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Lecture 1

Elements of General Relativity and AdS

space



eSpecial relativity: speed of light= const. in all inertial refer-
ence frames, c=1 =

ds® = —dt* + di® = n;;dx’da’

IS invariant — invariant distance. SR: Physics is Lorentz invari-
ant, i.e. invariant under

e /\ij:cj; /\ij e SO(1,3)

eGeneral relativity: General spacetime: curved. Distance be-
tween points is

ds® = 9ij (z)dz'dx?

Here g;;(x)=arbitrary functions: the metric.
oeE.g. 2-sphere in 3d Euclidean space

dz? + da3 + da3; x3 + 25+ 23 = R° =
2 2
L1I2

€T €T
dz2(1 - dr3(1 - 2dxd
:1:1( +R2—x%—x%)+ :1:2( +R2—x%—x%)+ 1 szQ—x%—x%

gijda'dz? (= do? + sin? 0dp?)



eBut for arbitrary symmetric metric g;;(z), we cannot embed
in flat space: EId(dT"'D functions g;;(x) - d functions z(z;) and
moreover: signature of embedding space is not fixed.

eE.g. 2d surfaces can be embedded in 3d with Euclideann OR
Minkowski signature. So: general space is intrinsically curved.

eCurved space: triangle made by geodesics has angles a+ 34~ #
7. E.G. sphere a4+ 8+ ~v > w: positive curvature R > 0.

eBut d also spaces of negative curvature, for which a48+4~v < 7,
e.g. Lobachevski space (or " Euclidean AdS>),

ds? = dx? 4+ dy2 - dz2; 2 4+ y2 _ 22 = _R?

but detg;; > 0 = space has (intrinsic) Euclidean signature.
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Einstein’s theory of general relativity:

e Al: Gravity is geometry: matter follows geodesic in curved
space, and to us it appears as gravity.

e A2: Matter sources gravity: matter curves space = Princ.:

el.Physics is invariant under general coordinate transformations:

xf& — x;,(xj) = ds® = gij(a:)da;ida;j — géj(wl)d:v/idac’j

o2 Equivalence principle: there is no difference between accel-
eration and gravity

m; = mg, Where F = m;@(Newton) ﬁg = mgyg(gravity)

eDynamics of gravity: Einstein’s egs.



eBefore that: define kinematics. g, can be put locally to zero
by coordinate transformations

OxP 0x°
ox'H ox'v
— not a good measure of gravity. What else?

eDefine tensors: A* transforms like dz#, B,, transforms like 8/0x*,
mixed transform as the product.

eDefine: inverse metric g = g/j,}, and then Christoffel symbol:

gy (@) = gpo ()

1

r’uz/p — 59“0(0pgm + 81/90/0 — 8091/p) )

and Riemann tensor
R'uz/po-(l—) — apl_'ul/o' - agruyp —I_ I—'U')\pl—Ayo- — I_M)\O-I—Ayp

o[}, ~ gauge field of gravity. RM,,, ~field strength. Indeed,
analogous to field strength of SO(d — 1,1) gauge group,

F, = 0,A% — 9,AL + fAc(ABAS — AP A,



eMoreover, covariant derivative of tensor is

similar to D,,¢% = 8qu“ + (Aab)ﬂgbb, = (ab). Note Dyguw = 0.
eThen RM,,, — tensor, as are Ry, = RAMV, R = Ruug"’. R is
coordinate invariant — true measure of curvature of space.

e T he simplest choice for action for gravity is correct (compatible
with experiment)

, d
= Einstein’s equation
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Global structure: Penrose diagrams

e [0 understand topological & causal structure: Penrose dia-
grams.

eFor light propagation, ds? = 0 = conformal factor is irrelevant.

eMake coordinate transformation that bring oo to finite distance,
drop conformal factors. E.g. 2d MinkowskKi,

ds® = —dt* + dz?; uy =t+z = ds® = —duydu_

- - T+6
ut+ = tanuL, ug = > =
1
ds® = (—dr? 4+ d6?)

4 COS? liy COS? T

Here |ut+| < /2 = |7 £ 0| < m = diamond Penrose diagram
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Penrose diagrams. a) Penrose diagram of 2 dimensional Minkowski space.
b) Penrose diagram of 3 dimensional Minkowski space. c¢) Penrose diagram
of the Poincaré patch of Anti-de Sitter space. d) Penrose diagram of global
AdS> (2 dimensional Anti-de Sitter), with the Poincaré patch emphasized;
xo = 0 is part of the boundary, but zo = oo is a fake boundary (horizon). e)
Penrose diagram of global AdS,; for d > 2. It is half the Penrose diagram of

AdS> rotated around the 8 = 0 axis.
11



Anti-de Sitter space

e\We saw examples of 2d (curved) surfaces of Euclidean signature
(usual):

e2d sphere, embedded in 3d Euclidean space:

ds3 = dz% + dao5 + da3; =7+ 25 + 25 = R® =
ds5 = g;jdx'dx’!; det(g;;) > 0
is explicitly SO(3) invariant by construction, and R > 0.
e2d Lobachevski space, embedded in 3d Minkowski space:

ds2 = da:% —Ifda;% — da:%; a:% —I—x% —a:% — _R?=
ds5 = g;;dx'dx’; det(g;;) >0
els explicitly SO(2,1) invariant by construction, and R < 0.

