# Azimuthal correlations in hadronic collisions from instabilities of the initial state

UNIVERSIDADE ESTADUAL DE CAMPINAS

Guillermo Gambini, Giorgio Torrieri, based on 1606.07865 (EPJA)



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equatior

Results

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

troduction

Elliptic flow Scaling of  $u_2$ 

The GLR-MQ evolution equation

Results

onclusions

2/51

1 Introduction
Elliptic flow
Scaling of  $\nu_2$ 

2 The GLR-MQ evolution equation

3 Results

## A disclaimer



I don't really believe what I will say here has much chance of being correct. It is an attempt to answer some questions which I do believe deserves answering, and is based on an attempt at answering them. and it gives a definite experimental signature at the EiC! if this is found III give many talks like this, if not III forget it!

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu$ 

evolution equatio

Results

## A very short detour into philosophy...



Science is done via two basic mechanisms...

Puzzle-solving within a paradigm using accepted assumptions to draw conclusions (Nowadays, just drop system into a ML/Bayesian code and wait!)

Paradigm shifts questioning the assumptions and trying

to look for new ones (Humans are still useful here!) Switching typically happens when the "weight of the puzzles" becomes too much and someone finds a set of assumptions that makes them go away

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introductio

Elliptic flow Scaling of  $\nu$ 

The GLR-MQ evolution equation

#### Result

## The paradigm in question



RHIC found the perfect fluid!

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

## Elliptic flow $\nu_2$ (Harmonic flow $\nu_n$ )

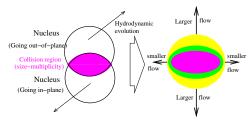


Figure: A geometrical view of elliptic flow.

Elliptic flow is parametrized as the n=2 Fourier component in the  $p_T$  distribution of the produced particles:

$$\frac{dN}{dp_T dy d\phi} = \frac{dN}{dp_T dy} \left[ 1 + \sum_{n=1}^{\infty} 2\nu_n(p_T) \cos(\phi - \phi_{0n}) \right]$$
(1)

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

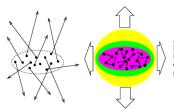
Introduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

esults





A "fluid" Particles continuously interact. Expansion determined by density gradient (shape)

#### Observable:

$$\frac{dN}{p_{T}dp_{T}dyd\phi} = \frac{dN}{p_{T}dp_{T}dy} \left[ 1 + 2v_{n}(p_{T}, y) \cos \left( n \left( \phi - \phi_{0} \left( n, p_{T}, y \right) \right) \right) \right]$$

"Collectivity" Same  $v_n$  appears in  $\forall$  n-particle correlations,  $\left\langle \frac{dN}{d\phi_1} \frac{dN}{d\phi_2} ... \right\rangle$ 

#### Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu_2$ 

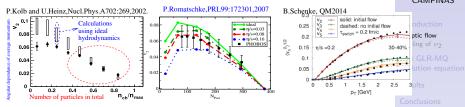
The GLR-MQ evolution equation

Results

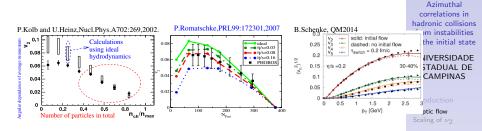
## Hydro works well

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS



Data points to a viscosity not much bigger than  $\eta/s=1/4\pi$ . "Lowest possible for a fluid", comparable to string theory prediction Led to a lot of theoretical development in relativistic fluid dynamics

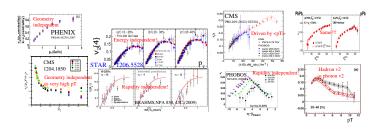


People like this description because...

It fits quite a lot of data with reasonable precision (but also a lot of parameters: EoS, transport, initial conditions,....

