Lecture 2
 Dynamical models for single neurons. Measuring experimental neural data. Ana Amador

Lab. Sistemas Dinámicos - Universidad de Buenos Aires \& INFINA - CONICET, ARGENTINA

The Hodgkin - Huxley model

Using pioneering experimental techniques of that time, Hodgkin and Huxley (1952) determined not only the equations but measured all the parameters values

$$
\begin{aligned}
C \dot{V} & =I-\overbrace{\bar{g}_{\mathrm{K}} n^{4}\left(V-E_{\mathrm{K}}\right)}^{I_{\mathrm{K}}}-\overbrace{\bar{g}_{\mathrm{Na}} m^{3} h\left(V-E_{\mathrm{Na}}\right)}^{I_{\mathrm{Na}}}-\overbrace{g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)}^{I_{\mathrm{L}}} \\
\dot{n} & =\alpha_{n}(V)(1-n)-\beta_{n}(V) n \\
\dot{m} & =\alpha_{m}(V)(1-m)-\beta_{m}(V) m \\
\dot{h} & =\alpha_{h}(V)(1-h)-\beta_{h}(V) h
\end{aligned}
$$

Values of shifted Nernst equilibrium potentials (so that $V_{\text {rest }}=0$) :
$E_{\mathrm{K}}=-12 \mathrm{mV}, \quad E_{\mathrm{Na}}=120 \mathrm{mV}, \quad E_{\mathrm{L}}=10.6 \mathrm{mV} ;$
Values of maximal conductances:
$\bar{g}_{\mathrm{K}}=36 \mathrm{mS} / \mathrm{cm}^{2}, \quad \bar{g}_{\mathrm{Na}}=120 \mathrm{mS} / \mathrm{cm}^{2}$,

$$
g_{\mathrm{L}}=0.3 \mathrm{mS} / \mathrm{cm}^{2} .
$$

$$
\begin{aligned}
& \alpha_{n}(V)=0.01 \frac{10-V}{\exp \left(\frac{10-V}{10}\right)-1} \\
& \beta_{n}(V)=0.125 \exp \left(\frac{-V}{80}\right) \\
& \alpha_{m}(V)=0.1 \frac{25-V}{\exp \left(\frac{25-V}{10}\right)-1} \\
& \beta_{m}(V)=4 \exp \left(\frac{-V}{18}\right) \\
& \alpha_{h}(V)=0.07 \exp \left(\frac{-V}{20}\right) \\
& \beta_{h}(V)=\frac{1}{\exp \left(\frac{30-V}{10}\right)+1} .
\end{aligned}
$$

Value of membrane capacitance:
4-dimensional system: difficult to study the dynamics
$C=1 \mu \mathrm{~F} / \mathrm{cm}^{2}$

The Hodgkin - Huxley model, simplified

Many interesting features of single neuron dynamics can be illustrated using two-dimensional systems

$$
\begin{aligned}
& C \dot{V}=I-\overbrace{g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)}^{\text {leak } I_{\mathrm{L}}}-\overbrace{g_{\mathrm{Na}} m_{\infty}(V)\left(V-E_{\mathrm{Na}}\right)}^{\text {instantaneous } I_{\mathrm{Na}, \mathrm{p}}}-\overbrace{g_{\mathrm{K}(n)\left(V-E_{\mathrm{K}}\right)}}^{I_{\mathrm{K}}}, \\
& \dot{n}=\left(n_{\infty}(V)-n\right) / \tau(V), \\
& \text { Definition: } x \text {-Nullcline: } \\
& \text { curve such that } \frac{d x}{d t}=\dot{x}=0
\end{aligned}
$$

The V-nullcline is given by the equation $I-g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)-g_{\mathrm{Na}} m_{\infty}(V)\left(V-E_{\mathrm{Na}}\right)-g_{\mathrm{K}} n\left(V-E_{\mathrm{K}}\right)=0$
which has the solution

$$
n=\frac{I-g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)-g_{\mathrm{Na}} m_{\infty}(V)\left(V-E_{\mathrm{Na}}\right)}{g_{\mathrm{K}}\left(V-E_{\mathrm{K}}\right)}
$$

The equation $n_{\infty}(V)-n=0 \quad$ defines the n-nullcline $n=n_{\infty}(V)$

The Hodgkin - Huxley model, simplified

Nullclines:

$$
n=\frac{I-g_{\mathrm{L}}\left(V-E_{\mathrm{L}}\right)-g_{\mathrm{Na}} m_{\infty}(V)\left(V-E_{\mathrm{Na}}\right)}{g_{\mathrm{K}}\left(V-E_{\mathrm{K}}\right)}
$$

$$
n=n_{\infty}(V)
$$

FitzHugh-Nagumo model

The system

$$
\begin{aligned}
\dot{V} & =V(a-V)(V-1)-w+I, \\
\dot{w} & =b V-c w,
\end{aligned}
$$

imitates generation of action potentials by Hodgkin-Huxley-type models having cubic (N-shaped) nullclines (similar to the Figure in the previous slide)

- Parameter I mimics the injected current. For the sake of simplicity, we set $I=0$
- Parameter a describes the shape of the cubic parabola $V(a-V)(V-1)$

The nullclines of the FitzHugh-Nagumo are:

$$
\begin{array}{ll}
w=V(a-V)(V-1)+I & \\
w=b / c V & \\
w \text {-nullcline }) \\
(w \text {-nullcline })
\end{array}
$$

FitzHugh-Nagumo model

The nullclines of the FitzHugh-Nagumo are:

$$
\begin{array}{ll}
w=V(a-V)(V-1)+I & (V \text {-nullcline }) \\
w=b / c V & (w \text {-nullcline })
\end{array}
$$

Spike and bi-stability

Recording neural activity

Now that we have a model for spikes, we want to record real spikes!

