt  h dg* dt  Rh? d¢? (117)
This gives us the lattice equivalent of “F = ma”, which we will write a = F/m:
d 1 1 d*E
% = (m;‘)—l F with . = ﬁﬁ (effective mass) (118)

We can best see the relationship between the second derivative of the dispersion relation and mass when considering
a free particle: if E = p?/2m = h?q?/2m (for zero lattice depth), then m* = m for all q. For deeper lattices, we can
characterize the lowest band by mg, the band curvature at ¢ = 0. For tight banding, for instance,

1 d? 2ta? h?

—2tcosqar) = h2L cosqar, such that my = StaZ (tight binding) (119)
ar,

*\ —

1
)T g

(m

Note that one comes the same conclusion when finding ¢(1) from Eq. [78| applied to a free-particle dispersion relation.
The fact that ¢ can be written proportionally to an inverse mass emphasizes the identification of tunnelling as a kinetic
energy in the problem.

A strange thing about effective mass is that it does not need to be positive, or even finite. Since m; ~ 1/ cos(qar,),
it diverges at gar, = /2, halfway across the band, and comes to a value of —m at the band edges. The dispersion
relation at the band edges can be approximated as an inverted parabola, such that an interpretation as a “normal”
massive particle breaks down. Perhaps a ¢ ~ +kr,/2 things make a bit more sense: a small change in ¢ (induced by
an external F') will not change v, here, because vy ~ sin(gar) at its maximum there.

Finally, consider a thermal distribution of Bloch states, such as one would expect to find in equilibrium. We’ll call
this distribution f°9. If an external impluse shifts the entire distribution by some Aq = FAt, then a new distribution
will deviate from the old one by

F9(q) = f*YUq+ Aq) — f*Uq) ~ Ag (120)

What current results? Notice that in equilibrium, there is no current, because f(¢) = f(—¢), so an group velocity a
that |g| will cancel out. Thus

eq

J:/dqvgf(q) :/dqvgfdev(q) :/dqvgagq Aq (121)

Using integration by parts, and the fact that f°lv, = 0 at the band edges, we can replace v,0f°1/0q by f°10v,/0q
under the integral. This gives,

0 1 1
J = Aq / dq f<92%9 — Aq / dq f*h— = hAq (122)
Jdq m? me
where by (1/m}) we are indicating the thermally averaged effective mass across the band. When temperature is high
enough that the occupation is equal everywhere in the band, then (1/ mZ) — 0, since any shift in ¢ creates balanced
positive and negative currents.
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FIG. 10 Deep-lattice limit. (a) The band structure of a 1D optical lattice for depths of 6Er, 60Er and 600FEg. In each
plot, E™(q) is shown for n = 0 (blue), n = 1 (green), n = 2 (red), and n = 3 (lavender). The dashed lines indicate the
harmonic approximation of energy levels, (n+ %)hwo, which overestimate the lattice energy levels at all depths. (b) The on-site

Wannier functions for the lowest three bands are shown at Vi, = 60Er. Here, the Wannier functions are well approximated by
the harmonic-oscillator wavefunctions (dashed lines). [figure credit: V. Venu 2022) |

V. THE ISOLATED-SITE LIMIT

For a sufficiently deep optical lattice, all tunnelling shuts down, and one is left with an array of isolated sites. A
single particle in such a site experiences a harmonic oscillator potential (§V.A)).

A. Harmonic approximation

When strongly confined in a single optical lattice site, the excursion of the atoms is much smaller than the lattice
period: krxz < 1. Because of this, we can expand the lattice potential:

. 1 2
VL SIHQ(kLCE) ~ VL(kL:c)2 — gVL(ka)4 + EVL(]CL.T)G —+ ... (123)

2

The first term is simply a quadratic confinement. When comparing to V4, = %mw%z , we see that

2VLk?
wo = # =2y/VLER = 20.)381/2 (124)

where wr = Er/h is the recoil energy in frequency units. and For “°K in a 1064 nm lattice, wg = 27 x 4.5kHz; so
the characteristic oscillation frequency is tens to hundreds of kHz.
The energy of a harmonic oscillator is

