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γp final states

• Light vector mesons: ρ, ω e ϕ and excited states.

• This process does not have a hard scale, i.e., Q2 is small.

• Exclusive production: the target does not break.
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Kinematics

W 2 = (P + q)2 , t = (P ′ − P)2 = −|∆|2 , x =
M2

X + Q2

W 2 + Q2 .

t–differential cross section
dσγp→Vp

dt
(W , t) =

1
16π

∣∣∣Aγp→Vp(W , t)
∣∣∣2 .
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The dipole model

The product of the subprocesses gives us the total amplitude

Aγp→Vp = 2i
ˆ

d2r
ˆ 1

0
dβ

ˆ
d2bΨV (r , β)Ψγ(r , β)× e−i [b−(1−2β)r/2]·∆N(x , r, b) ,
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Dipole cross section

Optical theorem: the imaginary part of the elastic dipole amplitude (∆ ≈ 0)
with the dipole cross section

σqq̄ = ImAqq̄(x , r,∆ ≈ 0)

=

ˆ
d2b 2[1 − ReS(x , r, b)] .

We define the partial dipole scattering amplitude

dσqq̄

d2b
= 2[1 − ReS(x , r, b)] = 2N(x , r, b) .

Then we work with the b–dependent dipole cross section.
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Dipole cross section fits

Two main considerations are taken:

• Color transparency: r → 0.

• Saturation: r ≫ 0.

[Cepila, Nemchik, Krelina, Pasechnik, EPJ C 79, 495 (2019)]

Discrepancy at large r → light vector meson opportunity.
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bSat model

bSat model was fitted to HERA F2 data with Q2 > 0.25 GeV2 [Kowalski and
Teaney Phys. Rev. D 68, 114005, 2003]

N(x , r, b) = 1 − exp

(
− π2

2Nc
r2αS(µ

2)xg(x , µ2)T (b)

)
,

Takes into account some lnQ2 contributions.

Here we use the PDF CT14LO for the gluon distribution, with scale
µ2 = 4/r2 + µ2

0, and µ2
0 = 1.17 GeV2) [Kowalski, Motyka and Watt, Phys. Rev. D 74

074016, 2006 ].

The b profile used is: rho

T (b) =
1

2πBG

e−b2/2BG

with BG = 4.25 GeV2 fitted to J/ψ electroproduction.
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bCGC model

bCGC model was fitted to HERA F2 data with Q2 > 0.75 GeV2 [Rezaeian and

Schmidt, Phys. Rev. D 88, 074016 (2013)].

It interpolates solutions to the Balitsky-Fadin-Kuraev-Lipatov (BFKL) and the
Balitsky-Kovchegov (BK) equations:

N(x , r, b) =

N0(
r Qs
2 )2[γs+(1/(ηΛY )) ln(2/rQs )] , rQs ≤ 2

1 − e−A ln2(B r Qs ) , rQs > 2
,

in which Y = ln(1/x), and

Qs ≡ Qs(x , b) =
(x0

x

)Λ/2
[
exp

(
− b2

2BCGC

)]1/(2γs )

,

is the saturation scale with a dependence in the impact parameter with
BCGC = 5.5 GeV−2 fitted to J/ψ electroproduction.
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Photon wave function Ψ
(µ,µ̄)
γT,L

The photon wave function can be calculated perturbatively Ψ
(µ,µ̄)
γT,L . In terms of

the light-cone variables we have

Ψ(µ,µ̄)
γT,L

(r , β;Q2) =

√
Ncαem

2π
Zqχ

µ†
q ÔT ,Lχ̃

µ
q̄K0(ϵr) ,

where ϵ2 = β(1 − β)Q2 +m2
q and

ÔT = mq
−→σ · −→e γ + i(1 − 2β)(−→σ · −→n )(−→e γ ·

−→
∇ r ) + (−→n ×−→e γ)

−→
∇ r ,

ÔL = 2Qβ(1 − β)−→σ · −→n , −→σ = (σx , σy , σz),
−→
∇ r ≡ ∂/∂−→r .

Nikolaev and Zakharov, Z. Phys. C49, 607 (1991).
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Meson wave function

The helicity dependent meson wavefunctions can be written in terms of the
scalar wavefunction ϕT ,L(β, ζ) [Forshaw and Sandapen, Phys. Rev. Lett. 109, 081601

(2012)].

Longitudinally polarized mesons:

ΨV ,L

h,h̄
(β, r) =

√
1
4π
δh,−h̄

1
MVβ(1 − β)

[β(1 − β)M2
V +m2

q − ∂r/r + ∂2
r ]ϕL(β, r).

Transversely polarized mesons

Ψ
V ,T (γ=±)

h,h̄
(β, r) = ±

√
1
4π

√
2

β(1 − β)

× [ie±iθr (βδh±,h̄∓ − (1 − β)δh∓,h̄±)∂r +mqδh±,h̄± ]ϕT (β, r) .

