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Program

March 14 - Lecture 1 - The shooting method (1/2)
Strategy
Units
Numerical differentiation and integration
Infinite square well

March 15 - Lecture 2 - The shooting method (2/2)
Code development
Q&A

March 16 - Lecture 3 - Low-energy scattering (1/2)
Phase shifts
Scattering length
Spherical well

March 17 - Lecture 4 - Low-energy scattering (2/2)
Code development
Q&A
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Scattering theory
A particle, initially far away from the region where it will be scattered,
moving toward the scattering center → initial state is a plane-wave
The final state is the result of the action of a scattering potential on the
particle → at large distances it is an outgoing spherical wave
The potential has a finite range
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Partial waves expansion

V(r) is finite-ranged
One more restriction: that it is spherically symmetric, V(r) = V(r)

ψk(r, θ)
large r−−−→ N

[
eikz +

eikr

r
f (θ)

]

In the scattering region (0 < r < R):

− ℏ2

2m
∇2ψ + V(r)ψ = Eψ

E = ℏ2k2/2m
We propose a separable solution of the form:

ψ(r, θ, ϕ) = Al(r)Ym
l (θ, ϕ)

∇2 in spherical coordinates
We perform a change of variables Al(r) = ul(r)/r
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Partial waves expansion

Reduced radial wave function(
d2

dr2 + k2 − 2mV(r)
ℏ2 − l(l + 1)

r2

)
ul(r) = 0

At the origin, Al(r) = ul(r)/r is finite → ul(0) = 0

Outside (r > R), the solution is of the form:

ul(r) = c′lrjl(kr) + c′′l rnl(kr)
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Partial waves expansion
Free particle (plane-wave)

eikr cos θ =

∞∑
l=0

il(2l + 1)jl(kr)Pl(cos θ)

Asymptotic behavior

eikr cos θ large r−−−→
∞∑

l=0

(2l + 1)
2ikr

[
eikr − (−1)le−ikr]Pl(cos θ)

Motivated by this, we write the solution for every r > R as

ψ(r, θ) = N
∞∑

l=0

il(2l + 1)
ul(r)

r
Pl(cos θ)

Asymptotic behavior

ψ(r, θ)
large r−−−→ N

∞∑
l=0

(2l + 1)
ikr

[
c(1)l eikr − (−1)lc(2)l e−ikr

]
Pl(cos θ)
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Partial waves expansion
Compare both asymptotic behaviors

eikr cos θ large r−−−→
∞∑

l=0

(2l + 1)
2ikr

[
eikr − (−1)le−ikr]Pl(cos θ)

ψ(r, θ)
large r−−−→ N

∞∑
l=0

(2l + 1)
ikr

[
c(1)l eikr − (−1)lc(2)l e−ikr

]
Pl(cos θ)

If c(1)l = c(2)l = 1/2, then both equations are the same
Not surprising since this particular choice makes the radial function the
same as the one for a free particle

If c(1)l ̸= c(2)l , then scattering certainly took place
Ratio of the two coefficients: the proportion of outgoing to incoming
spherical waves
Quantify the impact of the scattering potential on the free particle
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Phase shifts

Introduce a new quantity:

c(1)l

c(2)l

= e2iδl(k)

δl(k) are called phase shifts

Now we can attribute physical meaning to the partial wave scattering
amplitude and the phase shifts

Conservation of the probability during scattering tells us that, at large
distances, the only thing that can change is the phase of the wave
function (with respect to the incident wave)

The difference between the phases is the phase shift δl(k)
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Phase shifts

When there is no scattering, V = 0 and δl(k) = 0

For a potential V ̸= 0, the radial solution for r < R will depend on the
details of the potential

However, we have a free particle solution outside the range R of the
potential, V(r > R) = 0

Hence, what happens inside the range of the potential determines the
phase shift observed outside of it

The advantage of this formulation → whole process in terms of a real
quantity δl(k)
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Phase shifts
Attractive potential: δ0(k) > 0
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Phase shifts
Repulsive potential: δ0(k) < 0

Numerical solutions of Schrödinger’s equation applied to atomic physics Lucas Madeira 12 / 38



The low-energy limit and the scattering length

Reduced radial equation for the l-th partial wave(
− ℏ2

2m
d2

dr2 + V(r) +
ℏ2

2m
l(l + 1)

r2 − E
)

ul(r) = 0

Effective potential

Veff(r) = V(r) +
ℏ2

2m
l(l + 1)

r2

Low-energy (E ≈ 0): particle cannot overcome the barrier
l = 0: there is no barrier → s-wave

A0(r) =
u0(r)

r
= eiδ0(cos δ0j0(kr)− sin δ0n0(kr)) = eiδ0

[
1
kr

sin(kr + δ0)

]
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The low-energy limit and the scattering length
Schrödinger’s equation for the radial solution becomes very simple in
this situation
Outside the range of the potential, V(r > R) = 0
There is no centrifugal barrier since l = 0
Low-energy scattering: k ≈ 0

u′′0(r) = 0

The solution is a line:
u0(r) = c(r − a)