The interpretation is reasonable , connects to fundamental science consistently, people "expect it" in some limit

It's considered as a given. Details are now best sorted out via Bayesian fitting/ML



My issue is that scalings in energy, rapidity ans system size of  $v_n$  look suspiciously  $\underline{\text{simple}}$  compared to the Hydrodinamical picture.

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu$ 

evolution equation

Results

Buckingam's theorem (How to do hydro, circa 19th century, before ML!)

Any quantitative law of nature expressible as a formula

$$f(x_1, x_2, ..., x_n) = 0$$

can be expressed as a dimensionless formula

$$F(\pi_1, \pi_2, ..., \pi_{n-k}) = 0$$

where

$$\pi_i = \prod x_i^{\lambda_i} \quad , \quad \sum \lambda_i = 0$$

Widely applied within hydrodynamics in the 19th century: Knudsen's number, Reynolds number, Rayleigh's number, etc.

Since we are varying a whole slew of experimental  $(y, p_T, N_{part}, \sqrt{s}, A)$  And theoretical  $(T, \mu, \eta, s, \hat{q}, \tau_0, \tau_{life})$  parameters it would be nice to represent heavy ion observables this way

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

esults

- Approximately it  $\propto \epsilon$  since  $v_2(\epsilon = 0) = 0$  and  $\epsilon$  small and dimensionless
- Approximately it  $\propto c_s$  since it is sensitive to EoS,  $v_2(c_s = 0) = 0$  and  $c_s$  small, dimensionless
- It is maximum for ideal hydro. Since Kn small and dimensionless,  $v_2 \sim v_2^{ideal}(1-Kn)$ . The Knudsen number is  $Kn \sim \eta/(sTR)$ •  $v_2^{ideal} \sim v_2(\tau \to \infty) \times f(\tau_f/\tau_0)$ . f(...) a
- $au_f/ au_0 \sim (e_0/e_f)^{4\alpha} \sim (T_0/T_f)^{\alpha}$ , with  $\frac{1}{3} \Big|_{bjorken} < lpha < \frac{4}{3} \Big|_{hubble}$   $T_0/T_f \sim ((1/( au_0 T_f S))(dN/dy))^{1/3}$  For constant  $T_f$  Heiselberg-Levy scaling recovered

from instabilities of the initial state UNIVERSIDADE ESTADUAL DE CAMPINAS

Azimuthal

correlations in hadronic collisions

Introduction
Elliptic flow
Scaling of  $\nu_2$ 

The GLR-MQ

Results

Conclusion

12 / 51

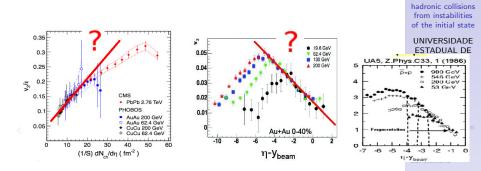
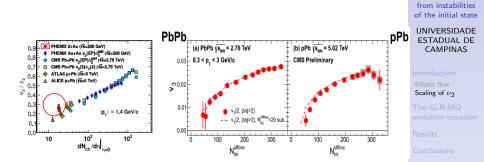


Figure: Elliptic flow  $\nu_2$  vs. rapidity [2,3].

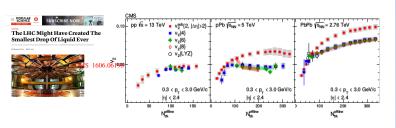
 $v_2$  response in region where temperature dramatically changes remarkably smooth, follows dN/dy exactly (as far as we can tell). EoS, $\eta/s$  shouldnt.

Azimuthal correlations in



size effects also remarkably absent, down to pp. Remember that hydro expansion around small Knudsen number,  $Kn \sim \eta/(R \times s \times T)$ . we should scan this, but we dont seem to!

Azimuthal correlations in hadronic collisions



Especially when you consider cumulants, "hydrodynamics" seems remarkably indepenent of number of constituents. Even if one does not consider mean free path, what about thermodynamic fluctuations?

