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Program

March 14 - Lecture 1 - The shooting method (1/2)
Strategy
Units
Numerical differentiation and integration
Infinite square well

March 15 - Lecture 2 - The shooting method (2/2)
Code development
Q&A

March 16 - Lecture 3 - Low-energy scattering (1/2)
Phase shifts
Scattering length
Spherical well

March 17 - Lecture 4 - Low-energy scattering (2/2)
Code development
Q&A
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Frequently asked questions

Which programming language should I use?

Can I attend the lectures without developing my own code?

Are you going to grade the projects?

Which software should I use to plot the figures?

Can I discuss the programs with other students?

Homework
Setup an environment to write, compile, and run your codes
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Reference

Computational Physics, N. J. Giordano and H. Nakanishi (second
edition, Pearson, 2006)
Chapter 10 - Quantum Mechanics

10.1 - “Time-independent Schrödinger equation: some preliminaries”
10.2 - “One dimension: shooting and matching methods”
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Time-independent one-dimensional Schrödinger’s
equation

Only a few problems can be solved analytically in quantum mechanics
Harmonic oscillator, particle in a box, hydrogen atom, ...

Important role of perturbative and numerical methods

This lecture: time-independent solutions for one particle in 1D

Schrödinger’s equation:

− ℏ2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = Eψ(x)

Strategy: grid covering the region where we want the solution

Discretization: xi = i∆x, with integer i

Objective: to determine ψi on the lattice points
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Units

− ℏ2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = Eψ(x)

Example: typical electron quantities - SI
ℏ ∼ 10−34 Js
Electron mass ∼ 10−30 kg
E,V(x) ∼ 1 eV ∼ 10−19 J
x ∼ Å = 10−10 m

We do not want to work with such small numbers

“ℏ = m = 1”:

−1
2

d2ψ̄(x̄)
dx̄2 + V̄(x̄)ψ̄(x̄) = Ēψ̄(x̄)

After the simulation is done, we want to recover the desired units
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Units

− ℏ2

2m
d2ψ(x)

dx2 + V(x)ψ(x) = Eψ(x)

Let us choose a length scale ℓ
x̄ = x/ℓ

ψ has units! In 1D:
+∞∫

−∞

dx |ψ(x)|2 = 1

ψ has units of [length]−1/2

ψ̄(x̄) = ψ(x)/ℓ−1/2
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Units
The second derivative: d2

dx2 = 1
ℓ2

d2

dx̄2

Schrödinger’s equation:

− ℏ2

2mℓ2
d2ψ̄(x̄)

dx̄2 + V(x̄)ψ̄(x̄) = Eψ̄(x̄)

ϵ = ℏ2

mℓ2 has energy units
V̄ = V/ϵ and Ē = E/ϵ

−1
2

d2ψ̄(x̄)
dx̄2 + V̄(x̄)ψ̄(x̄) = Ēψ̄(x̄)

The exact same equation as “ℏ = m = 1”, but now we know how to
recover the units:

x̄ = x/ℓ
ψ̄(x̄) = ψ(x)/ℓ−1/2

Ē = E/ϵ = mℓ2E/ℏ2

Numerical solutions of Schrödinger’s equation applied to atomic physics Lucas Madeira 8 / 25



Infinite square well

Our goal is to obtain the eigenstates and eigenvalues numerically

First, let us obtain the analytical solution

V(x) =

{
0, if −L ⩽ x ⩽ L,
∞, otherwise.

If x ⩾ L or x ⩽ −L: the wave function vanishes

In the region −L ⩽ x ⩽ L we want to solve:

− ℏ2

2m
d2ψ

dx2 = Eψ

We define k ≡
√

2mE/ℏ2

ψ′′ = −k2ψ → ψ(x) = A sin(kx) + B cos(kx)
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Infinite square well

ψ(x) = A sin(kx) + B cos(kx)

Boundary conditions: ψ(L) = ψ(−L) = 0

ψ(L) = A sin(kL) + B cos(kL) = 0

ψ(−L) = A sin(−kL) + B cos(−kL) = −A sin(kL) + B cos(kL) = 0

Taking the sum of the equations: 2B cos(kL) = 0

Case (i): B = 0, A ̸= 0 for a non-trivial solution

sin(k−L) = 0 → k− =
π

L
,

2π
L
,

3π
L
, · · · → k− =

nπ
L

with n = 1, 2, 3, · · ·

Case (ii): A = 0 and cos(k+L) = 0:

cos(k+L) = 0 → k+ =
π

2L
,

3π
2L
,

5π
2L
, · · · → k+ =

(2n − 1)π
2L

with n = 1, 2, 3, · · ·
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Infinite square well
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Infinite square well

The eigenenergies are:

E− =
ℏ2

2mL2 (nπ)
2 and E+ =

ℏ2

8mL2 ((2n − 1)π)2.

