The Electron-Ion Collider A world-wide unique collider to unravel the mysteries of visible matter

Elke-Caroline Aschenauer (BNL)

Jefferson Lab

What is the EIC Facility

What is the EIC:

A high luminosity $(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ polarized electron proton / ion collider with $\sqrt{s_{ep}} = 28 - 140 \text{ GeV}$

What is special:

EIC is the ONLY world-wide new collider in foreseeable future. Allows to remain at frontier of Accelerator S&T.

factor 100 to 1000 higher luminosity as HERA both electrons and protons / light nuclei polarized, nuclear beams: d to U Fixed Target Facilities i.e.: at minimum > 2 decades increase in kinematic coverage in x and Q²

State of the art general purpose collider detector

Science Program: An EIC can uniquely address three profound questions about nucleons — neutrons and protons — and how they are assembled to form the nuclei of atoms:

Why do we need different probes

Complementarity

QCD has two concepts which lay its foundation factorization and universality

To tests these concepts and separate interaction dependent phenomena from intrinsic nuclear properties different complementary probes are critical Probes: high precision data from ep, pp, e+e-

hard-scattering : calculable in QCD PDFs and Hadronization: need to be determined experimentaly

E.C. Aschenauer

Hadron-Hadron:

Different Processes

- probe has complex structure
- no simple access to parton kinematics:

 $\eta \rightarrow x$; $p_t^2 \rightarrow Q^2 \rightarrow x-Q^2$ strongly correlated

- Gluons can be accessed directly
 - \rightarrow qg & gg
 - gluon fragmentation

- Photon induced process
 - no simple access to parton kinematics:

 $\eta \rightarrow x$; $M^2 \rightarrow Q^2$ can only be

- varied by VM
- access to initial state

- Point-like probe → resolution
- High precision & access to partonic kinematics through scattered lepton

 $\rightarrow x_{B}, Q^{2}$

- initial and final state effects can be cleanly disentangled
 - inclusive measurements of Structure functions only sensitive to initial state

What is needed to address the EIC Physics

The Golden Process:

Deep Inelastic Scattering (DIS):

- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics of physics processes

- s: center-of-mass energy squared
- Q²: resolution power
- x: the fraction of the nucleon's momentum carried by the struck quark (0<x<1)
- y: inelasticity

large kinematic coverage: → center-of-mass energy \sqrt{s} : 20 – 140 GeV → access to x and Q² over a wide range

5

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even proton?

EIC: The Path to Imaging Quarks and Gluons

There are many reasons why one wants to have a 3d picture of nucleons and nuclei collective effects are one of them.

7

Obtaining a full picture is definitely an other one

E.C. Aschenauer

Unpolarized Flavor Structure

Proton

Nucleus

E.C. Aschenauer

pb/GeV²

Proton structure important for QGP in small systems

H. Mäntysaari & B. Schenke arXiv:1607.01711

2+1d-Imaging in coordinate space

High precision imaging at EIC at low and high x Golden channels:

DVCS

10

10

10

 Q^2 (GeV²)

Spatial Gluon Distribution from d //dt

Diffractive vector meson production: $e + Au \rightarrow e' + Au' + J/\psi$, ϕ , ρ Momentum transfer $t = |\mathbf{p}_{Au} - \mathbf{p}_{Au'}|^2$ conjugate to b_T

Coherent cross-section sensitive to average

- Steepness and the position of first dip depends on density profile, non-linear effects and correlations H.Mantysaari, B.Schenke PRC 101 (2020) 015203
- Experimentally very challenging

Incoherent events are by themselves interesting

- Different |t| regions of the spectrum sensitive to different sizes
- Energy dependence of incoherent spectra with differential binning in |t| could tell us about growth of nuclei and evolution of fluctuations

Recent results from Mantysaari, et al. (arXiv:2303.04866) show different regions of spectrum to be ensitive to different kinds of shape deformations e.g Uranium

Studying non-linear QCD effects

- Does the rise of $g(x,Q^2)$ get tamed ?
- Important to understand the initial condition for heavy ion collisions
- Scattering of electrons off nuclei:

 $\alpha r C(r \Omega^2)$

- Probes interact over distances $L \sim (2m_N x)^{-1}$
- □ For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon
- Probe interacts *coherently* with all nucleons

$$Q_s^2 \sim \frac{\alpha_s x O(x, Q_s)}{\pi R_A^2}$$
 HERA: $xG \sim \frac{1}{x^{0.3}}$ A dependence: $xG_A \sim A$