Azimuthal correlations in hadronic collisions from instabilities of the initial state

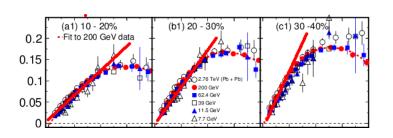
#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introductio

Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

(esults



Furthermore, rise in  $v_2$  seems entirely due to rise in  $\langle p_T \rangle$ !  $v_2(p_T)$  nearly constant

Azimuthal correlations in hadronic collisions from instabilities of the initial state

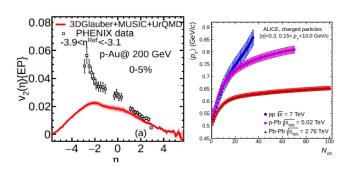
#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Scaling of  $\nu_2$ 

evolution equation

Results



In rapidity,  $v_2$  of small systems <u>above</u> hydro prediction! Perhaps limiting fragmentation together with  $p_T$  scaling with multiplicity could explain the trend. But this is not hydrodynamics,nor an explanation.

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Elliptic flow
Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

#### Cooper-Frye

$$\begin{split} v_2(\rho_T) &= \int d\phi \cos(2\phi) \left( E - \rho_T \left( \frac{dt}{dr} + \Delta \frac{dt}{dr} (\phi) \right) \right) e^{\left( -\frac{\gamma \left( E - \rho_T (u_T + \delta u_T (\phi)) \right)}{T} \right)} \\ &\simeq \int d\phi \cos^2(2\phi) \left[ \underbrace{e^{-\frac{\gamma \left( E - \rho_T u_T \right)}{T}}}_{=0} - \underbrace{\rho_T \Delta \frac{dt}{dr}}_{\epsilon \rho_T} + \underbrace{\frac{\gamma \delta u_T (\phi) \rho_T}{T}}_{\sim \underbrace{\frac{\delta v_T}{T} \rho_T \sim \epsilon \rho_T / T}} \right. \\ &+ \mathcal{O} \left( \epsilon^2, K_n \right) \right] \end{split}$$

As long as  $\frac{\delta v_T}{T}\sim \epsilon f(R,\sqrt{s} \text{ deviations} \sim p_T$  , more prominent at Ohigh  $p_T$ 

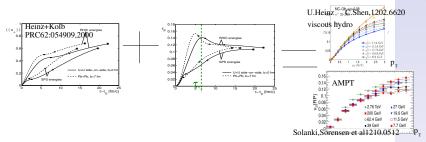
Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Scaling of  $u_2$ The GLR-MQ

Results



Putting everything together we have

$$v_n(p_T) \simeq \mathcal{O}\left(1\right) \epsilon_n \underbrace{F(p_T)}_{universal} , \qquad \langle v_n \rangle \sim \epsilon_n \underbrace{F(\langle p_T \rangle)}_{\langle p_T \rangle \sim \frac{1}{5} \frac{dN}{dy}}$$

For a non-linear theory such as hydrodynamics we do <u>not</u> expect matrix below to be sparse.

$$\begin{pmatrix} dN/dy \\ \langle p_T \rangle \\ v_n \end{pmatrix} = \underbrace{\begin{pmatrix} \dots \dots \dots \dots \\ \dots \dots \dots \dots \end{pmatrix}}_{\eta/s, c_s, \tau_\pi, \dots} \times \underbrace{\begin{pmatrix} T_{initial} \\ L \\ \epsilon_n \end{pmatrix}}_{\to N_{part}, A, \sqrt{s}}$$

So  $v_2(A, \sqrt{s}, N_{part}, y, ...)$  non-separable!

Analytical solutions (Hatta, Noronha, Xiao, GT) confirm this

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction
Elliptic flow
Scaling of  $\nu_2$ 

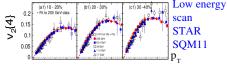
The GLR-MQ

Results

## Particle species dependence is also strange

Azimuthal correlations in hadronic collisions from instabilities of the initial state

NIVERSIDADE



Does this scaling hold by SPECIES?