1
B = woln+3) (125)
and becomes a reasonable prediction of Eg"), the average energy of each band. Figure [10[ compares them.
Similarly, we know that the wave functions in a harmonic oscillator are given by Hermite polynomials. The final
panel in Fig. [10] compares the Wannier states of the deep lattice to these. In particular, the ground state is

2

_ -z
w® ~ (ra?,)"1/4 exp{2a2 } (126)
ho

where the harmonic oscillator length is
1/2

[ h h? 1 a
e —_— - /4 — L
ho mwo 2mFEg 5 wsl/4 (127)
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FIG. 11 Anharmonicity. The difference between the expected energy gap, hwo, and the actual band gap is shown versus
lattice depth. We find that even in the deep-lattice limit, a remnant anharmonicity of —(n + 1) Er remains, shown as dashed
lines.

We see that self-consistency of the original approximation, krz < 1, requires that s*/4 > 1.
This leaves us with a characteristic hierarchy of energy and length scales:

Er < {lwy =BG} < V1, and  ar > ano (128)
We can also use this to estimate the number of bound states in a deep lattice. If the spacing is fiwg, then

Ve _ _sEr__1ap
howo  2Egpst /27
where we have neglected the zero-point energy. Looking back at Fig. |5 we can see that as Vi exceeds the energy
of a particular energy range, the gaps are perhaps larger, but it would not be evident from the band structure, a
priori, which energies were “trapped”. Perhaps the Eé") <V, vs. Eé”) > V7, distinction is instead that particles with
energies above the lattice depth can move classically between sites; whereas those with energies below must tunnel.
The appearance of gaps above V;, reminds us that quantum reflection can occur even for purely attractive potentials.
In this case, we have already outlined how the Bragg scattering an every integer multiple of ik is a polynomial
function of V;, (see Eq. [38).

The depiction of an entire band with a single energy level can only be true if W,, — 0, which is called a “flat band”.
In deep lattices, this is a reasonable approximation, especially for the lowest bands. As seen in Fig. the width of
the n = 0 band becomes small more quickly than the next band. So, even after the ground band is “frozen out”, the
first excited band may still be active. Whether one can neglect any of these small but finite W,, depends on the time
scale of a particular experiment, and the other competitive energy scales in the problem.

Anharmonicity of sinusoidal confinement provides the first deviation from the predictions laid out above. Through
perturbation theory, one finds

number of deeply bound states ~ (129)

n . 1 2
VO(L) = (n|Vy sin®(kpz) |n) = Vi k2 (n| 22 |n) — §VL/€4L (n| z* |n) + £VLI€% (n|2®|n) + ...

2 130
=2ERVL(n+1/2)— Eg (2”("21)“> _0 \/§n3 (130)
L

harmonic

ind. of V,
We can then see that the band gap between two successive bands is, neglecting terms that fall off as V- 12 op faster,
VEE = VY & hwo — (n+ 1) Eg (131)

such that it is always less than fiwgy. A comparison is shown in Fig.

B. Creation of low-dimensional gasses

An optical lattice is made of counter-propagating laser beams. As discussed in §L.B] a cubic lattice is typically
formed from pairs of counter-propagating beams that are independent from other axes, creating a potential such as

V(r)=Vi, SiHQ(kLLE) + Vi y sin2(kLy) + Vi, SinQ(kLz)
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FIG. 12 Creation of low-dimensional gases. (a) For a balanced set of beams in three spatial directions, a cubic optical
lattice can be formed. (b) Reducing or eliminating the optical lattice along one direction while increasing lattice depth along
the other two directions enables quasi-one-dimensional ensembles to be formed. [Source: (Bloch| 2005))]

Now if only one of these lattice depths, say Vi ., is > Eg, then we can apply the paradigm of m along that
direction, and write the optical confining potential for each plane in z as

V(r) = Vi g sin?(kpz) + Vi, sin®(kry) + %mwazzQ (quasi-2D configuration) (132)
where wy . = 2,/Vi .Er. Here, we have neglected tunnelling in the z direction, assuming that {¢;,t,} > t..
This configuration creates a quasi-two-dimensional geometry, in which particles are confined a single spatial plane.
Typically, because the BGy . is so much larger than all energy scales in the zy plane, atoms are in the ground band
of the harmonic 2D confining potential.