Logarithmic derivative
(

d
dx ln f (x) = f ′(x)

f (x)

)
:

u′0(r)
u0(r)

=
1

r − a

Match the logarithmic derivative of eiδ0
[1

k sin(kr + δ0)
]
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The low-energy limit and the scattering length

k cot(kr + δ0) =
1

r − a

In the limit k → 0, and r = 0

lim
k→0

k cot δ0(k) = −1
a

Summary

Previously, we reduced the scattering problem to computing the phase
shifts δl(k)

Low-energy phenomena: l = 0 dominates

In the zero-energy limit a single number encodes all the information we
need about scattering
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The scattering length

As its name suggests: dimension of length

It may differ by orders of magnitude from the range R of the potential

Geometrical interpretation:

u0(r > R) = 1 − r
a

Intercept of the outside wave function
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The scattering length

u0(r > R) = 1 − r
a

An attractive potential that is not strong enough to produce a bound state
a < 0 because we need to extrapolate the radial function to negative
values to intercept the r-axis
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The scattering length

u0(r > R) = 1 − r
a

A stronger attractive potential produces a bound state
a > 0
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The scattering length

u0(r > R) = 1 − r
a

For a repulsive potential, we always have a > 0
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Two-body scattering
So far, we considered only a single particle being scattered by a
finite-ranged potential V(r) located at r = 0
With a few modifications: two particles interacting through a pairwise
potential V(r)

H = − ℏ2

2m1
∇2

r1
− ℏ2

2m2
∇2

r2
+ V(r1 − r2)

We define the coordinates:

R =
m1r1 + m2r2

M
r = r1 − r2

M = m1 + m2
H = HCM + Hr

HCM = − ℏ2

2M
∇2

R and Hr = − ℏ2

2mr
∇2

r + V(r)

mr = m1m2/(m1 + m2) is the reduced mass
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Spherically symmetric finite well

Analytical results

V(r) =

−v0
ℏ2

mrR2 , for r < R,

0, for r > R

v0 > 0 is a dimensionless parameter related to the depth of the well
For a relatively shallow or short-ranged potential, we may only observe
continuum scattering states: E > 0
Increasing its depth or range may make it strong enough to produce a
bound state: E < 0
Let us start with the E > 0 case
We need to solve the s-wave (l = 0) equation:(

d2

dr2 − 2mr

ℏ2 V(r) +
2mr

ℏ2 E
)

u(r) = 0
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Spherically symmetric finite well

Explicitly:

u′′(r) +
(
k2

0 + k2) u(r) = 0 for r < R,

u′′(r) + k2u(r) = 0 for r > R

k2 ≡ 2mrE/ℏ2 and k2
0 ≡ 2v0/R2

In the region r < R, the solution may be written as:

u(r) = A sin

(√
k2 + k2

0 r
)
+ B cos

(√
k2 + k2

0 r
)

A(r) = u(r)/r → u(0) = 0 → B = 0
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Spherically symmetric finite well

u(r) =

A sin
(√

k2 + k2
0 r
)

for r < R,

cot δ0(k) sin(kr) + cos(kr) for r > R

The logarithmic derivatives must be equal[
u′(r)
u(r)

]
r=R−

=

[
u′(r)
u(r)

]
r=R+√

k2 + k2
0 cos

(√
k2 + k2

0 R
)

sin
(√

k2 + k2
0 R
) =

k cot δ0(k) cos(kR)− k sin(kR)
cot δ0(k) sin(kR) + cos(kR)

After some manipulations:

δ0(k) = −kR + arctan

k tan
(√

k2 + k2
0 R
)

√
k2 + k2

0
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Spherically symmetric finite well
To calculate the scattering length a, we need to take the k → 0 limit

lim
k→0

k cot δ0(k) = −1
a
+O(k2)

√
k2 + k2

0 cos
(√

k2 + k2
0 R
)

sin
(√

k2 + k2
0 R
) =

k cot δ0(k) cos(kR)− k sin(kR)
cot δ0(k) sin(kR) + cos(kR)

Rearrange the equation so that we have factors of k cot δ0(k)

cos(kR) = 1 +O(k2)

sin(kR) = kR +O(k3)

The result is: √
k2

0 cot

(√
k2

0 R
)

=
−1/a

−R/a + 1
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Spherically symmetric finite well

Solving for the scattering length:

a = R −
tan

(√
k2

0R
)

√
k2

0

= R

(
1 −

tan
(√

2v0
)

√
2v0

)

k2
0 = 2v0/R2
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Spherically symmetric finite well

a = R

(
1 −

tan
(√

2v0
)

√
2v0

)
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Spherically symmetric finite well

Bound states: E < 0

Repeat the same procedure or k = iκ → E = ℏ2k2/2mr = −ℏ2κ2/2mr

u(r) =

A′ sin
(√

k2
0 − κ2 r

)
for r < R,

B′e−κr for r > R

Match the logarithmic derivative[
u′(r)
u(r)