 Λ-Λ  $(v_2(X)-v_2(\overline{X}))/v_2(X)$  (%)

√s<sub>NN</sub> (GeV)

STADUAL DE **CAMPINAS** aling of  $\nu_2$ 60

Note that a lot of these effects do not arise by particle species but only when all species are counted. But

$$v_2 = \frac{\sum_i v_{2i}(T, m) n_i(T, \mu)}{\sum_i n_i(T, \mu)}$$

Why would this cancellation occur?  $\mu$  and mindependent!

## Photon vs hadron $v_n$

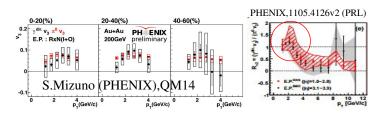


Figure: Photon  $\nu_3$  vs.  $p_T$  (red) and Proton  $\nu_3$  vs.  $p_T$  (black) [6]. Direct photon  $\nu_2$  similar! Why are they the same at low  $p_T$ ?

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction
Elliptic flow
Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

## All these puzzles have (satisfactory?) explanations within the "standard model"

photons contaminated by final-state decays, boosted by magnetic field based mechanisms (But why <u>same</u> as hadrons?

small systems origin of  $v_n$  in small, large systems different (CGC/antennae) but why small and large systems scale?

 $v_2(p_T)$  vs  $\sqrt{s}$  many effects cancel out

All these are plausible, but not so elegant!

Azimuthal correlations in hadronic collisions from instabilities of the initial state

UNIVERSIDADE ESTADUAL DE CAMPINAS

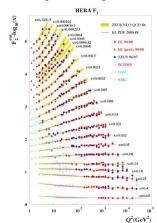
ntroduction

Elliptic flow Scaling of  $u_2$ 

The GLR-MQ evolution equation

esults

## What I find really funny!



<u>All</u> of these scalings <u>really</u> remind me of the scalings that imposed pQCD/partons over the then popular "bootstrap" models! no reason within boostrap for the scaling!

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

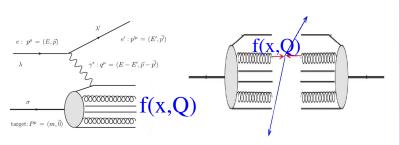
Elliptic flow
Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

## Parton distributions

Let's see Deep Inelastic Scattering



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Elliptic flow Scaling of  $u_2$ 

The GLR-MQ evolution equation

Results

Conclusions

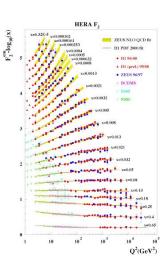
$$\frac{dN}{d^3p} = \int f(Q_1, x_1, \theta_1) f(Q_2, x_2, \theta_2) \sigma_{gg \to j}(xQ_1 - xQ_2, \theta_1 - \theta_2) D_{j \to i}(z) [xQ_1 - xQ_2]^2 dx_{1,2} dQ_{1,2} dz$$

The probability that the struck parton carries a fraction  $x_{Bj}$  of the proton momentum is called parton distribution function f(x,Q). Same in eA,AA collisions . This is initial state (all reinteractions "renormalized")

## Bjorken scaling

Structure functions (PDFs,eventually GPDs) depend on the scale they are measured; i.e.  $\times$  and  $Q^2$ . In the perturbative limit dependence on  $Q^2$  is subleading.

As  $p_T \sim Q$  and  $\eta \sim ln(\frac{1}{x})$ , then scaling of elliptic flow in HIC may resemble Bjorken scaling when adding an angular dependence on the structure functions.



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Elliptic flow
Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

## Let us entertain a crazy idea

What if parton distribution functions became azimuthally asymmetric, but still kept the running we expect from QCD???