This same approach can also create quasi-one-dimensional ensembles. If V , = Vi . > V ., then we can approxi-
mate the confining potential along every minimum along the yz potential as

1
V(r) ~ Vi, sin?(kpx) + §mwi (v* + %) (quasi-1D configuration) (133)
where w, = 2./Vy ,.FEr. Here, we have neglected tunnelling in the y and z directions, assuming that t; >> {t,,t.}.

The same remarks apply to these quasi-1D ensembles as were made for quasi-2D. These approaches are shown
schematically in Fig.

VI. MANY PARTICLES IN AN OPTICAL LATTICE

When optical lattices were first developed, they were made with near-resonant laser light, loaded with laser-cooled
atoms, and explored at low filling: i.e., one atom every ten to hundred sites. As the field (and laser technology)
advanced, quantum degenerate gases were loaded into the lattice, which could be made with powerful and far-detuned
lasers. The natural question to ask is then, What happens when two atoms are on the same lattice site? The answer
depends both on quantum statistics and on the interactions between the particles.

A. Quantum statistics

Even before we consider interactions, let’s establish the Hilbert space of possible many-body states. We have
discussed the creation and anihilation operators so far without reference to whether the particles we were trying to
create were bosons or fermions. But now, this matters, for the following reason. For bosons,

it _ ot _ 91/2 7t _al/2
b; |Vac>—|1>j 7bj|1>j—2 |2>j ,bj|2>j_3 |3>j Yo (134)
so that any occupation number on a single site is possible. However for fermions,

ot _ ot Sty —
¢j [vac) = [1); ,butc;[1) ;€5 10); = 0vac) (135)

j =
so that the only allowed occupations are 0 and 1, which results in the Pauli exclusion principle. One can prove that
this restriction in occupation is a direct result of the anti-commutation relations between fermionic operators (see
App. as follows: Since {¢f,¢l} = 0, then for any single site, s, ¢féf + ¢lél = 0, which can only be true if éféf = 0.

So far I have implicitly assumed a single band and a single spin. Both of these become important for fermions,
because we can create a second, but non-identical, particle on an occupied site by putting it in the next band.
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FIG. 13 Width of the lowest bands. The bandwidth of the lowest band drops more quickly than the bandwidth of the first
excited band. Since each of these is dominated by nearest-neighbour tunnelling, population in the first band is far more mobile
than the ground band at large depths.

Replicated across the entire lattice, a Fermi surface is formed at the first unoccupied band. If there are multiple spin
species, they each have their own Fermi energy, i.e., individual chemcial potentials p+ and ) that are conjugate to
the number of spins, Ny and N|. At “half filling”, there is one atom of each spin type in every second site, such that
(on average) each lattice site will have either a 1 fermion or a | fermion.

We can view the filling of a lattice from a band-structure perspective as well. Once again, although bosons can
multiply occupy a single |q) eigenstate — for instance, all atoms at ¢ = 0 — at most one fermions can occupy each ¢
state. This means that the band structure is filled up to the Fermi energy. Since the number of |¢) states is equal to
the number of |w;) states, the band filling n = Nagoms/Nsites tells us about what fraction of each band is filled. For
the example of “half filling” (n = 0.5) of the lowest band, the Fermi energy is half the bandwidth. For a 1D lattice,
this is Fr = 2t; for a 3D lattice, this is Er = 6t, or in general,

Er =2dt (half filling, tight binding, d dimensions) (136)

For higher fillings, one can fill the lowest band. The Fermi energy moves into the first excited band, which (as
shown in Fig. has a higher band width and thus higher mobility than the ground band. This is the situation
commonly found in metals, where a higher band is not fully filled, and provides an opportunity for electrons to tunnel
across the lattice. A basic accomplishment of band theory was to understand the nature of metals and insulators.