Nuclear "Oomph" Factor Pocket Formula:

$$(Q_s^A)^2 \approx c Q_0^2 \left(\frac{A}{x}\right)^{1/3}$$

Enhancement of Q_s with A \Rightarrow non-linear QCD regime reached at significantly lower \sqrt{s} in nuclei than in proton

RHIC: Probing Non-linear Effects in QCD

Forward rapidities at STAR provide an absolutely unique opportunity to have very high gluon densities \rightarrow proton – Au collisions

combined with an unambiguous observable

counting experiment of Di-hadrons (jets)

in pp and pA

A dependence: at low p_T more suppression in pAu than pAI in comparison to the pp

x dependence: at high p_T (large x) no suppression in pA

can EIC discover a new state of matter

tral to

EIC has the unique opportunity to have very high gluon densities → electron – lead collisions combined with an observable counting experiment of Di-hadrons (jets) in ep and eA Saturation:

Disappearance of backward hadron (jet) in eA

EIC can map the transition from a linear to a non-linear QCD regime \rightarrow evolution of Q_s with x

Jet Physics at the EIC

NLO

Jets have several properties which will make them important tools for realizing the EIC physics program

The importance of jet probes was reflected in the EIC Yellow Report where they touched on nearly every major physics topic (Nucl. Phys. A, Vol 1026, 122447)

Excellent proxies for the underlying parton kinematics

Showers probe QCD from hard interaction to hadronization scale within the same event - can explore dynamics at different time (angular) scales

Precision tools exist to probe these shower properties - substructure

Global properties and parton structure of hadrons

Multi-dimensional imaging of nucleons, nuclei and mesons

The nucleus: a laboratory for QCD

Understanding hadronization

-2 -1.5

0.5 0

-0.5

 $\log_{10}(\tau_0)$

The EIC Accelerator

EIC Machine Parameters

Double Ring Design Based on Existing RHIC Facilities

Hadron Storage Ring: 40, 100 - 275 GeV	Electron Storage Ring: 5 - 18 GeV	
RHIC Ring and Injector Complex: p to Pb	9 MW Synchrotron Radiation	
1A Beam Current	Large Beam Current - 2.5 A	
10 ns bunch spacing and 1160 bunches		
Light ion beams (p, d, 3 He) polarized (L,T) > 70%	Polarized electron beam > 70%	
Nuclear beams: d to U	Electron Rapid Cycling Synchrotron	
Requires Strong Cooling: new concept \rightarrow CEC	Spin Transparent Due to High Periodicity	
One High Luminosity Interaction Region(s)		
25 model Crossing Angle with Crock Covities		

25 mrad Crossing Angle with Crab Cavities

Accelerator Science and Technology – Ongoing EIC R&D

Why a Crossing Angle

- Brings focusing magnets close to IP
 - → high luminosity
- Beam separation without separation dipoles
 - reduced synchrotron radiation background
- But significant loss of luminosity

Solution: Crab crossing

- Head-on collision geometry is restored by rotating the bunches before colliding ("crab crossing")
- Bunch rotation ("crabbing") is accomplished by transversely deflecting RF resonators ("crab cavities")
- Actual collision point moves laterally during bunch interaction

Completely new concept for a collider

The EIC Detector

EIC Experimental program preparation

Year-long EIC User Group driven EIC Yellow Report activity (December 2019 - February 2021

22

 Science Requirements and Detector Concepts for the EIC arXiv:2103.05419 & Nucl. Phys. A 1026 (2022) 122447

			(PP)
BNL	and TJNAF Jointly Leading Efforts Towards Expe	rimental Program	and the second s
2020	Call for Expressions of Interest (EOI) https://www.bnl.gov/eic/EOI.php	May 2020	S
	EOI Responses Submitted	November 2020	*Domoino ongoin
	Assessment of EOI Responses	On-going ^{&}	*Remains ongoin formal agreement place – it original
2021	Call for Collaboration Proposals for Detectors https://www.bnl.gov/eic/CFC.php	March 2021	confirmation that assumed for the l was in range.
	BNL/TJNAF Proposal Evaluation Committee	Spring 2021	
	Collaboration Proposals for Detectors Submitted	December 2021	
2022	Decision on Project Detector – baseline "ECCE"	March 2022	
	Process to consolidate ECCE & ATHENA to the EIC Project Detector	Spring 2022	
	ePIC Collaboration* Formed – 160 institutions	July 2022	
2023	ePIC Charter ratified & elected Leadership Team	February 2023	
	Resources Review Board Meeting	April 2023	-
	ePIC Detector remaining technology choices made	April 2023	