eGeneralize to Lorentzian signature. R > 0 case (generalization
of the sphere) = de Sitter space. R < 0 case (generalization
of Lobachevski) = Anti de Sitter. So, sometimes: sphere =
"Euclidean de Sitter” and Lobachevski = " Euclidean Anti de

Sitter”
12



e | hus, d-dimensional de Sitter space:

d—1 d—1
ds? = —da§ + Y da? +dzi -2+ > 7+ x5 = R?
1=1 1=1

is explicitly invariant under SO(d, 1) by construction and R > 0.
ed-dimensional Anti de Sitter space:

d—1 d—1
ds? = —daz%—l— Z daz%—dasg_l_l; —a:%—l— Z 51322—335_'_1 — _R?

is explicitly invariant under SO(d—1,2) by construction and R < 0.
eMetrics: Poincare coordinates (t,x; € R,x0 € Ry)

d—2
(M—Egﬂﬁ+§ﬂﬁ+m2
_33% = t 0
1=

eUp to conformal factor, same as flat space = Penrose diagram
is the same. For d > 2 however, we use radial coordinate p > 0
instead of spatial coordinate x € R = obtain half of diamond =
triangle.

13



e\WVe can make explicit also the exponential "warp factor”

d—2
ds? = e2Y (dt2 -+ Z dazzz) + dy2 (g =€ Y)
1=1

'oEven though r,x;,zg are oo in extent, space is not complete:
Infinity at y = oo is reached in finite time by a null ray:
oo
ds° =0 = dt°?=e¢ Vdy? = t= / e Ydy < oo

e—- 7 other coordinates covering whole space: global coordi-
nates:

AdS 1  ds? = R?(— COSthdT —I—dp —|—S|nh2pd§2 o)
sphere : dsd_RQ(cos p dw? + dp? + sin? ded 5)

eCoordinate transf.: global<-embedding:
Xg = Rcoshpcost, X;= RsinhpS2;; Xgj41 = RcoshpsinTt
eFinally, coordinate transf. tanf = sinh p =

9(—d72 + d6? + sin? 0 dQ25_5)

14



eHere 0 < 0 < w/2, 7 € R = infinite cylinder. Poincare patch:
figure of revolution obtained by rotating triangle around a side,
situated along the axis of the cylinder:

eBoundary of cylinder still reached by light ray in finite time (and
reflected back).

e AdS is somewhat like a finite box, with a boundary.

ed—dimensional boundary of AdS;4 1 space: In Poincare coordi-
nates, at xg = € (and fixed) is Minkowski,

> R? o
1 =1

15



eln global coordinates, at 6 = w/2 — € is S3 xR cylinder

ds® = R—Q[ dr? + dQ3 ]
d—2

oBut the 2 are related, in the Euclideanized version, by a con-
formal transformation:

ds® = dp® = deQg_l = e [dr? + ng_l]; p=c¢e¢
eSO conformal symmetry of boundary = invariance symmetry of

Ade_|_1.

ePerhaps physics in Ade_|_1 space is holographic: Physics inside
AdS = physics at its boundary.

eReason why possible: Boundary of space is reached in finite
time.

16



e Anti-de Sitter space is a maximally symmetric space: constant
negative curvature R < O.

eSolution of Einstein’s eq. with a cosmological constant, Ty =
NAguy and A <0, i.e.

1
RMV — Eg,u,yR — 87TGTIU,]/

eObservation: Light takes an oo time to reach the middle of
AdS space, p =0 or xzg = oo:

dx
ds°> =0 = t=/—ow—|na:0|mo,vo—>oo
0 g

e— In order for AdS to become truly like a box of finite size,
we must cut out a tube in the middle.

17



Vielbein-spin connection formulation of GR: 1st vs. 2nd
order

e Any space is locally flat: tangent space: Lorentz invariance that
is local (at any point).

eVielbein eﬁ: "square root” of metric, making local Lorentz
invariance manifest:

guv(z) = e (@)el (@)nyp

— e4

L — /\abel,ZL'

eCovariant derivative acting on tensors (bosons): with #,,

DuTf = uTf + TPus TS — T/ TP

eCovariant derivative acting on spinors (fermions): with spin
connection wgb, multiplying the generator of the Lorentz group
in the spinor representation, 2y,

L abrab

18



eSecond order formulation: w% = wa’(e) satisfies " vielbein pos-

tulate”, or "no torsion constraint” (Ta,/ztorsion),

Tfu) = Diuchy = Oy + ey = O

(if there are no fundamental fermions; if there are, there are

extra terms). Equivalently,
Dyey, = Ouey, + wab b rPWeg =0
e [ he solution is
1 1 1
- ,,eZ) - Eeb”(aﬂe — Ovey,) — apeba((?pecg — Ovecp)ey, -

wzb(e) = Eea”(ﬁﬂey

eDefine the field strength of wab (=SO(1,d — 1) gauge field)

Rﬁby(w) — 8Mw (%Ldab -+ wa’b bc wg’bw/bf .