Bosons, on the other hand, can Bose condense and easily occupy the lowest energies of the band structure. Adding
interactions, however, we will find that the superfluid can be destroyed by localization of particles. A phase transition
to an insulator due purely to interactions is a dramatic demonstration of the failing of single-particle picture.

B. On-site interactions

Consider now the interactions on a single site of an optical lattice. A perturbative calculation would use the
non-interacting wave function with the interaction potential U(r), such that

1
U= 5 /drlerU(rl —12)[w® (r) 2w @ (1) ? (137)

If we use the contact potential U(r) = gd(r), with g = 4wh%as/m, and s-wave scattering length ag, and the harmonic-
oscillator limit of the Wannier function in the lowest band, Eq. then we find

3/2 3/2
wh 2
U= qg <2> (mCUO)3/4 = mkassg/4 (138)

How strong are these interactions? A comparison to single-particle energies can be made. For the lowest band,
ignoring its width (and any anharmonicity), we could write

~ 1 N
H~ Z §m0b}bj (139)
J
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If we add interactions, are these on-site interactions weak or strong? We can evaluate them with a ratio of the on-site
interaction, U, to the on-site single-particle energy, hwy/2. From Egs. and [138] we find a dimensionless ratio

Eint U ERkLa553/4 ags 1/4
—3S

= ~

on—site = Es.p. o hwo/Z ~ ER81/2 ary,

(140)

Since ag is typically of the order of the van der Waals length in atoms, which is a few nm, whereas a;, = A\1,/2 is
set by the optical length scale, we see that on-site interactions are typically weak. This validates the perturbative
approach used to calculate U in Eq.

On the other hand, if we consider the single-particle energy to be not what happens on the site of a single lattice
site, but what happens between them — i.e., the tight-binding H , Eq. — then from Eq. we find an altogether
different picture:

~ — exp

~ 141
Epr s3/*exp(—2s'/?)  ap (141)

U Erkras §3/4 ag
Vinter —site — ? (281/2>
Here we find an exponential increase of the dimensionless interaction strength with lattice depth. A perturbative
approach is quickly invalid!

C. The Hubbard Model

Tunnelling and interactions in a lattice are combined in the Hubbard hamiltonian. There are two flavours: the
Bose Hubbard Model and the Fermi Hubbard Model. Let’s start with bosons:

N PO 1
Hppg = —t Z(b;f.ﬂbj +h.c)+ §U Z f;(f; — 1) (bosons, tight banding) (142)
J J

Here, the on-site interaction term is zero when there is only one atom, and U if there are two atoms. Since there is no
limit to the number of particles on a single site, we can also have 3U for three particles, 12U for four particles, etc!
For fermions, a single-band model with interactions required two spin types, o = {1,}:

Hppg = —t Z(é}_H@- +hec)4+U Z 7| (fermions, tight banding) (143)
J J

Here, no factor of two is required, but the only possibilities in a single band are U for a site with |141}) and zero
interaction energy for all other possibilities, [041,), [140,), and |04+0y).

With these hamiltonians as a starting point, one can investigate, both theoretically and experimentally, basic many-
body phenomena in optical lattices. The reader is referred to further discussion in review papers, such as (Blochl
2005; |Georges and Giamarchil, 2012; |Gross and Blochl 2017)).

D. Scattering of Bloch waves

In momentum space, we can show that the FHM is

- U JO
H= Z €qNg, o + i Z CIMTCII:SiCq?Tqu‘L where g4 = q1 + g2 — g3 mod 27 /a (144)
qno q1,92,93

where we are using the discrete {g,} here and for the remainder of this section. Notice the change back to the
eigenstate basis: while in position space, the tunnelling ¢ term couples adjacent sites. However in momentum space,
we find that this term does not couple different modes, but simply gives the momentum space modes their kinetic
energy,

€, = —2tcosay, 1D €q = —2tcos(arq;) — 2tcos (ay, 2D 145
g q (1D) a (arqs) (arqy) (2D) (145)

The independence of momentum-space modes is the starting point for thermodynamic expressions describing the
non-interacting HM. In momentum space, Hy describes a scattering event: an | atom with ¢ scatters off an 1 atom
with g2, and they emerge with momenta g3 and g4 respectively.
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The relation of momentum-space operators to position-space operators is