Normalization condition ∑
h,h̄

ˆ
d2rdβ | Ψλ

h,h̄ |2= 1 .

11



Holographic meson wave function

There is a correspondence between string states in anti-de Sitter space (AdS)
and conformal field theories (CFT) in Minkowski spacetime.

Assuming that the correspondence holds for QCD and using a semi-classical
approach to AdS [Brodsky, Teramond, Phys.Rev.Lett. 102], one has

ϕ(β, ζ, φ) =
Φ(ζ)√
2πζ

f (β)e iLφ

in which ζ =
√
β(1 − β)r and f (β) ∼

√
β(1 − β)

The function Φ(ζ) satisfies a (fully relativistic) Schrödinger type equation(
− d2

dζ2 − 1 − 4L2

4ζ2 + U(ζ)

)
Φ(ζ) = M2Φ(ζ)

where U(ζ) is the effective confining potential.
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The soft-wall model

The soft-wall potential is given by

U(ζ) = κ4ζ2 + 2κ2(J − 1) .

From which we extract the eigenvalues of the previous Schrödinger eq.

M2 = 4κ2(n +
J

2
+

L

2
) .

The dynamical part has an analytical solution

Φn,L(β, ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+L exp

(
−κ2ζ2

2

)
LL
n(κ

2ζ2) ,

where LL
n(κ

2ζ2) are the Laguerre polynomials. This approach enable us to
calculate the meson wave function not only for the fundamental state, but also
for excited ones.
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The κ parameter

For each family: κ = Mn=0/
√
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A varying κ is capable of describing the spectroscopy of ρ and ω and its excited
states for L = 0.
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Meson wave function

ρ, ω ground and excited state wave function, the latter with a node.
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Including the mass of the quarks

Using the ansatz proposed by Brodsky and Téramond, for massive quarks we
substitute the M for the invariant Mqq̄,

M2 =
k2
⊥

β(1 − β)
→ M2

qq̄ =
k2
⊥

β(1 − β)
+

m2
q

β
+

m2
q̄

1 − β
,

Then, the meson wave function modifies to

ϕn,L(β, ζ) ∼
√
β(1 − β)e

1
2κ2

(
m2
q
β

+
m2
q

1−β

)
ζ2e−

1
2κ2ζ2

LL
n(κ

2ζ2) .

Here, we consider mu,d = 0.14 GeV and ms = 0.35 GeV (not bare masses).
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Corrections

For the real part, from dispersion relations:

Aγp → Aγp

(
1 − i

πλ

2

)
, com λ =

∂ lnAγp

∂ ln(1/x)
.

The two gluons do not have the same x , we factor the skewedness correction
[Shuvaev, Golec-Biernat, Martin and Ryskin, Phys. Rev. D60, 014015 (1999)]:

Rg (λ) =
22λ+3
√
π

Γ(λ+ 5/2)
Γ(λ+ 4)

.
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Total cross section

Differential in t cross section is calculated

Aγp(x , t) = i

ˆ
d2r
ˆ 1

0
dβ

ˆ
d2bΨV (r , β)Ψγ(r , β)e−i [b−(1−2β)r/2]·∆ dσqq̄

d2b
.

To obtain the integrated cross section, is enough to use the limit of low t:

Aγp→Vp(W , t) ≈ e−Bs |t|/2Aγp→Vp(W , t ≈ 0) .

Bs is fitted to the data and give us back the exponential dependence for low t

[Forshaw, Sandapen and Shaw, Phys. Rev. D 69, 094013 (2004)]:

Bs = N

[
14.0

(
1GeV2

Q2 +M2
V

)0.2

+ 1

]
.

with N = 0.55 GeV−2.
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ρ electroproduction results
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Total cross section for ρ(1S) electroproduction as a function of W obtained by
using the holographic wave function, together with the bCGC and bsat dipole
models. On the left, from top to bottom, we have Q2 = 3.3, 6.6, 11.9, 19.5
and 35.6 GeV2 and on the right, from top to bottom, Q2 = 2.4, 3.7, 6.0, 8.3,
13.5 and 32.0 GeV2, respectively.
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ρ photoproduction results
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Total cross section for the ρ(1S) photoproduction as a function of the center of
mass energy W .
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t-dependent ρ electroproduction results
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The left panel shows three distinct values of Q2 (from top to bottom, Q2 =