]
r=R−

=

[
u′(r)
u(r)

]
r=R+√

k2
0 − κ2 cos

(√
k2

0 − κ2 R
)

sin
(√

k2
0 − κ2 R

) =
−κe−κR

e−κR
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Spherically symmetric finite well
After some manipulations:

tan

(√
k2

0 − κ2 R
)
+

√
k2

0 − κ2

κ
= 0

Transcendental equation for the bound-state energies√
k2

0 − κ2/κ is always positive

Then tan
(√

k2
0 − κ2 R

)
must be negative if we want the equation to

have solution(s)
π

2
+ nπ <

√
k2

0 − κ2 R < π + nπ

n is an integer√
k2

0 − κ2 R is always positive → n = 0, 1, ...
The first bound state is n = 0

Numerical solutions of Schrödinger’s equation applied to atomic physics Lucas Madeira 28 / 38



Spherically symmetric finite well

The first bound state is n = 0
π

2R
<
√

k2
0 − κ2 <

π

R

k0 >
√

k2
0 − κ2

k0 =
√

2v0/R

v0 >
π2

8

There are no bound states if v0 is not above a certain threshold value
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a = R

(
1 −

tan
(√

2v0
)

√
2v0

)
√

2v0 = π/2 + nπ (n = 0, 1, 2, ...) → a diverges → potential admits an
additional bound state
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Summary

Schrödinger’s equation + spherically symmetric potential V(r)

Separable solution → radial equation for Al(r)

Change of variables: Al(r) = ul(r)/r(
d2

dr2 + k2 − 2mrV(r)
ℏ2 − l(l + 1)

r2

)
ul(r) = 0

Boundary condition: Al(r) = ul(r)/r → ul(0) = 0
Low-energy scattering

s-wave: l = 0
k → 0

d2u(r)
dr2 − 2mrV(r)

ℏ2 u(r) = 0

For r > R: V(r > R) = 0
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Numerical procedure

We want to compute the scattering length numerically

We need the reduced radial wave function u(r) inside the range of the
potential

d2u(r)
dr2 − 2mrV(r)

ℏ2 u(r) = 0

We can use the discretization procedure that we saw in the first lecture
E = 0: we do not have to determine the energy
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Review

First lecture
Taylor series:

u(r +∆r) = u(r) + (∆r)u′(r) +
(∆r)2

2
u′′(r) +

(∆r)3

6
u′′′(r) + · · ·

u(r −∆r) = u(r)− (∆r)u′(r) +
(∆r)2

2
u′′(r)− (∆r)3

6
u′′′(r) + · · ·

Their difference/sum:

du
dr

∣∣∣∣
r=ri

≈ ui+1 − ui−1

2∆r

d2u
dr2

∣∣∣∣
r=ri

≈ ui+1 − 2ui + ui−1

(∆r)2
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Numerical procedure

d2u(r)
dr2 − 2mrV(r)

ℏ2 u(r) = 0

Discretization:

ui+1 = 2ui − ui−1 +
2mr(∆r)2

ℏ2 V(ri)ui

We need two consecutive points to start the algorithm
u(0) = 0 → u0 = 0
u(∆r) =[some non-zero value] → u1 = 1

It is convenient to use dimensionless quantities
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Numerical procedure

Find the reduced wave function inside the range of the potential
Inputs

Number of points N or their spacing ∆r
Parameters of the potential: v0 and R

1 Set u0 = 0, u1 = 1, and i = 1
2 Compute ui+1:

ui+1 = 2ui − ui−1 +
2mr(∆r)2

ℏ2 V(ri)ui

3 If ri ⩾ R +∆r, stop. Else, increment i by one
4 Go to step 2
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Scattering length
Outside the range of the potential and k → 0

g0(r > R) = 1 − r
a

Logarithmic derivative:
g′0(r)
g0(r)

=
1

r − a
for r > R

Match with your numerical solution at r = R

u′num(R) =
du(r)

dr

∣∣∣∣
r=R

=
u(R +∆r)− u(R −∆r)

2∆r

Expression that relates the numerical solution and the scattering length:

a = R − 2∆r u(R)
u(R +∆r)− u(R −∆r)
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Project
Write a program that finds the solution to the zero-energy s-wave
Schrödinger’s equation for two particles interacting through an attractive
spherical well. The depth and range of the well are inputs

Find the reduced radial wave function

Use it to calculate the scattering length
Fix the range of the potential R = 1 (in our dimensionless units)

Find v0 such that a = ±1,±10 and |a| → ∞
Compare your results with the analytical expression:

a = R

(
1 −

tan
(√

2v0
)

√
2v0

)
Plot u(r) for 3 cases: a < 0, |a| → ∞, and a > 0. What is the difference
between them?

What are examples of other potentials that can be solved with this
method?
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Answer with 3 decimal places (you may need more!)

a/R v0

−1 0.679
−10 1.141
±∞ π2/8
10 1.342
1 π2/2
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