M M
1 X 1 )
Y - iqn -z pT d AT —iqn -z ot 146
Cono g e Ch an Ch g e oo (146)
VM % VM

where ¢, = (2n/Ma)n in 1D, and xz; = fa. Notice that as M gets larger, the range of ¢, remains 0 to 27 /a, whereas
xy¢ has a larger range but fixed spacing. The factors of 1/v/ M in front of the sum makes this transform pair unitary.
Let’s see how this interaction term arises, by applying Eq. to the (normally ordered) interaction term:

1 ; 1 . 1 ; 1 .
H, =U e—iqaxe pt e~ i3 xe pt el X 4 elaxe 4
oS (e me) (S (Fg Do) (G Zomen)

U g At s - -
- M2 Z c:rMchgJ,c%chLI, Z e~ H@ata—q2—q1)x (147)
q1,92,93;94 ¢

and the sums over momentum are still discrete, such as g1 /(27/a) = (n15 /My, n1y/M,), and M appearing in ([147) is
the total number of sites, M = M, M,. The second sum is nearly a kronecker delta function, but modulo 27 in argq.:

M(E ]\/Iy Mz
E e~ Hautgs—gz—q1)xe _ § (@12 +a32— 22 —q12 )0 E et (qay+a3y — a2y —q14) Y § ei(q4=+93:—q2:—q12) 21
4

=1 =1 0=1

Mw My Mz
_ E ei27r(n41+n317n217n11)l E 6i27r(n4y+n3y7n2y7n1y)ll E ei27r(n4z+n327n22 —ny,)l"

=1 r=1 01=1
(148)
Each of the sums is
M,
Z 2 (naztnge —noa—nia)t — pr Z d(Nag + N3y — Now — N1y, 7 M,)
=1 r=-1,0,1
- M;E Z 5(q4m + 43z — 922 — qix, 271'7“) (149)
r=—1,0,1
since 14, = (27/Mya)ni,, etc., in each direction. The inclusion of r = —1,0, 1 is because each n is only defined from

0 to M, — 1, so that n4; + n3; — no, — N1, has a full range of —2M, + 2 — 2M, — 2, allowing only —M,, 0, and M,
as possible values. These r = £1 values are “Umklapp” collisions; in comparison, » = 0 are “normal” collisions.
Together,

v

HU:M

Z é:r14Té:r13¢éq2Téq1¢ where g4 = g1 + g2 — g3 mod 27/a. (150)
q1,92,93

We conclude that in momentum space, Hy describes a scattering event: an | atom with ¢; scatters off an 1 atom
with ¢o, and they emerge with momenta g3 and g4 respectively. Notice that conservation of quasi-momentum appears
naturally.

VIl. CONCLUSION

In sum, we have discussed the basic concepts of ultracold atoms in optical lattices. In §Il we discussed how to
a periodic potential arises from the interference of coherent laser light. In §II} we discussed the eigenstates and
eigenvalues of a single particle in a sinusoidal potential. The discrete translational symmetry of the problem is
reflected in the Bloch states, each of which can be characterized by a quasi-momentum. Coherent Bragg scattering
was seen to fracture the energy continuum of a free particle into distinct bands of energy and single-atoms eigenstates
have a structure that reflects their dressing by the light field. In we described how to describe a particle localized
to a single lattice site. The Wannier states formed a basis in which to discuss tunnelling of particles between sites. For
lattices of moderate depth, nearest-neighbour tunnelling dominates. In §IV] we discussed how currents in the lattice
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can be characterized, and how they are induced by external forces. For a delocalized wave packet with a well defined
quasi-momentum, the expectation value of the current operator is its group velocity. The optical lattice modifies the
inertia of an atom, such that it acquires an effective mass that depends on both depth and quasi-momentum. In
V] we considered the limit of deep optical lattices, where the particles are so strongly confined that each lattice site
can be treated as a harmonic oscillator potential. In this limit, the Wannier wave functions and level spacings also
approach the well known solutions of the simple harmonic oscillator. Deep lattices were presented as a tool to form
low-dimensional systems. Finally, in §VI we introduced the problem of many particles in a lattice. Both exchange
statistics and interactions become important. The canonical Hubbard Models were introduced. We hope these notes
can serve as a foundation to learn further about ongoing research involving optical lattices.