 $v_2$  of Photons as expected,  $v_n$  would be an initial state effect!

Scaling in x, Q exactly as expected from Bjorken-like running

Particle species protected by unitarity of the fragmentation function

But there is a reason I called it crazy: PDFs are universal and QCD is azimuthally symmetric!

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

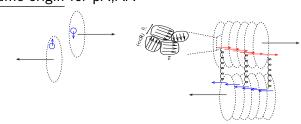
Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

resuits

## Could structure functions be azimuthally asymmetric?

- Sivers functions (spin difference gives you an asymmetry) But uncorrelated with geometry, special role for  $v_2$  so unlikely
- "Color antennae" and such (CGC models, Kovner et al, Gyulassy, Biro,...) Since antenna point in random directions, effect always goes away for large systems ("many antennae") I think scaling implies Same origin for pA,AA



Azimuthal correlations in hadronic collisions from instabilities of the initial state

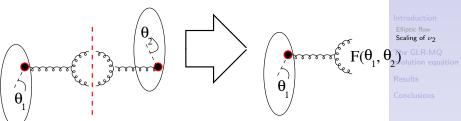
#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Elliptic flow
Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Kesults

## Could structure functions be azimuthally asymmetric?

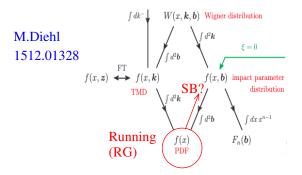


The running of f(x, Q) is really an RG equation, f(x, Q)probe dependent at subleading order in  $\alpha_s$ . At  $\mathcal{O}(\alpha_s^2 \epsilon_n) \ll v_n$  (2nd and higher Twist) they should generally be azimuthally asymmetric for extended probes. Can this small effect be amplified?

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

## RG, symmetry breaking and nucleon maps



Usually f(x) is thought of as averaging transverse information, but it is a quantum operator, subject to symmetry breaking

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction
Elliptic flow
Scaling of  $\nu_2$ 

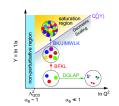
The GLR-MQ evolution equation

Results

$$\frac{Q}{2}\frac{\partial}{\partial Q}\frac{\partial xG(x,Q^2)}{\partial \ln(1/x)} = \frac{\alpha_s N_c}{\pi}xG(x,Q^2)$$

G(x,Q) evolve according to renormalization-group type linear operator evolution equations (DGLAP in Q,BFKL in x) But in x evolution blows up. This evolution breaks Froissart's bound (unitarity in hadron-hadron scattering) at low x.

In order to correct this, a non-linear term is added.



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction Elliptic flow

The GLR-MQ evolution equation

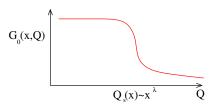
Results

## The GLR-MQ evolution equation

In the dense parton limit, the equation that governs the evolution of parton distribution functions inside hadrons is thought to be given by

$$\frac{Q}{2} \frac{\partial}{\partial Q} \frac{\partial x G(x, Q^2)}{\partial \ln(1/x)} = \frac{\alpha_s N_c}{\pi} x G(x, Q^2) - \frac{\alpha_s^2 N_c \pi}{2C_F S_\perp} \frac{1}{Q^2} [x G(x, Q^2)]^2$$
(2)

(It is a high Q limit of an integro-differential (GLR) equation).



Balancing the linear and the non-linear term defines the saturation scale  $Q_s$ , assuming azimuthal symmetry

Azimuthal correlations in hadronic collisions from instabilities of the initial state UNIVERSIDADE ESTADUAL DE CAMPINAS

Introductio

Elliptic flow Scaling of  $u_2$ 

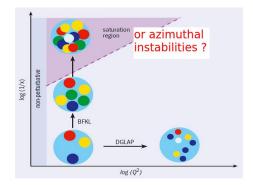
The GLR-MQ evolution equation

Results

Conclusions

31/51

Saturation together with an RG picture for saturation generates JIMWLK action, CGC (JIMWLK/CGC result : Azimuthally symmetric <u>action</u>, asymmetric boundary conditions



But non-linear 2+1 differential equation *can have instabilities* breaking the underlying symmetry!