g until ts are in ly led to in-kind level EIC detector

EIC YELLOW REPORT Volume I: Executive Summary

E.C. Aschenauer

World-Wide Interest in EIC Physics

The EIC Users Group: EICUG.ORG

Formed 2016, Current Status

1387 collaborators, 36 countries, 271 institutions (Experimentalists ~860, Theory ~360, Acc. Sci. 160)

- EICUG has continuously grown since its formation (400@01/2016), notably after CD-0 and site-selection
- Growth will continue as EIC project moves into construction

Location of Institutions

Next EIC-UG Meeting in person July 2023 in Warsaw Poland

Would love to welcome more collaborators from Brazil and Southamerica

E.C. Aschenauer

The ePIC Collaboration

Collaboration fully formed

- December 2022: Collaboration Charter ratified
- February 14th \$\varpis\$ 2023: Spokespeople elected Spokesperson: John Lajoie (Iowa) Deputy – Spokesperson: Silvia Dalla Torre (INFN Trieste)
- Collaboration Council fully formed Chair: Ernst Sichtermann (LBNL) Vice-Chair: Bernd Surrow (Temple Univ.)

hunn

The ePIC Detector

ePIC Tracking Detectors

Monolithic Active Pixel Silicon Tracker:

- 1 single technology: 65-nm MAPS
 - $O(10 \ \mu m)$ pitch, <20 mW/cm²
 - Developed for ALICE ITS3
- Silicon VERTEX (3 layers)
- First layer @ R ~ 4 cm
- Material: 0.05% X/X_0 / layer
- Silicon BARREL (2 layers)
- Material: 0.55% X/X_0 / layer
- F & B Silicon DISKs (5 in Front and Back)
- Material: 0.24% X/X₀ / layer

PGD Barrel

5 Si Barrel layers

Multi Pattern Gas DetectorS:

- Cylindrical microMEGAS
 - → Additional space point for pattern recognition / redundancy
 - → Ongoing geometry optimization
- µRWELL planar layer behind hpDIRC
 - → Impact point and direction for the ring seeding of hpDIRC
 - → Additional space point for pattern recognition / redundancy
 - \rightarrow Not be required if imaging calorimeter is used

Particle ID

- In general, need to separate:
 - > Electrons from photons $\rightarrow 4\pi$ coverage in tracking
 - ➢ Electrons from charged hadrons → mostly provided by calorimetry & tracking
 - > Charged pions, kaons and protons from each other on track level \rightarrow Cherenkov detectors
 - Cherenkov detectors, complemented by other technologies at lower momenta Time-of-flight or dE/dx

Need more than one technology to cover the entire momentum ranges at different rapidities

Rapidity $\pi/K/p$ and $\pi0/\gamma$ Min pT (E) e/h -3.5 - -1.07 GeV/c18 GeV/c 100 MeV/c -1.0 - 1.08-10 GeV/c 8 GeV/c 100 MeV/c 1.0 - 3.550 GeV/c20 GeV/c100 MeV/c

ePIC Particle Identification Detectors

We have 23 different detector technologies in the ePIC detector

- Let would be intractable if all have different readout electronics
 - the goal is to minimize the number of different ASICs and use common readout solutions
 Global Timing Unit (GTU)

Streaming Readout Architecture

- Triggerless streaming architecture gives much more flexibility to do physics
- Rates quoted are at output of each stage
- \Box Integrate AI/ML as close as possible to subdetectors \rightarrow cognizant Detector

Interaction Region Layout

Far-forward physics at EIC

Far-Forward Ancillary Detector Integration

Technologies defined

- Silicon: AC-LGAD & MAPS
- Zero Degree Calorimeter:
 - ECAL (PbWO4)
 - HCAL (PbSi + PbScint)

ECAL PbW0,

pbSi

Detector	Angular accept. [mrad]	p _T coverage
ZDC @ ~30m	$\theta < 5.5 (\eta > 6)$	p _T <1.3 GeV
Roman Pots	$0^{*} < \theta < 5.0 \ (\eta > 6)$	*Low p _T (t) cutoff (beam optics)
Off-Momentum Detectors	$0.< \theta < 5.0 \ (\eta > 6)$	Low-rigidity particles from nuclear breakups
B0 forward spectrometer	$5.5 < \theta < 20.0$ (4.6< $\eta < 5.9$)	High p _T (t)

With these requirements, the rejection power is found to be not enough to reach the three minimum positions.