Appendix A: Light-matter interactions

The interaction of the optical field with the atom is considered in second-order perturbation theory:
R 2
‘<€|H B1 |9>‘

Uy(r) = Z m

€

(A1)

where w,, is the resonant frequency of each transition. The states |e) and |g) are eigenstates of Hy; + Hy. To the
same level of approximation, the photon scattering rate is due to the excited state fraction due to the perturbation:

. 2
Yoo = DX, [(elHirlg)| /13w = weg)?.
We consider a spatially varying light fields (standing waves) but a homogeneous magnetic field. The atom is then
a test particle following the changing first-order mixing of its internal states and feeling the second-order shift of
its energies. The rate of optical pumping must be negligible for this approximation to be true, so we are implicitly
assuming that an experiment is done quickly compared to v;.!.

In order to evaluate the dipole matrix element in Eq. , it is convenient to project the electric field polarization
written in the lab (xyz) coordinates onto a polarization basis, 7, T, and ¢~ — for which unit vectors are ez and
(ex +iey)/v/?2, where ex is the direction aligned with the magnetic field (and otherwise rotations about this axis
are equivalent to a uniform time delay, unimportant for the static potential).

Let’s define a rotation [Ry] that takes the atomic basis (XY Z) and rotates it into the lab basis zyz. This rotation
takes the X axis and rotates it parallel to B written out in the zyz basis. Defining b = B/|B]|, then the rotation
should be a rotation by —@ about n, where

b xe
= "% — b, —by,0]//b2 + b2.
n |b><ez\ [yv 70]/ ."c+ Yy

Using Rodrigues’ rotation formula, this rotation is
[Rat] =14 [nyx]sin® + (1 — cos 0)[ny]? (A2)
where cosf = b, = B,/|B| and sin = —/1 — b2. The cross-product matrix is

0 —n, ny 1 0 0 —b,
0 0 —by |, (A3)

myl=1| n, 0 -n, TR :
—ny ng 0 \/errby by by 0O

such that [ny]v =n x v for any vector v.
With this rotation matrix we can express the atomic polarization basis in the xyz frame, and take their dot products
to find the desired polarizations of E:

|
el

E,
Ea:t

(r) - [Ratlez = E(r) - b (A4)
E(r) - [Ru)(ex £iey)/V2 (A5)
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1. Rotating Wave Approximation

The optical frequencies are high enough that they are unimportant to near-resonant problems, so we will go to a
rotating frame and discard high-frequency terms. This rotating-wave approximation results in a time-independent
interaction hamilton, which can then be treated with time-independent perturbation theory.

To first order in the fine structure constant, the interaction of an optical field with an atom is an electric dipole

Hgy = —d- E, (A6)

which has no on-diagonal component. The time-dependent problem is then a Hamiltonian of the form

H = Hy+ Hy(t) (A7
= hc;eg {le) (e| = 19) (9|} + Re{Qre“}{|e) (g] + |g) (e]}, (A8)

where Qg is the (complex) Rabi frequency
hQg = (e|Hplg) = —(eld|g) - E. (A9)

Going into the rotating frame with a unitary transform U (t) = exp(—iflot / h), and neglecting the counter-rotating

terms (which rotate at roughly 2w when w ~ we,), we find

N h N N N
g A 2R ) _Refap), — m{Qr)S, + AS., (A10)
2\ o -a

where the spin matrices do not refer to spatial axes, but the axes of the Bloch picture. (Each of the spin operators
is a Pauli matrix in the {|e),|g)} basis: S; = (h/2)6; .) We see that the complex phase of the Rabi frequency (that
can appear as a complex E-field amplitude) determines the projection of the drive vector onto the XY plane of the
Bloch sphere. This is important for Ramsey sequences and other interferometric protocols, but does not appear in
the induced potential or the scattering rate.