3.3, 11.5 and 33.0 GeV2, respectively). The right panel presents the curves
obtained only with the bCGC model and compared to the H1 data for five
different Q2 values (from top to bottom, Q2 = 3.3, 6.6, 11.5, 17.4 and 33.0
GeV2, respectively).
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t dependent ρ photoproduction results
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Differential cross section of ρ(1S) photoproduction as a function of the
momentum transfer squared |t| obtained with the bCGC and bsat dipole
models for different values of W and compared to the corresponding data from
the CMS collaboration (left panel) and to those from the H1 collaboration
(right panel).
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ω results
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On the left panel, the total cross section is shown as a function of W for
Q2 = 0 GeV2 (darker curve) and Q2 = 7 GeV2. On the right panel, the
differential cross section is shown as a function of momentum transfer squared
|t| for W = 80 GeV in comparison to the ZEUS.
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ϕ results

100

101

102

0 25 50 75 100 125 150 175

γ∗p→ φ(1S)p
Q2=2.4GeV2

100

101

102

0 25 50 75 100 125 150 175

γ∗p→ φ(1S)p
Q2=2.4GeV2

σ
γ
∗ p
→
V
p
(n
b
)

W (GeV)

bCGC

Q2=13GeV2

σ
γ
∗ p
→
V
p
(n
b
)

W (GeV)

ZEUS

Q2=13GeV2

100

101

102

103

0 0.2 0.4 0.6 0.8

γ∗p→ φ(1S)p

W = 75GeV

100

101

102

103

0 0.2 0.4 0.6 0.8

γ∗p→ φ(1S)p

W = 75GeV

d
σ
γ
∗ p
→
V
p
/d
t
(n
b
/G

eV
2
)

|t| (GeV2)

bCGC

Q2=2.4GeV2

Q2=19.7GeV2

d
σ
γ
∗ p
→
V
p
/d
t
(n
b
/G

eV
2
)

|t| (GeV2)

ZEUS

Q2=2.4GeV2

Q2=19.7GeV2

Results for the ϕ(1S) electroproduction cross sections compared with the ZEUS
data. On the left panel, from top to bottom, Q2 = 2.4, 3.8, 6.5 and 13.0
GeV2. On the right panel, the differential cross section versus data points for
seven different values of Q2 (Q2 = 2.4, 3.6, 5.2, 6.9, 9.2, 12.6 and 19.7 GeV2).
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Predictions for the excited states
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Predictions for the total photoproduction cross section (on the left) and the
differential cross section (on the right) for ρ(2S), ω(2S) e ϕ(2S).
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Predictions for the ratio between excited and fundamental states
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We also make some predictions considering the ratio between the exclusive
production of excited states and fundamental ones for the total (left) and
differential (right) cross sections.

[Exclusive photo- and electroproduction of excited light vector mesons via holographic model.
Henkels, E. G. O., Pasechnik, Trebien, arXiv 2207.13756 (submitted to EPJ C )]
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Nuclear targets

In ultraperipheral collisions, the vector mesons can be produced coherently,
which is when the target remains intact. In instances, where the does not
remain intact, the production is incoherent.
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Coherent amplitude — Glauber–Gribov

Glauber model - only elastic scattering

Gribov correction: adds diffractive intermediate states
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Coherent cross section - Dipole model

Glauber–Gribov cross section with the dipole model for large nucleus:

σγA→VA =

ˆ
d2b

∣∣∣ ˆ dβd2rΨ†
VΨγ

[
1 − exp

(
−1

2
σqq̄(x , r)TA(b)

)] ∣∣∣2
The thickness function,

TA(b) =

ˆ +∞

−∞
dz ρA(b, z) ,

1
A

ˆ
d2b TA(b) = 1

is given by the z spatial coordinate integral of the Woods-Saxon distribution for
nuclear density[Woods and Saxon, Phys. Rev. 95, 577 (1954)]:

ρA(b, z) =
NA

1 + exp
[
r(b,z)−c

δ

] , r(b, z) =
√

b2 + z2 ,

The parameters for the Pb nuclei are c = 6.62 fm and δ = 0.546 fm, while NA

is a normalization term [Euteneuer, Friedrich, and Vogler, Nucl. Phys. A298, 452

(1978)]:.

The result of this change from p to A will be called quark shadowing.
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ρ nuclear photoproduction with Glauber–Gribov approach

The Glauber–Gribov approach with the dipole model is not good enough to
describe the available ρ(1S) photoproduction data.
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|qq̄g⟩ fluctuations

In the high energy limit, besides the |qq̄⟩, we need to consider that the photon
can split into higher states like |qq̄g⟩, |qq̄gg⟩, ..

[Kopeliovich, Schafer and Tarasov, Phys. Rev. D 62 054022, 2000]

The proton–dipole cross section takes these soft gluon radiations into account
effectively through the fit at LO.
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Coherence length

The qq̄ fluctuation lifetime, or the coherence length, in photoproduction, is
given by the photon energy and the vector meson mass:

lc =
2ω′

M2
V

, (1)

The color dipole model assumes that the coherence length is bigger than the
target radius (i.e., limit of infinite lifetime )

Vγ
ഥ𝐪

𝐪

For proton target, this is usually the case.