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Elliptic flow Scaling of  $u_2$ 

The GLR-MQ evolution equation

Results

Adding an angular dependence the GLR-MQ equation and keeping the same limits modify the equations the following way

$$\frac{xQ}{2} \left( \frac{\partial}{\partial Q} + \frac{1}{Q} \frac{\partial}{\partial \phi} \right) \frac{\partial}{\partial x} [xG(x, Q^2, \phi)] = \frac{\alpha_s N_c}{\pi} xG(x, Q^2, \phi)$$
$$-\frac{\alpha_s^2 N_c \pi}{2C_E S_+} \frac{1}{Q^2} [xG(x, Q^2, \phi)]^2$$

(NB: angular ladder effects neglected as a first attempt, will modify this qualittive estimate)

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

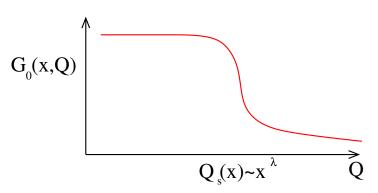
Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

$$G(x, Q^2, \phi) = G_0(x, Q^2) \left(1 + \sum_{n=1}^{\infty} u_n(x, Q^2) \cos(n\phi + \beta_n)\right),$$

 $G_0(x, Q^2)$  is the azimuthally symmetric solution (i.e. saturation)



Azimuthal correlations in hadronic collisions from instabilities of the initial state

ESTADUAL DE CAMPINAS

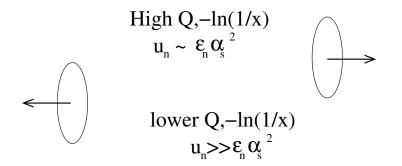
ntroduction

The GLR-MQ evolution equation

Reculte

Conclusio

## Azimuthal symmetry as a broken symmetry



Small geometry-driven anisotropies at higher x, Q amplified by evolution

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introductio

Elliptic flow icaling of  $u_2$ 

The GLR-MQ evolution equation

Results

## Azimuthal symmetry as a broken symmetry

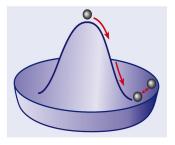


Figure: Elliptic flow  $\nu_2$  vs. rapidity [2,3].

Arbitrary small tilt (tiny gradients at high x) produce large effects at low x. Different from CGC effects since lagrangian aquires a  $\theta$  dependence (which will need to be added to JIMWLK equation)

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

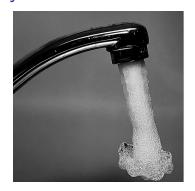
Introduction

Elliptic flow Scaling of  $\nu$ 

The GLR-MQ evolution equation

Results

## Non-linear evolution <u>can</u> break underlying symmetries





If non-linearities are strong enough, azimuthal symmetries broken dynamically. In hydrodynamics this effect is well-known but exists in most  $2\!+\!1$  non-linear systems

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

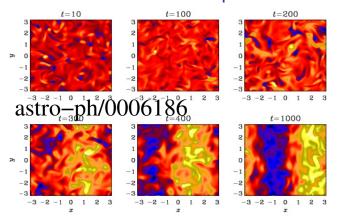
Introductio

Elliptic flow Scaling of  $u_2$ 

The GLR-MQ evolution equation

Result

## 2+1 non-linear evolution equation



For unintegrated in  $x_{\perp}$  General Parton distribution functions we could have: "Inverse cascade": Instabilities go from high frequency (local in transverse space) to low frequency as x evolves. No "many antennae" problem.

