Supernovae Remnants and Pevatrons: Acceleration and Propagation

UFPR - Palotina March 31, 2023

Latin-American School on CTA Science

Dra. Rita de Cassia dos Anjos

The Abdus Salam **International Centre** for Theoretical Physics Associate

Supernovae Remnants and Pevatrons: Acceleration and Propagation

Dra. Rita de Cassia dos Anjos

Latin-American School on CTA Science

- UFPR Palotina
- March 31, 2023

Supernovae Remnants and Pevatrons: Acceleration and Propagation

Dra. Rita de Cassia dos Anjos

Lakin-American School on CTA Science

The Electromagnetic Spectrum

- UFPR Palotina
- March 31, 2023

Overview

- Motivation and state-of-the-art
- What are Pevatrons?
- · Cosmic-ray acceleration in SNRs
- Multimessenger propagation inside/outside Galaxy
- · Galactic Pevatron Candidates
- Conclusion

$$\frac{\mathrm{d}N}{\mathrm{d}E} \sim E^{-\alpha}$$

Spectrum shape:

- Different composition
- Different sources (Gal x Extragal)
- Interaction with cosmic radiations

- Different composition
- Different sources (Gal
- Interaction with

Björn Eichmann, UHECR2018, Paris

Thanks to all Observatories

Thanks to all Observatories

Björn Eichmann, UHECR2018, Paris

13

4		
2		
2		
_		
0		
-2		
_4		

arXiv:1903.07713v1, arXiv:1301.6824

PAOl. Science 2017;357:1266-1270

Björn Eichmann, UHECR2018, Paris

arXiv:1903.07713v1, arXiv:1301.6824

PAOl. Science 2017;357:1266-1270

Anjos et al 2018

Björn Eichmann, UHECR2018, Paris

What do we want to answer?

• The big questions and goals

- 1. What sources can accelerate CRs to PeV energies?
- 2. How do SNRs contribute to Galactic CRs up to the knee?
- 3. What physical processes are involved at Pevatrons and in their close environment?
- 4. How do accelerated particles escape their accelerator?

5.

arXiv:1903.07713v1, arXiv:1301.6824

PAOl. Science 2017;357:1266-1270

Anjos et al 2018

Björn Eichmann, UHECR2018, Paris

Pevalrons are:

- · Galactic CR sources
- accelerating protons to Pev energies (10¹⁵ eV)

Images: https://legacy.ifa.hawaii.edu/info/press-releases/ASASSN_IceCube/ https://solarsystem.nasa.gov/resources/822/cassiopeia-a-supernova-remnant/ https://science.nasa.gov/get-involved/toolkits/spacecraft-icons

PeVatrons as multi-messenger sources

- 1 PeV protons plus gas/dust produce
- ~100 TeV photons and
- ~50 TeV Neutrinos

12

Candidates source classes:

· Supernova remnants

Tycho's SNR

Candidates source classes:

• Pulsars and pulsar wind nebulae

Candidates source classes:

· starforming regions

Gamma-ray map of the HESS J1646–458 region

Requirements:

- · Engine: Shocks
- Fuel: Charged particles Container: magnetic field (confinement)

· Cosmic-ray acceleration in SNRs

- SNRs likely produce the bulk of Galactic CR:
- · Isolated SNRs can accelerate CR up to TeV energies.

• Strong shocks - diffusive shock acceleration - I order Fermi acceleration

· Cosmic-ray acceleration in SNRs

SNR shocks within massive star clusters can reproduce the knee and 2nd knee

· Cosmic-ray acceleration in SNRs

SNR shocks within massive star clusters can reproduce the knee and 2nd knee

Cosmic-ray acceleration - extragalactic transition

Schematic trajectory of a galactic CR reaccelerated by a relativistic jet

• Multimessenger propagation inside/outside Galaxy

· Galactic Pevatron Candidates

28

• Multimessenger propagation inside/outside Galaxy

Multimessenger modeling

arXiv:1903.07713v1, arXiv:1301.6824 Front. Astron. Space Sci., 22 November 2017 Anjos 2014 https://slideplayer.com/slide/8801439/

• Multimessenger propagation inside Galaxy

Nuclei up to Z = 28

· Includes estimation of interstellar gas distributions, dust, nuclear interaction, diffusion, convection, fragmentation...

Propagation parameters can be fitted to available data. Other codes: DRAGON, PICARD

• Multimessenger propagation inside Galaxy

Nuclei up to Z = 28

 Includes estimation of interstellar gas distributions, dust, nuclear interaction, diffusion, convection, fragmentation...

• Propagation parameters can be fitted to available data. Other codes: DRAGON, PICARD

Gamma-rays > 50 TeV -> PeV protons

- Continuous δ function source of energetic particles at the center of the Galaxy
- Period of 1E7 yr
- Injection power ~ 1E41 erg/s

Sr⁻¹] S⁻¹ ² 10² 10¹ 10¹ 10⁰ 10⁰ 10⁻¹ 10⁻²

Sr⁻¹] s⁻¹ 10^{-1} E 10⁻² >>= 10⁻³ с Ш 10⁻⁴

Gamma-rays > 50 TeV -> PeV protons

- Continuous δ function source of energetic particles at the center of the Galaxy
- Period of 1E7 yr
- Injection power ~ 1E41 erg/s

33

(a) Boron to Carbon ratio

Parameters	Units	Model GC	Model FB
Source	• • •	GC	Fermi bubbles
D_0	$\mathrm{cm}^2\mathrm{s}^{-1}$	2.7×10^{28}	2.0×10^{28}
δ	• • •	0.6	0.6
L	kpc	10.0	10.0
Z	kpc	20.0	20.0
v_a	$\mathrm{km}\mathrm{s}^{-1}$	28.0	28.0
dv/dz	$\mathrm{km}\mathrm{s}^{-1}\mathrm{kpc}^{-1}$	10.0	10.0
α	•••	2.4	2.4

(b) Boron to Carbon ratio at high energy $(K \ge 10^5 \text{ MeV})$

E = 2.5 GeV - Pion Decay

• SGRS

• Molecular cloud can amplify the emission produced by CRs accelerated around the source.

• Highest energy protons escape and contribute to gamma-ray production.

· SGRs present rotation and strong magnetic field

$$L_{\rm CR} \approx 10^{41} \rm erg/s \left(\frac{\eta}{0.1}\right) \left(\frac{\dot{n}}{0.02 \ \rm yr^{-1}}\right) \left(\frac{E_{\rm SN}}{10^{50} \ \rm erg}\right)$$

$$L_{\gamma}(E_{\gamma}) = n_{\text{gas}} \frac{W_{CR}}{4\pi d^2 \langle E_0 \rangle} K_{\gamma} P_{\gamma}(E_{\gamma})$$

Upper limits on the total cosmic-ray luminosity of individual sources

Conservative

Depends on the injection spectrum at source (Ecut, spectral index)

(c) Pion Decay

Anjos, 2014

• Conclusion

Acceleration up to knee and beyond energies

• Pevatron Sources (Magnetars, Pulsar wind nebulae, clusters Galactic center and Fermi Bubbles) with molecular cloud, winds ...

• Multimessenger and magnetic fields

• Acceleration mechanism at source

• Distributions of interstellar gas

• Anisotropic diffusion

Anjos 2020

• Conclusion

Next Generation VHE Gamma-ray observatories

GeV-TeV coverage by near-future instruments

Improve the models with Galactic and Extragalactic CRs and y-ray fluxes from Observatories with different Pevatrons

cherenkov telescope array

The Abdus Salam International Centre for Theoretical Physics Associate