32



Coherence length

In nucleus target, the infinite lifetime approximation fails for higher Fock states.

Nemchik and Kopeliovich, arXiv:2211.16271, for J/ψ (smaller coherence length than

light vector meson.

So what we see is that higher Fock states contribute in the proton case but
maybe do not fully contribute in the nucleus case.

This implies a reduction of the γA cross section, an effect called gluon
shadowing.

Nemchik and Kopeliovich argue that the Balitsky-Kovchegov (BK) equation
considers that all Fock states are frozen during the propagation through the
nucleus, which results in a wrong shadowing. 33



Effective gluon shadowing

The effective gluon shadowing multiplies the proton dipole cross section

σqq̄ ⇒ σqq̄Rg (x , µ
2) .

For heavy vector mesons, we used the Rg from EPPS16 with µ = MV /2
[Henkels, E.G.O., Pasechnik, Trebien, Phys. Rev. D 102, 014024 (2020)].
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Light vector mesons: PROBLEM

EPPS and other nuclear distributions are extracted mainly from F2 data using
DGLAP evolution.

The evolution does not reach the light vector meson scale of ρ, ω, and ϕ states.

Also, the gluon shadowing theoretically calculated by Nemchik and Krelina
[Eur.Phys.J.Plus 135 (2020) 6, 444], with the same dipole formalism.

By considering only the QQ̄g fluctuation, their calculation only works for
higher Q2 scale.

We do not have shadowing for smaller scales and this is a PROBLEM.

SOLUTION: Extract the gluon shadowing from the nuclear DIS
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F2 calculations

RA =
FA

2

AF p
2

= Rg − hR2
g

h =

{
3αem

Nf∑
f=1

Z 2
f Re

ˆ
d2b

ˆ ∞

−∞
dz1

ˆ ∞

z1

dz2

ˆ 1

0
dβ

ˆ
d2r2

ˆ
d2r1ρ(b, z1)ρ(b, z2)

× σqq̄(r2, x)σqq̄(r1, x)Gqq̄(r2, z2; r1, z1)
{[
β2 + (1 − β)2

]
Φ1(ϵ, r2, λ)Φ1(ϵ, r1, λ)

+
[
m2

f + 4Q2β2(1 − β)2
]
Φ0(ϵ, r2, λ)Φ0(ϵ, r1, λ)

}}/{ˆ
d2r

ˆ 1

0
dβ2Ncαem

×
Nf∑
f=1

Z 2
f

[(
m2

f + 4Q2β2(1 − β)2
)
Φ2

0(ϵ, r , λ) +
(
β2(1 − β)2

)
Φ2

1(ϵ, r , λ)
]}

Φ0(ϵ, r , λ) =
1
4π

∞̂

0

dt
λ

sh(λt)
exp

[
− λϵ2r2

4
cth(λt)− t

]
,

Φ⃗1(ϵ, r , λ) =
ϵ2 r⃗

8π

∞̂

0

dt

[
λ

sh(λt)

]2

exp
[
− λϵ2r2

4
cth(λt)− t

]
.
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Green Function

Gqq̄(r⃗2, z2; r⃗1, z1) =
a2(β)

2πisin(ω∆z)
exp

{
i a2(β)

sin(ω∆z)

[
(r2

1 + r2
2 ) cos(ω ∆z)− 2 r⃗1 · r⃗2

]}
× exp

[
− i ϵ2 ∆z

2 ν β (1 − β)

]
,

where ∆z = z2 − z1, λ = 2 a2(β)/ϵ2, and ω = a2(β)
ν β(1−β)

are adjusted to the
data on the total photoabsorption cross section, diffractive proton dissociation
and shadowing in nuclear photoabsorption reaction [Kopeliovich, Schafer, and
Tarasov, Phys.Rev.D 62 (2000) 054022].

[Raufeisen, Tarasov, and Voskresenskaya, Eur.Phys.J.A 5 (1999) 173-182.] 37



SOLUTION: Extract the gluon shadowing from the nuclear DIS

For our fortune, luck is on our side, and there exists datapoints measured at a
low scale for F2 nuclear structure function in DIS.

Q2 = 0.15 GeV2

Data taken from the Fermilab E665 Collaboration, Z.Phys.C 67 (1995) 403-410.
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ρ nuclear photoproduction – with gluon shadowing – preliminary results
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Conclusion

• Light vector meson photoproduction is a process with small hard scales Q2.

• Available data of light vector meson photoproduction in γp collisions is
well described by the dipole model.

• The ratio between excited and ground states provides important
information about the meson wavefunction and the color dipole cross
section.

• In the nuclear target case, the shadowing is necessary and can be
extracted from F2 measurements.

• It looks like the few available nuclear datapoints on photoproduction are
well described by our calculation.
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Thank you!
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