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Elliptic flow

The GLR-MQ evolution equation

Result

## Equations for the Fourier coefficients

Working on the limiting case  $Q << Q_s(x)$ , we insert the solution with azimuthal perturbations into eq. fully asymmetric GLR-MQ equation and get three linear equations for our Fourier coefficients.

1 An infinite set of equations equation that relate the Fourier coefficients with the phases.

$$\sum_{k} u_{k}^{2}(x, Q^{2})\cos(2\beta_{k}) = 0$$
 (3)

Azimuthal correlations in

correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu_1$ 

The GLR-MQ evolution equation

#### Results

2 An infinite set of equations regarding only the derivative with respect to x.

$$x\frac{\partial u_n(x,Q^2)}{\partial x} = -(2\lambda + 1)u_n(x,Q^2)$$

$$+\frac{N_c\pi}{2C_FS_\perp\alpha_s^2}\frac{1}{Q^2}x^{2\lambda+1}\frac{1}{n}\left[\sum_{k}^{n-1}u_k(x,Q^2)u_{n-k}(x,Q^2)\sin(\beta_n-\beta_k-\beta_{n-k})\right]$$

$$+2\sum_{i}u_{k}(x,Q^{2})u_{n+k}(x,Q^{2})sin(\beta_{n}+\beta_{k}-\beta_{n+k})$$
 (4)

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

troduction

The GLR-MQ evolution equation

3 An infinite set of equations that regards derivatives with respect to Q and mixed terms.

$$(2\lambda+1)\frac{Q}{2}\frac{\partial u_n(x,Q^2)}{\partial Q} + \frac{Q}{2}x\frac{\partial^2 u_n(x,Q^2)}{\partial Q\partial x} = \frac{\alpha_s N_c}{\pi}u_n(x,Q^2)$$
$$+ \frac{N_c \pi}{2C_F S_\perp \alpha_c^2} \frac{1}{Q^2}x^{2\lambda+1} \left[ 2u_n(x,Q^2) \right]$$

$$+\frac{1}{2}\sum_{k}^{n-1}u_{k}(x,Q^{2})u_{n-k}(x,Q^{2})cos(\beta_{n}-\beta_{k}-\beta_{n-k})$$

$$+ \sum_{k} u_{k}(x, Q^{2}) u_{n+k}(x, Q^{2}) cos(\beta_{n} + \beta_{k} - \beta_{n+k}) \bigg]$$
 (5)

UNIVERSIDADE ESTADUAL DE CAMPINAS

Azimuthal

correlations in

from instabilities of the initial state

Scaling of  $\nu_2$ The GLR-MQ

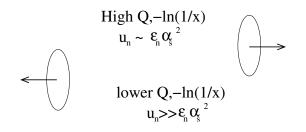
Results

As an ansatz we propose

$$u_n(x, Q^2) = \delta_{n,2} \sum_{k=0}^{\infty} A_k \frac{(Bx^C)^k}{k!} Q^{D-2k}$$
 (6)

then solve the equation linearized in  $u_k$  from initial conditions

$$u_n(\ln x^{-1} \to 0, Q) \sim \epsilon_n \alpha_s^2$$



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

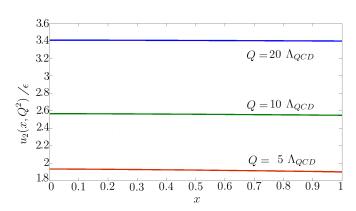
ntroduction

icaling of  $u_2$ 

The GLR-MQ evolution equation

#### Results

## Preliminary results



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

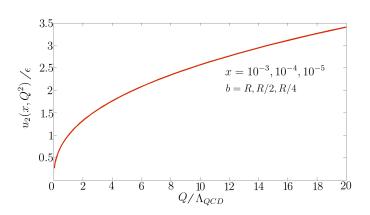
ntroduction

lliptic flow caling of  $u_2$ 

The GLR-MQ evolution equation

#### Results

## Preliminary results



Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

troduction Elliptic flow

The GLR-MQ evolution equation

#### Results

## Preliminary results: very encouraging

- Near independence of  $u_n(Q, x)$  on x (all dependence on  $G_0(Q, x)$  which in turn depends weakly on Q. Just like  $v_2$
- Near linear dependence on  $\epsilon_n$  Just like  $v_2$
- near decoupling of fourier modes