Dimensionless quantities:
x̄ = x/L → the well is located at −1 ⩽ x̄ ⩽ 1
Ē = EmL2/ℏ2

Ē− =
(nπ)2

2
and Ē+ =

((2n − 1)π)2

8

Parity: the cos(kx) solutions are even [cos(−kx) = cos(kx)], while the
sin(kx) solutions are odd [sin(−kx) = − sin(kx)]

How to solve this problem numerically?
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Numerical derivative
Taylor series:

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + · · ·

Numerical derivative:

f ′(x) ≈ f (x + h)− f (x)
h

Taylor series:

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) + · · ·

Numerical derivative:

f ′(x) ≈ f (x)− f (x − h)
h
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Numerical derivative

Taylor series:

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + · · ·

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) + · · ·

Their difference:

f (x + h)− f (x − h) = 2hf ′(x) +
h3

3
f ′′′(x) + · · ·

f ′(x) ≈ f (x + h)− f (x − h)
2h
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Second numerical derivative

Taylor series:

f (x + h) = f (x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) + · · ·

f (x − h) = f (x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) + · · ·

Their sum:

f (x + h) + f (x − h) = 2f (x) + h2f ′′(x) + · · ·

f ′′(x) ≈ f (x + h)− 2f (x) + f (x − h)
h2
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Time-independent one-dimensional Schrödinger’s
equation

− ℏ2

2m
d2ψ

dx2 + V(x)ψ = Eψ

Discretization:

− ℏ2

2m

[
ψi+1 − 2ψi + ψi−1

(∆x)2

]
+ V(xi)ψi = Eψi

Rearranging:

ψi+1 = 2ψi − ψi−1 −
2m(∆x)2

ℏ2 [E − V(xi)]ψi

If we know two consecutive values of the wave function (ψi and ψi−1),
then we can compute the next (ψi+1)
We can also move in the other direction
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Parity

We need two consecutive values of the wave function to start our
algorithm

We will deal with the normalization afterwards

Parity
Even: cos(−kx) = cos(kx)

ψ(0) =[constant] and ψ′(0) = 0
We can take: ψ0 = 1 and ψ1 = 1

Odd: sin(−kx) = − sin(kx)
ψ(0) = 0 and ψ′(0) =[constant]
We can take: ψ0 = 0 and ψ1 = ∆x
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The shooting method

ψi+1 = 2ψi − ψi−1 −
2m(∆x)2

ℏ2 [E − V(xi)]ψi

We need some value E to use our
algorithm

But we want to determine E!

Shooting method: shoot a cannon to hit a
specific target

We start with a guess for E

We look at the solutions for x < −L and
x > L

We want a solution such that:
ψ(x < −L) = ψ(x > L) = 0

Numerical solutions of Schrödinger’s equation applied to atomic physics Lucas Madeira 18 / 25



Shooting method
Input: number of points N or their spacing ∆x; initial guess for E; energy
increment ∆E

Set ψ0 and ψ1 according to the desired parity

Initialize last div

Main loop
Use E, ψ0, and ψ1 to compute all {ψi}
ψi+1 = 2ψi − ψi−1 − 2(∆x)2 [E − V(xi)]ψi
Is ψ diverging to +∞ or −∞? Compare with the sign of last div

If they have opposite signs, then ∆E = −∆E/2

Update the energy guess: E = E +∆E
Update the value of last div with + or −
If ∆E is small enough, then E is acceptable and you found the desired
solution. Exit the loop.
Repeat the process.
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The shooting method
EG = π2/8 ≈ 1.234
V(x) for x > L or x < −L: I used V = 1000 so we can see the effect in
the figure
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Numerical integration

We have the desired solution, but it still needs to be normalized
according to:

∞∫
−∞

dx |ψ(x)|2 = 1

The f (xi) ≡ fi are known

Numerical solutions of Schrödinger’s equation applied to atomic physics Lucas Madeira 21 / 25



Numerical integration

Trapezoidal rule:∫ x2

x1

f (x)dx = h
[

1
2

f1 +
1
2

f2

]
+O(h3f ′′)

Applying it N − 1 times, for the intervals:
(x1, x2), (x2, x3), · · · , (xN−1, xN)∫ xN

x1

f (x)dx = h
[

1
2

f1 + f2 + f3 + · · ·+ fN−1 +
1
2

fN

]
+O

(
(xN − x1)

3f ′′

N2

)
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Numerical integration

Quadratic interpolation between the points

Simpson’s rule:∫ x3

x1

f (x)dx = h
[

1
3

f1 +
4
3

f2 +
1
3

f3

]
+O

(
h5f (4)

)
Using it repeatedly:∫ xN

x1

f (x)dx = h
[

1
3

f1 +
4
3

f2 +
2
3

f3 +
4
3

f4 + · · ·+ 2
3

fN−2 +
4
3

fN−1 +
1
3

fN

]
+O

(
(xN − x1)

5f (4)

N4

)
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The shooting method
∆x = 10−3; tolerance for ∆E of 10−3

V(x) for x > L or x < −L: I used V = 106

EG = π2/8 ≈ 1.234; I obtained E =1.231
Normalized ground state (be careful: do not forget to throw away ψ
outside the well!)
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Project
Using the shooting method, write a program that finds the solutions to
Schrödinger’s equation for the infinite square well. Your program should
receive as input the parity of the desired solution.

Find the ground state energy and wave function.
Investigate the precision of the result by varying the parameters of your
program.
Let ψA be the analytical and ψNum be the numerical solution. Plot
|ψNum − ψA| × x. Do they agree?

Find the first four eigenenergies and compare them with the analytical
results. What is the relative error?

Extra
1) Pick your favorite quantum mechanics textbook and compare the analytical
solutions for the infinite and finite square well potentials. What changes
would you make to consider this other potential in your code?
2) What are examples of other potentials that can be solved with this method?
How about some potentials that cannot? Why?
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