In sum, the second-order energy shift of the ground state is

AE® = h|Qg|?/4A, (A11)
and the excited state fraction is

Pee = |Qr|?/AA2. (A12)

2. Polarizability

Our next task is to express the matrix element [Qz|? in terms of field and atomic properties. Since we are working
in the |I my J my) basis, we have direct access to the electronic degrees of freedom (unlike in the low-field basis, where
my needs to be extracted from the mp eigenstates). The optical field does not affect nuclear degrees of freedom, and
thus all matrix elements will have m/ = mjy.

Since the atomic basis are eigenstates of angular momentum, it is useful to break the vector dipole operator d into
m, 0T, and ¢~ components,

d=> dye, (A13)
q

with the unit vectors eg = e, and ey; = e,+ = (e, = iey)/\/i. Matrix elements of the dipole hamiltonian can then
be expressed as sums of the atomic matrix elements weighted by the field polarization components:

W = (eldlg) - E = E,_(d_y) + Ex{do) + Eo (dy)
=EY &(d,) (A14)

q
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Since the rate of spontaneous emission is proportional to [(d,)|?, we can relate the matrix element to the
measured life time I of the excited state (see Table [[I)):

2
N 2 !
‘(mf,|dq|mj>‘ _ heegooe r, ‘( J 1 J )‘ ’ (A15)

I
2weg my q —my

where 0p. = 3)\? /27r is the resonant cross-section for a J = 1/2 to J' = 3/2 transition (Bransden and Joachain
2003)). Since the exc1ted and ground states are not necessarily eigenstates of J,, the matrix element will need to be

{(dg) = (Weldy[Wg) = > (Wylmy)my [ We) (myldglm). (A16)

’
my,m;

The values of the Clebsch-Gordan coefficients |(...)|? are given in Fig.
Adding the contributions of multiple excited states, the induced potential is U =, AE§2) = al, with

2

az4wegrw00€weg) Z <‘I’9|mJ><me|‘I’e>< S Jl,) . (A17)

m —m
myg 7mf] 7 4 J

Here a has the units [m?-s], and depends on the frequency of light and the state of the atomm
The scattering rate is also proportional to |Q2z|? and can be evaluated in a similar way. Defining the cross section
o as Yse = (0/hw)I, one finds

2

Y sl P <Wg|mJ><mff|\ve><7j 1 J',) . (A15)

—-m
- J q J

For a cycling transition, where the ground state is |¥,) = |m; = 1/2), the excited state is |¥.) = |m/; =1/2), and
the transition is 0T polarized (¢ = 1), the matrix element is = 1 so that equations (A17)) and - take a simple
form:

Qo1, = 00F/4WA and o921, = 00F2/4A2. (Alg)
The scattering rate can be put in dimensionless form as

0921, I
= — A20
Q21,Wo A7 ( )

which shows the motivation to use far-detuned optical traps and lattices. The “sustain” of an optical potential (the
time it takes to heat as much as the depth (LeBlanc and Thywissen, 2007)) is s = U/E = 7p(0/aw)™!, where
TR = h/ER, Er = h?k?/2M is the recoil energy, k = 27/\ = w/c is the wave number, M is atomic mass. So the
smaller the ratio o/aw, the longer atoms can be confined in an optical potential.

Appendix B: Second quantization: Mode and field operators
Consider the creation and annihilation operators @ and @', which for fermions obey the anticommutation relations

{&ra&l} = drs, {&Taés} = {&I’vdl} =0 (Bl)

and for bosons obey similar commutation relations [a,,al] = 4,5, etc.

7 This is not the typical definition of polarizability. The standard notation is that p = aE, where a is the complex polarizability, such
that Ugipole/I = —Re{a}/2epc. So we have absorbed the factor of —2egc into our definition. In plots we will use “atomic units”, for
which the conversion factor is 2a%; /c for the definition used here, and 4mega?, for the standard definition.
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FIG. 14 Effective ms model & magnetic level shifts. In the decoupled limit, such a diagram exists for each value of m, which
is unaffected by optical transitions. In the intermediate or low-field limit, the ground state is a superposition of |mJ = +1/2)
and |mJ = —1/2). The values in bubbles are the squares of the Clebsh-Gordon coefficients, and only shown for half of the
transitions for clarity. (They are symmetric for a joint sign flip of my, m’;, and ¢.) £ is a magnetic and hyperfine shift that

depends on mjy.