Or is it the other way around?

We first make recording of spikes and propose to use dynamical models of spikes to make sense of our recordings
(we are just measuring few spikes out of many, many more!)

Measuring electrical activity in the brain

Measuring electrical activity in the brain

es NeuroNexus
Micromachined silicon probes

Value: around USD 1000

Measuring electrical activity in the brain

In-house manufactured tetrodes

- Diameter 0.0005" (12.7 $\mu \mathrm{m}$)
- Tungsten, HML coating
- Impedances: 500 k to 3 MOhm

Measuring electrical activity in the brain

- ultra-lightweight - customizable
- compact - low-cost

Connector

- Tetrodes manufactured in-house
- Diameter 0.0005" (12.7 $\mu \mathrm{m}$)
- Tungsten, HML coating
- Impedances:

500k to 3 MOhm

Lightweight recording device

- ultra-lightweight
- compact
customizable
- low-cost

Connector

- Pitch 90 TPI = $282 \mu \mathrm{~m} / \mathrm{turn}$
(manual step $\approx 25 \mu \mathrm{~m}$)
- Mass <1g

- 15 mm tall, $13 \mathrm{~mm}^{2}$ footprint
- Tetrode geometry easy to modify.

- Tetrodes manufactured in-house
- Diameter 0.0005" (12.7 $\mu \mathrm{m}$)
- Tungsten, HML coating
- Impedances:

500k to 3 MOhm
$\approx 100 \mu \mathrm{~m}$

- 4-tetrode array (16ch) + Ref
- $2 x 2$ geometry

Neural recordings

Raw data

Low-pass filter

High-pass filter

Neural recordings

Multi-unit recordings

Neural recordings

Different neurons may present different spike shapes

Neural recordings

Spike sorting: PCA analysis

Neural recordings

Neural activity in response to the Bird's Own Song (BOS)

Neural recordings: LFP and MUA

MUA (Multi-Unit Activity)

LFP
(Local Field Potential)

Neural recordings: LFP and MUA

MUA

| |
| :--- | :--- | :--- |

Neural recordings: LFP and MUA

Rhythms in the Brain?

Rhythms in the Brain

nature
 neuroscience

Speech perception exhibits rhythmicity

When presented with an acoustic stimulus
(speech or modulated white noise) the auditory cortex tracks the amplitude modulation of the input.

The speech rhythm enhances perception

Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning
M. Florencia Assaneo ${ }^{\text {© }}$ 1,7*, Pablo Ripollés ${ }^{1,7}$, Joan Orpella ${ }^{2,3,4,7}$, Wy Ming Lin ${ }^{1}$,

Ruth de Diego-Balaguer ${ }^{2,3,4,5,8}$ and David Poeppel ${ }^{1,6,8}$

 b

$\times 10^{-3}$

Rhythms in the Speech

Speech production exhibits rhythmicity

Speech rhythms and their neural foundations

David Poeppel $\mathbb{C}^{1,2 凶}$ and M. Florencia Assaneo $\odot^{2,3}$

Rhythms in the Brain of a Songbird?

```
nature
neuroscience
```

ARTICLES https://doi.org/10.1038/s41593-019-0353-z

Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning
M. Florencia Assaneo ${ }^{\text {(1,7* }}$, Pablo Ripollés ${ }^{1,7}$, Joan Orpella ${ }^{2,3,4,7}$, Wy Ming Lin ${ }^{1}$, Ruth de Diego-Balaguer ${ }^{2,3,4,5,8}$ and David Poeppel ${ }^{1,6,8}$
a
 Q Hanworlatanda b

Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning
M. Florencia Assaneo ${ }^{\text {(1,7* }}$, Pablo Ripollés ${ }^{1,7}$, Joan Orpella ${ }^{2,3,4,7}$, Wy Ming Lin ${ }^{1}$, Ruth de Diego-Balaguer ${ }^{2,3,4,5,8}$ and David Poeppel ${ }^{1,6,8}$ a
 Q IWH Whithandman b

Rhythms in the Brain of a Songbird !

LFP oscillations are phase-locked (synchronization)

Spontaneous synchronization to speech reveals neural mechanisms facilitating language learning
M. Florencia Assaneo ${ }^{\text {© }}{ }^{1,7 \star}$, Pablo Ripollés ${ }^{17,7}$, Joan Orpella ${ }^{2,3,4,7}$, Wy Ming Lin ${ }^{1}$, Ruth de Diego-Balaguer ${ }^{2,3,4,5,8}$ and David Poeppel ${ }^{1,6,8}$
a

 b

Rhythms in the Brain of a Songbird !

LFP oscillations are phase-locked (synchronization)

LFP and coding of behavior (birdsong)

LFP oscillations occur at the song syllabic rate

LFP vs. MUA vs. SUA

Extracellular

 recordings in canaries while hearing song (BOS)

LFP vs. MUA vs. SUA

Extracellular recordings in canaries while hearing song (BOS)

Gracias por su atención!

Collaborators

\diamond Gabriel B. Mindlin (UBA, CONICET)
» Daniel Margoliash (Univ. of Chicago)

PhD Students

\diamond Cecilia T. Herbert (UBA, Biology)
४ Javier N. Lassa Ortiz (UBA, Biology)
\diamond Fiamma L. Leites (UBA, Biology)
Thanks for the support
\diamond National Institute of Health (NIH, USA)
Postdocs
\triangleleft Santiago Boari (UBA, Physics)
\triangleleft University of Buenos Aires (Argentina)
\triangleleft National Council for Science and Technology (CONICET, Argentina) \triangleleft Agencia Nac. de Promoción Científica y Tecnológica (ANPCyT, Argentina)

CONICET