Forthcoming: A phenomenological study including factorization and fragmentation

Azimuthal correlations in hadronic collisions from instabilities of the initial state

UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

## What if were right?

Relation between  $v_n$  non-linearities could be more predictive than hydro models, fewer parameters so easier to falsify

Photon correlations Correlations between high rapidity photons and mid-rapidity hadrons, pA and AA

And the ultimate signature is...

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

#### Results

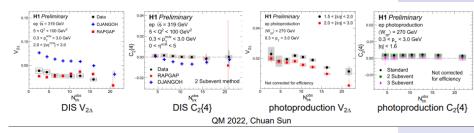
## Ridges/ $v_n$ at the EIC?

HERA looked for flow and failed

Azimuthal correlations in hadronic collisions from instabilities of the initial state

UNIVERSIDADE ESTADUAL DE CAMPINAS

Introducti



UrEIC could dramatically show if something like what Im advocating here could be true

# Alternatively, we are wrong and hydro valid to smallest scales (Poster, G. Soares)



Hydro in small systems could lead to "classical spin measurement"

Azimuthal correlations in hadronic collisions from instabilities of the initial state

#### UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroductio

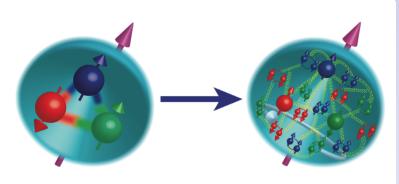
Elliptic flow Scaling of  $u_1$ 

The GLR-MQ evolution equation

#### Results

Conclusions

48 / 51



Spin dependent nucleon shape changes  $v_2$  in polarized pA collisions. <u>ultimate</u> small system hydrodynamics?

Azimuthal correlations in hadronic collisions from instabilities of the initial state

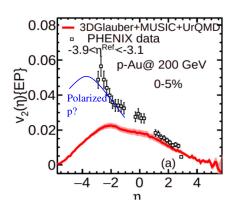
#### UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu$ 

The GLR-MQ evolution equation

#### Results



Spin dependent nucleon shape changes  $v_2$  in polarized pA collisions. ultimate small system hydrodynamics?

Azimuthal correlations in hadronic collisions from instabilities of the initial state

UNIVERSIDADE ESTADUAL DE CAMPINAS

Introduction

Elliptic flow Scaling of  $\nu_2$ 

The GLR-MQ evolution equation

Results

### **Conclusions**

- ν<sub>2</sub> scaling similar to scaling of parton distribution functions. Could they be azimuthally asymmetric?
- Instabilities in the non-linear regime?
- Work in progress to develop this hypothesis to quantiative test level

### References

- [1] Torrieri G., Betz B. and Gyulassy M. Scaling of elliptic flow in heavy-ion collisions.
- [2] CMS collaboration, PRL 109 202301(2012)
- [3] PHOBOS collaboration, Nucl. Phys. A830 (2009)
- [4] STAR collaboration, 1206.5528
- [5] BRAHMS collaboration, Nucl. Phys. A 830 43C (2009)
- [6] PHENIX Collaboration Observation of direct-photon collective flow in Au+Au collisions at  $\sqrt{s_{NN}}$ = 200 GeV.

Azimuthal correlations in hadronic collisions from instabilities of the initial state

UNIVERSIDADE ESTADUAL DE CAMPINAS

ntroduction

lliptic flow caling of  $u_2$ 

The GLR-MQ evolution equatior

Results