Beam pipe design and material critical to vetoing power

Vetoing Incoherent Events

Veto.1:

no neutron in ZDC

Veto.2:

Veto1 + no proton in Roman Pots Veto.3:

Veto2 + no proton in off-momentum detector Veto.4:

Veto3 + no proton in B0 Veto.5:

Veto4 + no anything in preshower Veto.6:

Veto5 + no photon *E>50MeV* in ZDC Veto.7:

Veto6 + no activities

 $(|\eta| < 4.0 \& p_T > 100 \text{ MeV/c } \& E > 50 \text{ MeV})$ other than e- and J/ψ in the main detector

Far-Backward Detectors

Luminosity Detector and Low Q² Tagger

IP magnets, Lumi & low-Q² detectors

fully simulated in GEANT including all

beam effects and CAD layout

Luminosity Detector Concept:

Use Bremsstrahlung $ep \rightarrow ep\gamma$ as reference cross section Goals for Luminosity Measurement:

- Integrated luminosity with precision $\delta L/L < 1\%$
- Measurement of relative luminosity: physics-asymmetry/10 → ~10⁻⁴ - 10⁻⁵

Combine

pair spectrometer \rightarrow high precision with

zero degree photon calorimeter

→ fast feedback for collider

Technology:

Electromagnetic calorimetry with Si-tracking

Low Q²⁻Tagger:

Purpose:

Detection of scatter electron for Q² < 0.1 GeV² Critical for calibration of Lumi-detector Beam divergence and energy spread impact performance Technology:

Electromagnetic calorimetry with Si-tracking

strong synergy with luminosity detector

The EIC Project

EIC Critical Decision Plan						
CD-0/Site Selection	December 2019 √					
CD-1	June 2021 √					
CD-3a	January 2024					
CD-2	January 2025					
CD-3	April 2025					
CD-4a early finish	April 2031					
CD-4a	April 2032					
CD-4 early finish	April 2032					
CD-4	April 2034					

Project Funding Profile

Inflation Reduction Act funding of \$138.24M is a game changer and mitigates risk of slower than optimum ramp of new funding to the \$150M/year needed.
 Possibility of significant package of long lead procurement items (CD-3A) helping to mitigate risks including procurement, supply chain, inflation and schedule.
 RHIC will shut down in June 2025 and significant RHIC Operations funding is redirected to EIC construction.

Take Away Message

Why is now the time to built EIC?

"all stars align":

- theory developments will allow to obtain the answers to the big questions discussed
- detector technologies allow for a collider detector with high resolution, wide acceptance and particle identification

BUT MOST IMPORTANTLY

- accelerator technologies allow to built a collider with
 - high luminosity
 - highly polarized electron and light hadron beams
 - a wide range in center of mass energies
 - hadron beams with highest A
 - demanding acceptance requirements can be realized in IR design

Let's get to work and built the EIC

Jobs:

BNL: https://jobs.bnl.gov/search-jobs/eic?orglds=3437&kt=1 JLab: https://www.jlab.org/recruiting Science: https://www.bnl.gov/eic/

Engineers, Designers, Technicians,
 Administrators, Experimentalists, Theorists,
 Accelerator Physicists,

EIC

The EIC: A Unique Collider

collide different beam species: ep & eA

- → consequences for beam backgrounds
 - → hadron beam backgrounds,
 - i.e. beam gas events
 - → synchrotron radiation

asymmetric beam energies

- boosted kinematics
 - \rightarrow high activity at high $|\eta|$

Small bunch spacing: ~10 ns

crossing angle: 25mrad

wide range in center of mass energies→ factor 6

both beams are polarized ~70% \rightarrow stat uncertainty: ~ 1/(P_1P_2 (/L dt)^{1/2}) collide the same beam species: pp, pA, AA

- → beam backgrounds
 - → hadron beam backgrounds,
 - i.e. beam gas events, high pile up

symmetric beam energies

- \rightarrow kinematics is not boosted
 - → most activity at midrapidity

moderate bunch spacing: 25 ns

no significant crossing angle yet (150 mrad now)

LHC limited range in center of mass energies
→ factor 2
RHIC wide range in center of mass energies :

→ factor 26 in AA and 8 in pp

no beam polarization \rightarrow stat uncertainty: ~1/(/L dt)^{1/2}

Differences impact detector acceptance and possible detector technologies

EIC Project Detector R&D Program & In-Kind in-kind contributions from Italy/INFN, France/IRFU, France/IN2P3, UK/STFC, etc.

