
• 4 dimensional on-shell supergravity is the first nontrivial case (with propagating degrees
of freedom) and is composed of eaµ and ψµ.

• Supergravity (local supersymmetry) is of the type δeaµ = (kN/2)ε̄γaψµ + ..., δψµ =
(Dµε)/kN + ...

• The action for gravity in supergravity is the Einstein-Hilbert action in the vielbein-spin
connection formulation.

• The action for the gravitino is the Rarita-Schwinger action.

• The most useful formulation is the 1.5 order formalism: second order formalism, but
don’t vary ω(e,ψ) by the chain rule.

• For each supersymmetry we have a gravitino. The maximal supersymmetry in d = 4
is N = 8.

• Gauged supergravity is AdS supergravity, and is an extension by a gauge coupling
parameter of the ungauged models.

• Supergravity theories in higher dimensions can contain antisymmetric tensor fields.

• The maximal dimension for a supergravity theory is d=11, with a unique model com-
posed of eaµ,ψµ, Aµνρ.

References and further reading
The vielbein and spin connection formalism for general relativity is harder to find in

standard general relativity books, but one can find some information for instance in the
supergravity review [14]. An introduction to supergravity, but one which might be hard to
follow for the beginning student, is found in West [9] and Wess and Bagger [10]. A good
supergravity course, that starts at an introductory level and reaches quite far, is [14]. In this
chapter, I followed mostly [14] (you can find more details in sections 1.2-1.6 of the reference).
A good and complete recent book is [15].

Exercises, Chapter 4

1) Check that

ωab
µ (e) =

1

2
eaν(∂µe

b
ν − ∂νe

b
µ)−

1

2
ebν(∂µe

a
ν − ∂νe

a
µ)−

1

2
eaρebσ(∂ρecσ − ∂σecρ)e

c
µ (4.47)

satisfies the no-torsion (vielbein) constraint, T a
µν = 2D[µeaν] = 0.

2) Find ωab
µ (e,ψ)− ωab

µ (e) in the second order formalism for N = 1 supergravity.
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function rule” developed in [19]. To understand the meaning of extremal p-branes, one can
look at the rule for making an extremal solution non-extremal, found in [20].

Exercises, Chapter 6.

1) Check the transformation from Schwarzschild coordinates to Kruskal coordinates.

2) Verify that the Penrose diagram for an astrophysical black hole (from a collapsing
star) is the one in Fig.8b.

3) Consider the ingoing Eddington-Finkelstein coordinates v and r, with u defined in
(6.16). Show that the metric becomes

ds2 = −
(

1− 2MG

r

)

dv2 + 2dvdr + r2dΩ2
2. (6.88)

Similarly, consider the outgoing Eddington-Finkelstein coordinates u and r, with v defined
in (6.16). Show that now the metric becomes

ds2 = −
(

1− 2MG

r

)

du2 − 2dudr + r2dΩ2
2. (6.89)

4) Check that H = 1 + a/r7−p is a good harmonic function for a p-brane. Check that
r = 0 is an event horizon (it traps light).

5) The electric current of a point charge is jµ = Qdxµ

dτ δ
d−1(xµ(τ)). Write an expression

for the p+ 1−form current of a p-brane, jµ1...µp+1.

6) Prove that the change of coordinates

rD−3 = r̄D−3 + rD−3H (6.90)

takes the extremal black hole metric to

ds2 = −f(r̄)−2dt2 + f(r̄)
2

D−3 (dr̄2 + r̄2dΩ2
D−2). (6.91)
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Maldacena in [30], but the paper is not so easy to read. It was then made more concrete
first in [31] and then in the paper by Witten [32]. In particular, the state map and the
”experimental evidence” was found in [32]. The comparison is done with the spectrum of
10d IIB supergravity on AdS5 ×S5, found in [33]. This dimensional reduction is only at the
linear level. The full nonlinear reduction on S5 is not yet done. For the other 2 cases of
interest (discussed only in part III of this book) of AdS/CFT, AdS4 × S7 and AdS7 × S4,
the nonlinear reduction was done in [34] (though it is not totally complete) for AdS4 × S7

and in [35, 36] (completely) for the AdS7 × S4 case.

Exercises, Chapter 10.

1) The metric for an ”M2 brane” solution of d = 11 supergravity is given by

ds2 = H−2/3(d!x3)
2 +H+1/3(dr2 + r2dΩ2

7); H = 1 +
25π2l6P
r6

. (10.34)

Check that the same limit taken for D3 branes gives M theory on AdS4 × S7 if lP → 0,
U ≡ r2/l3P fixed.

2) Check that the r → 0 limit of the D-p-brane metric gives AdSp+2×S8−p only for p = 3.

3) String corrections to the gravity action come about as gs corrections to terms already
present and α′ corrections appear generally as (α′R)n, with R the Ricci scalar, or some par-
ticular contraction of Riemann tensors. What then do α′ and gs string corrections correspond
to in SYM via AdS/CFT (in the N → ∞, λ = g2YMN fixed and large limit)?

4) Show that the time it takes a light ray to travel from a finite point in AdS to the
real boundary of space and back is finite, but the times it takes to reach the center of AdS
(x0 = ∞, or r = 0, or ρ = 0) is infinite. Try this in both Poincaré and global coordinates.

5) Consider a metric that interpolates in the radial coordinate r between AdS4 with
radius R and AdS2 × S2 with radius R/2. Is a scalar that is marginally stable in AdS4

(saturates the BF bound) also stable in AdS2 × S2? How about if the AdS2 × S2 radius is
R/3?

6) Write down towers of chiral primary operators corresponding to massive vectors in
AdS5, based on On (by acting with Q’s and Q̄’s), and predict the vector masses m2

kR
2.
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