SLi ‘ Ground (225 /2) ‘Excited (22P1/2)‘Excited (2°P3/2)
Ane (MHz)|  152.1368407 17.386 -1.155

Bns (MHz) n/a n/a -0.10

97 ~ gs ~2/3 ~4/3

g1 -0.000 447 654

r stable | 27.11(6)ns | 27.11(6) ns
40K | Ground (4%S1/5) |Excited (4°Py)5)|Excited (42Ps)5)
Ane (MHz)|  -285.731(16) -34.49(11) -7.48(6)
Bns (MHz) n/a n/a -3.23(50)

97 2.002 294 21(24) 0.665 885 1.334102228
g 0.000 176 490(34)

r stable | 26.79(7) ns | 26.45(7) ns
STRb | Ground (5%S1/5) |Excited (5°P1/5)|Excited (42Py)5)
Ape (MHz)|3417.341 305 452 15 408.328 84.7185
B¢ (MHz) n/a n/a 12.4965

gJ ~ gs ~2/3 ~4/3

g1 -0.000 995 141 4

r stable | 27.70(4)ns | 26.24(4) ns

TABLE II Atomic data to evaluate equations for o

These operators create or destroy particles from a complete orthonormal set of functions {¢,(x)}, describing the
spatial distribution of a state such as momentum or trap eigenfunctions. These have the property that

/dx ¢r(x)ps(x) = 0,5 — orthonormal

Z or(X)r(y) = d(x —y) — complete

(B2)

(B3)

The number of particles in a particular mode is N, = alas, and only has two possible eigenvalues, 0 or 1.
If instead we would like to know the density of particles at a particular location, we need to use a field operator,

Y(x) =Y are(x) and Pi(x) =) ale)(x).

(B4)
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The field operators take on the same (anti)commutation relations as the mode operators:

{0, 9" )} =d(x—y), {d(x),d(x)} = {¥(x), ¢ (y)} =0 (B5)

or [{(x),9T(y)] = 6(x —y) ete. for bosons.
We can also express field operators in terms of mode operators:

b= [dx0,(0i6) and af = [dx 6103 (). (B6)

In fact, there is no reason to regard the mode operators as primary, even though they are usually introduced first: if
we define the mode operators by Eq. , they will automatically obey the correct (anti)commutation relations.

The density operator p(x) = 9f(x)1)(x) gives the local particle density. When acting on the vacuum state |0), it
gives zero. The density operator obeys a commutation relation with the field operator for fermions:

[6(), 9 ()] = ~d(x)o(x ~ ) (B7)
Appendix C: Exercises

1. For a single traveling wave, trap frequencies can be found from Taylor expansion about the bottom of the trap.
Expanding Eq. @ and comparing to a simple harmonic oscillator potential, show that

AUmax | /2 2Umax \
Wy = Wy = ( Mw? > and  w, = ( el > (C1)

How does wyy and w, scale with beam power and with beam waist? Remember that Unax also depends on beam
waist.

2. Create your own numerical code to calculate the band structure of the 1D sinusoidal lattice. You can do
this in just a few lines with a mathematical package/library that has the Mathieu characteristic functions;
or, if you prefer, you can solve a matrix equation as described in §II.B] In Wolfram Alpha or Mathematica,
for instance, these are MathieuCharacteristicA[] and MathieuCharacteristicB[]. In Python, these are
scipy.special.mathieu a and scipy.special.mathieu_ b.

3. Prove Equation (64)): Show that for the ground band, |w;) and |w;/) are orthogonal for j # j.

4. Find the spatial wavefunction of the Wannier state for the first band, w(l)(x), in the case of Vi, = 0. Plot the
function, and give the location of its nodes.

5. Derive Eq.
6. For bosonic particles, what is the corresponding relation to Eq. ?
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