2023 <u>https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY23</u>													
Project:	eRD101	eRD102	eRD103	eRD104	eRD105	eRD106	eRD107	eRD108	eRD109	eRD110	eRD111	eRD112	eRD113
Title:	mRICH	dRICH	hpDIRC	Silicon Service reduction	SciGlass	Forward ECal	Forward HCal	Cylindrical MPGD	ASIC/Electronics	Photosensors	Si- Vertex	AC- LGAD	Si-Sensor Development and Characterization
Contact:	X. He (GSU), M.Contalbrigo (U. Ferrara)	E. Cisbani (INFN-RM1), M.Contalbrigo (U. Ferrara), A. Vossen (Duke)	G. Kalicy (CUA), J. Schwiening (GSI)	L. Gonella (B'ham)	T. Horn and .L. Pegg (CUA)	H.Z. Huang (UCLA), O. Tsai (UCLA)	Friederike Bock (ORNL)	K. Gnanvo (UVA)	Fernando Barbosa (JLab)	Y. Ilieva (SC), C. Zorn (JLab), J. Xie (ANL), A. Kiselev (BNL), Pietro Antonioli (INFN)	Nicole Apadula (LBNL)	Zh. Ye (UIC)	Grzegorz Deptuch (BNL)
Proposal:	v1 (pdf)	v1 (pdf)	v1 (pdf), v2 (pdf)	v1 (PDF) v2 (pdf)	v1 (pdf)	v1 (pdf)	v1 (pdf), v2 (pdf)	v1 (pdf)	v1 (pdf), v2 (pdf), v3 (pdf)	v1 (pdf)	v1 (pdf) v2 (pdf)	v1 (pdf)	v1 (pdf) v2 (pdf)
INFN- Ferrara, Romal, Glasgow INFN-Ferrara Glasgow INFN-Ferrara Glasgow INFN-Ferrara Glasgow INFN-Ferrara Glasgow INFN-Ferrara Glasgow INFN-Ferrara Graduation CCNU Strong synergies with CERN CERN – EIC R&D Day November 2021 https://indico.cern.ch/event/1063927/													
• M	MAPS: ALICE-3 – ITS-3 development												

- PID: LHC-b and ALICE-3
- Photon-sensors: LAPPDs with LHC-b
- MPGD: long-term CERN R&D program RD51
 - DAQ: strong developments on streaming DAQs for all LHC experiments
 - At/ML and high-perform

44

What do we know: Mass of the Proton, Pion, Kaon

Visible world: mainly made of light quarks – its mass emerges from quark-gluon interactions.

Proton

Quark structure: uud Mass ~ 940 MeV (~1 GeV) Most of mass generated by dynamics.

Gluon rise discovered by HERA e-p

Fraction of overall proton momentum carried by q,g

Flux Return layout

Requirement for fringe field: <10 Gauss at forward and backward side</p>

and at RCS location

- Challenges detector design not symmetric
 - \rightarrow critical that forces get balanced
- Consequences on design:
- backward HCal moved as far back as possible add both sPHENIX flux return doors behind bHCal
- forward HCal need to have first tungsten/Sc and then Steel/Sc
- add additional steel around barrel HCal

366667E-0

Solenoidal Magnet - MARCO

Large-scale superconducting detector magnets have a limited worldwide vendor supply and carry known technical, cost and schedule risk during the construction phase.

→ A "known" LLP candidate

Magnet status:

- 3T Detector solenoid preliminary design report
- Incremental (30%) Design and Safety Review
- DPAP closeout report led to reduced field (< 3 T)</p>
- Contract for 60% Design Review
- 60% design team formation and kick off meeting
- Mid-Project Progress meeting (@BNL, hybrid meeting)
- Point design adjusted to stretch goal of 2 T (operation at 1.7 T)
- 60% Design and safety Review
- 90% Design contract in place
- Found qualified vendor willing to make conductor

Magnet planning:

- RFI on the street
- 90% Design completion and review
- (90% design completion is 100% final design for "Vendor Design-Build" procurement). P6: Milestone FDR date 21 November 2023
- → Magnet is on track to be ready for procurement at CD-3A date

June 2021 December 2021 February 2022 March 2022 April 2022 May 3, 2022 June 28, 2022 August 10, 2022 October 18, 2022 December 2022 January 2023

February 2023

September 2023

E.C. Aschenauer

.

