
2) Consider the equation (! −m2)φ = 0 in the Poincaré patch of AdSd+1. Check that
near the boundary x0 = 0, the two independent solutions go like x2h±

0 , with

2h± =
d

2
±
√

d2

4
+m2R2. (11.70)

(so that 2h+ = ∆, the conformal dimension of the operator dual to φ).

3) Check that near x0 = 0, the massless scalar field φ =
∫

KBφ0, with

KB("x, x0; "x
′) = c

(

x0

x2
0 + |"x− "x′|2

)d

, (11.71)

goes to a constant, φ0. Then check that for the massive scalar case, replacing in KB the
power d by 2h+, we have φ → x2h−

0 φ0 near the boundary.

4) Check that the (1-loop) anomaly of R-currents is proportional to N2 at leading order,
by doing the trace over indices in the diagram.

5) Write down the classical equations of motion for the 5 dimensional Chern-Simons
action for Aa

µ.

6) Consider a scalar field φ in AdS5 supergravity, with action

S =

∫

d5x
√
−g

[

1

2
(∂µφ)

2 +
1

2
m2φ2 + λ

φ3

3

]

. (11.72)

Is the 4-point function of operators O sourced by φ, 〈O(x1)...O(x4)〉, zero or nonzero, and
why?
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• The classical on-shell supergravity action in AdS space has divergences near the bound-
ary that correspond to UV divergences in the field theory, so need to be regularized
and renormalized by adding counterterms to the action.

• The one-point function is given by the normalizable mode φ(2∆−d) from the expansion
near the boundary, which is linearly independent in the near-boundary expansion, but
is dependent on the non-normalizable mode φ(0) in an exact solution (there exists a
unique regular solution in Euclidean AdS).

• Higher n-point functions can be derived from further differentiations of the exact mode
φ(2∆−d), viewed as a function of φ(0).

• In the near-boundary expansion, we generically have an expansion in z2, and the
coefficients Φ(2k) with 2k < 2∆− d are algebraically defined in terms of Φ(0).

• In the holographic renormalization method, it is crucial to perform all calculations
at a finite distance ε from the boundary. We integrate only down to ε, and write
counterterms in terms of fields on a boundary at ε.

References and further reading
For more details on the method of holographic renormalization, see the review [93]. The

method was first used in [94] where the holographic Weyl anomaly was calculated (we will
mention this anomaly next chapter).

Exercises, Chapter 22.

1) Calculate the asymptotic expansion (perturbative solution) for a gauge field (with
action

∫ √
gF 2

µν/4) in AdSd+1, for d > 3, as a function of boundary values.

2) Do the same for AdS4. What changes?

3) Calculate the one-point function (operator VEV) for a scalar with ∆ = d/2 + 2.

4) Calculate the exact solution for a scalar with ∆ = d/2 + 2, and from it, find φ(4) as a
function of φ(0).

5) How are the 3-point function calculations affected by the addition of the counterterm
action (22.30)?

6) Do the Fourier transform from (22.41) to (22.42) and find the explicit form for R1/x6.
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• Jet quenching, the energy loss of a heavy quark (”jet”) passing through the sQGP
medium, can be modelled by the energy loss of a string moving with constant v at the
boundary, and trailing behind all the way to the horizon. One finds a drag coefficient
ηD ∝

√
λT 2.

• One can calculate the jet quenching parameter q̂ from a Wilson loop with two long
lightlike sides of length L− and two short spacelike sides of length L, and AdS/CFT
gives q̂SYM ∝

√
λT 3.

• A chemical potential for the R-charge of N = 4 SYM corresponds to a constant source
for A0 on the boundary of AdS5, i.e. A → µdt as z → 0, and gives an electrically
charged solution in AdS, namely the Reissner-Nordstrom AdS black hole.

• The grand-canonical ensemble of constant µ is found from the usual AdS action for
supergravity, whereas the canonical ensemble for constant charge density is found by
adding an extra boundary term to the AdS action for the gauge field.

• Adding an external magnetic field in N = 4 SYM with respect to the R symmetry
group is done by adding a magnetic field in AdS. In AdS4, one simply adds magnetic
charge to the AdS black hole.

References and further reading
The prescription for AdS/CFT at finite temperature was done by Witten in [43]. The

calculation of the jet quenching parameter from a (partially) lightlike Wilson loop was orig-
inally done in [80]. More details about the drag on heavy quarks, jet quenching and N = 4
SYM plasmas in general and how they apply to heavy ion collisions can be found in [79].
The way to add magnetic field in AdS4 and more details on adding chemical potential can
be found in [76, 78]. In [77] it is described how to add magnetic field in AdS5.

Exercises, Chapter 15.

1) Parallel the calculation of the Schwarzschild black hole to show that the extremal
(Q = M) black hole has zero temperature.

2) Check that the rescaling plus the limit given in (15.36) gives the Witten background
for finite temperature AdS/CFT.

3) Take a near-horizon nonextremal D3-brane metric,

ds2 = α′
{

U2

R2
[−f(U)dt2 + d$y2] +R2 dU2

U2f(U)
+R2dΩ2

5

}

f(U) = 1− U4
0

U4
, (15.89)
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where U0 is fixed, U0 = πTR2 (T=temperature). Note that for f(U) = 1 we get the near-
horizon extremal D3 brane, i.e. AdS5 × S4. Check that a light ray travelling between the
boundary at U = ∞ and the horizon at U = U0 takes a finite time (for U0 = 0, it takes an
infinite time to reach U = 0).

4) Check that the rescaling

U = ρ · U0

R
; t =

τR

U0
; $y = $x

R2

U0
, (15.90)

where R =AdS radius, takes the above near-horizon nonextremal D3-brane metric to the
Witten finite T AdS/CFT metric.

5) Check that the temperature of the AdS-Reissner-Nordstrom solution (15.75) is given
by (15.77).

6) Calculate the grand-canonical thermodynamic potential (15.79) by calculating the
regularized on-shell action, subtracting the contribution of pure AdS space.

7) Check that for the magnetic solution with (15.82), the temperature is given by (15.86),
and the grad-canonical potential by (15.87).
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