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Muscle & 
respiratory 
recordings

Neural 
recordings

Behavior: 
recording 

and analysis

Dynamical 
Systems models

The goal of our research is to shed light on the dynamical mechanisms 
involved in the perception and the generation of complex sounds 

and to study the brain and the peripheral system in this process.



Lecture 1
Introduction to nonlinear dynamics and excitable systems
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Lecture 2
Dynamical models for single neurons. Comparison with experimental data.

Lecture 3
The neuroethology perspective in neuroscience. 

Case of study: models of vocal production in birds.
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Dynamical Systems
Definition : set of variables that describe state of the system and 
a law that describes the evolution of the state variables with time 

how the state of the system in the next moment of time depends 
on the input and its state in the previous moment of time

Example: 
The Hodgkin-Huxley model 
(4-dimensional dynamical system) 
Its state is uniquely determined by 
the membrane potential, V , and the 
“gating variables” n, m, and h for 
persistent K+ and transient Na+ 
currents. 
The evolution law is given by a 
4-dimensional system of 
ordinary differential equations. Is this dynamical system nonlinear?



Nonlinear Dynamics
Mechanisms responsible for governing 

the temporal evolution of a system
Nonlinear rules

Let´s see…



Dynamical Systems

Differential equations

Maps where xn is a number between 0 and 1, which 
represents the ratio of existing population to 
the maximum possible population

Chaos!

Types of dynamical systems:

Logistic map



Phase portraits
The power of the dynamical systems approach to neuroscience (and to many other sciences) is that we 
can tell many things about a system without knowing all the details that govern the system evolution.



Neuron in an excitable mode

Phase portraits
Quiescent neuron whose 

membrane potential is resting

Stable equilibrium

Isn´t it amazing that we can reach such a 
conclusion without knowing the equations 

that describe the neuron’s dynamics?

We do not even know the number of 
variables needed to describe the neuron
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Pacemaker neuron

Phase portraits
Quiescent neuron whose 

membrane potential is resting

Stable equilibrium

Neuron in an excitable mode

Small perturbations (A) result in 
small excursions from the equilibrium 
(PSP, postsynaptic potential).

Larger perturbations (B), are 
amplified by the neuron’s intrinsic 
dynamics and result in the spike 
response.
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Excitable system



Pacemaker neuron

Phase portraits
Quiescent neuron whose 

membrane potential is resting

Stable equilibrium

Neuron in an excitable mode
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Pacemaker neuron

Phase portraits
Quiescent neuron whose 

membrane potential is resting

Stable equilibrium

Neuron in an excitable mode
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Equilibria and limit cycles can coexist, so a neuron can be switched from one mode to another by a transient input



Bifurcations

What is a bifurcation?

Qualitative changes



Pacemaker neuronQuiescent neuron whose 
membrane potential is resting

Stable equilibrium

Neuron in an excitable mode
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Bifurcations

If the dynamical system 
goes from (a) to (b),
is it going through a bifurcation?

Qualitative changes

This dynamical system contains (a)
The differences between 
(A) and (B) are the initial 

conditions.

No bifurcation!

There is not a 
qualitative change



Pacemaker neuronQuiescent neuron whose 
membrane potential is resting

Stable equilibrium

Neuron in an excitable mode
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Bifurcations

If the dynamical system 
goes from (b) to (c),
is it going through a 

bifurcation?

Let´s see…
(b) : stable fix point
(c) : unstable fix point and 
a limit cycle.

Bifurcation!

There is a 
qualitative change



Bifurcations

As the magnitude of the injected current slowly increases, the neurons bifurcate 
from resting (equilibrium) mode to tonic spiking (limit cycle) mode.

Stable equilibrium



Bifurcations
Equilibrium state leading to the transition from resting to periodic spiking behavior in neurons.

(codimension-1, i.e., 1 control parameter)

Saddle-node bifurcation

Depending on the 
initial conditions, 
the neuron may 

spike (or decay to 
the stable resting 
position) or burst

Bifurcation point The saddle and node colapse 
and annihilate each other.
Only the limit cycle survives



Bifurcations
Equilibrium state leading to the transition from resting to periodic spiking behavior in neurons.

(codimension-1, i.e., 1 control parameter)

Saddle-node bifurcation

Saddle-node on 
invariant circle 

bifurcation



Bifurcations
Saddle-node bifurcation Saddle-node on invariant circle bifurcation

Saddle-node on 
invariant circle 

bifurcation

Saddle-node ghost



Bifurcations
Equilibrium state leading to the transition from resting to periodic spiking behavior in neurons.

(codimension-1, i.e., 1 control parameter)

Subcritical Andronov-Hopf
bifurcation

Supercritical Andronov-Hopf
bifurcation

A small unstable limit cycle shrinks to a stable 
equilibrium and makes it lose stability 

The stable equilibrium loses stability and gives 
birth to a small-amplitude limit cycle attractor As the magnitude of the injected current increases, the amplitude of 

the limit cycle increases, and it becomes a full-size spiking limit cycle

The only stable state 
is the limit cycle



Bifurcations
Equilibrium state leading to the transition from resting to periodic spiking behavior in neurons.

(codimension-1, i.e., 1 control parameter)

Subcritical Andronov-Hopf
bifurcation

Supercritical Andronov-Hopf
bifurcation

A small unstable limit cycle shrinks to a stable 
equilibrium and makes it lose stability 

The stable equilibrium loses stability and gives 
birth to a small-amplitude limit cycle attractor

The only stable state 
is the limit cycle

Bi-stable

Mono-
stable



Bifurcations



Bifurcations



Building models

Another way is to determine what kind of bifurcations the neuron undergoes and how the 
bifurcations depend on neuromodulators and pharmacological blockers.

To make a model of a neuron: put the right kind of currents together and tune the 
parameters so that the model can fire spikes like the ones recorded.

First of all: you need neural recordings!
(from your own experiments or from a collaborator)

These approaches can be complementary.

Interdisciplinary work

Respect the different “ideologies”



The Hodgkin – Huxley model
Using pioneering experimental techniques of that time, Hodgkin and Huxley (1952) determined 
that the squid axon carries three major currents: 
• Voltage-gated persistent K+ current with four activation gates (resulting in the term n4 in the 

equation below, where n is the activation variable for K+); 
• Voltage-gated transient Na+ current with three activation gates and one inactivation gate (the 

term m3h below) 
• Ohmic leak current, IL, which is carried mostly by Cl- ions.



The Hodgkin – Huxley model

Values of shifted Nernst equilibrium potentials (so that Vrest = 0) :

Values of maximal conductances:

Value of membrane capacitance: 

Using pioneering experimental techniques of that time, Hodgkin and Huxley (1952) determined 
not only the equations but measured all the parameters values :



The Hodgkin – Huxley model
The functions α(V ) and β(V ) describe the transition rates between open and closed states of the channels

The notation presented before was used only for historical reasons.
It is more convenient to use:

where



The Hodgkin –
Huxley model



To be continued…