What is new/special for a EIC GPD

Roman Pots

Off-momentum detector

E.C. Aschenauer

50

adius

Istance

Background/Radiation

Important to note:

- Iow multiplicity per event: < 10 tracks</p>
- η > 2: avg. hadron track momenta @ 141 GeV: ~20 GeV
- > No pileup from collisions 500 kHz @ 10^{34} cm⁻²s⁻¹ \rightarrow coll. every 200 bunches
- > radiation environment much less harsh than LHC \rightarrow factor 100 less

The HERA and KEK experience show that having backgrounds under control is crucial for the EIC detector performance

- There are several background/radiation sources :
 - primary collisions
 - beam-gas induced
 - synchrotron radiation

Synchrotron Radiation:

- Origin: quads and bending magnet upstream of IP
- Tails in electron bunches: can produce hard radiation
- Studied using Synrad3D

E.C. Aschenauer

51

Complementarity for 1st-IR & 2nd-IR

Since CD-1 we made significant progress in the preliminary design for the 2nd IR with a focus on complementarity

	1 st IR (IP-6)	2 nd IR (IP-8)				
Geometry:	ring inside to outside	ring outside to inside				
	tunnel and assembly hall are larger	tunnel and assembly hall are smaller				
	Tunnel: \(\int 7m +/- 140m)	Tunnel: \bigotimes 6.3m to 60m then 5.3m				
Crossing Angle:	25 mrad	35 mrad secondary focus				
	different blind spots					
		detectors and acceptances otance of central detector				
Luminosity:	more luminosity at lower E _{CM}					
(Autor and A		let focusing FDD vs. FDF ar forward p _T acceptance				
Experiment:	1.5 T	Tesla or 3 Tesla				
	different sub	odetector technologies				
52		E.C. Aschenauer				

Progress – Interaction Region 2nd IR (IP-8)

1st IR (IP-6)

IR Highlights and Challenges

- □ High Luminosity \rightarrow High current (~ 2.5 A)
- High number of bunches (1160, ~10 ns separation)
 - Avoid parasitic collisions at IR
 - Crossing angle
 - Both focusing elements close to IP
- **Small** β^* values (h: 80/7.2 cm, e:45/5.6 cm)
 - Strong final focus magnets close to IR
 - Aperture: challenging magnet designs
- Polarization
 - Lattice constraints to enable polarized beams
 - Polarized hadrons / electons
 - Polarimetry (local and global)
 - Spin rotators & Snakes
 - electrons: Frequent on-energy bunch replacements Experimental detector
 - Forward detectors
 - Experimental solenoid & compensation

- The same highlights and challenges as IP-6
 Different: pre-conceptual design with 35mr crossing angle and secondary focus for science complementary checks.
- □ Further study needed for the feasibility of the IR magnets → Nb3Sn magnets are being evaluated as an option.

2nd focus enables:

enhanced low P_T acceptance, DVCS on nuclei, Light ion tagging, Diffraction, improved Gluon imaging by detection of (A-1) nuclei

2ndDetector: Complementary is Key

What do we want from "Complementary"

Cross-checking important results (obvious!)

- Many examples of wrong turns in history of nuclear and particle physics.
- Independent cross checks (detector, community, analysis tools) are essential for timely verifications and corrections

Cross Calibration

- Combining data gave well beyond the √2 statistical improvement …
- Different dominating H1, ZEUS systematics...
- Effectively use H1 electrons with ZEUS hadrons ... not all optimal solutions have to be in one detector...

Technology Redundancy

- ... by applying different detector technologies and philosophies to similar physics aims
 - mitigates technology risk vs. unforeseen backgrounds
 - differently optimizes precision and systematics

Different primary physics focuses

... EIC has unusually broad physics program (from exclusive single particle production to high multiplicity eA or γ A with complex nuclear fragmentation)

- Impossible to optimize for the full program in a single detector.
- Impact on IR design