19



e [ hen we have
Rgg(w(e>> = eﬁe_l’beMvm(r(e)) ., R= R%}/egl “eb_l :

so that the Einstein-Hilbert action in second order formulation

(w=w(e)) is

SpH = 1o GN/dda;(dete) R (w(e))eq ey 1.
eBut then: first order formulation: wgb — independent variable
in the same action, rewritten as
SEH = ﬁ%/d%ewweabc ab (w)eSes
= ﬁ/eabcd}%ab(w) A €€ A el
eThen the wgb equation of motion is

a — a __
T[,uV] — 2D[M€V] — O
SO solving it, we are back at the second order formulation.
20



Black holes

e [ he Schwarzschild solution = most general solution of vacuum
(Tyw = 0) Einstein equation, with spherical symmetry:

2MG dr?
2 __ N 2 2 162
ds _—(1— - )dt —|—1_2MTGN—|—R dS25.
eIn the Newtonian limit, with g, = nuw + kKhuw,
2MG
KNhoo = knhiy; = —2Un = + r A8

SO we are back to the Newtonian potential, satisfying

AUNewton = 47GNyM§3(2) = Aryhog = —87GNMS3(z).

eSolution apparently singular at r = rg = 2MGpy, SO we cannot
reach the source at »r = 07
eIfthe solution is valid all the way to rgy, we have a (Schwarzschild)

black hole.
or = r7 is the event horizon: light, at ds? = 0, gives

dr dr
dt = , r—>ryg.dt~2MG =t ~2MGNIN(r—2MGpy) — 0.
1 — 2MGy 1 N oMGn N In( N)

r

21



eBut at the horizon, R ~ 1/r% = 1/(2MG y)?=finite!l = not
singular. Need better coordinates: Kruskal.
eFirst, tortoise coordinates,

dr

Tr

then Eddington-Finkelstein ones,

.
= drx = — 2M G In -1 )
T T r -+ N <2MGN >

u=t—r«, v=1t-+ 17,

and finally Kruskal coordinates,

U= —4MGye *MCON; p=44MGyNe*MON |
so that the metric is (region » > 2M Gy becomes —oco < 71y <
+o0, thus —co <u < 0,0 <o < 400)
> _QMGNe

ds® = 2MCN dudp 4+ r2dQ3

T

22



e [ hen we have

. uv _ MGy — J2MGN — 2MCy "4
(4MG )2 2MG N
'so the » = 0 singularity corresponds to uwv = (4MGN)2, while
r=2MGy isu=0o0orv=0. Definet,rasu=t—7, v=1t+7
— Kruskal diagram. » = 0 is then 12 — 72 = (AMGy)?Z.

ePenrose diagram: drop dQ% and conformal factor in Kruskal
metric. Then: subset of flat space, restricted by 2 — 72 =
(AMGp)?2. The usual transformation is

T+ 0

ﬂ=4MGNtanﬂ+; 17=4MGNtani2_; UL = 5

and the r = 0 singularity is then
T+ Gtan T—0 sin?(7/2) —sin?(6/2)
2 1-—sin?(7/2) —sin?(6/2)
leading to sin?(7/2) = 1/2, thus 7 = +x/2 (Tmax, for 6§ = 0, is
T).

1 = tan

23



r = () singularity

future event
horizon

past event
horizon

r = 0 singularity

Kruskal diagram of the Schwarzschild black hole.
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r = 0 singularity

L]
AN (temporal infinity)

&= null infinity

I' .
horizon

iy(spatial infinity)

= null past infinity

b)

a) Penrose diagram of the eternal Schwarzschild black hole (time independent
solution). The dotted line gives the completion to the Penrose diagram of
flat 2 dimensional (Minkowski) space. b) Penrose diagram of a physical black
hole, obtained from a collapsing star (the curved line). The dotted line gives

the completion to the Penrose diagram of flat d > 2 dimensional (Minkowski)

Space.
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Lecture 2

Elements of string theory and D-branes

26



Wordline particle action: analogy

eAction on particle worldline = proper time: in terms of X#(7):

S =—m [ dr/=X"X nu

eln the nonrelativistic limit: OK:

S=—m02/dt\/1—z—22/dt[—m62—l— ]

eAction is reparametrization invariant, 7/ = 7/(7r), dz#/dr =
(dzt /dr")dr' /dr; X'P(7' (1)) = XH(7).
eEquations of motion and boundary conditions from 4.S:

muv2
2

d X ax.,|” d
5S:—|—m/d7-— T | sxv 4 sxHm SRt = Pr g
dt VXX, T |, dr

eCouple to gravity: nontrivial: n,, — guv, 9geodesic equation.
eCouple to background charge: add worldline term = [ A, j#,

[araceown (¢50) = [atea,comna @ oem) = [dea,comnraem).

27



eFirst order action: introduce auxiliary field = independent world-
line metric .7, or einbein (vielbein) e(r) = \/—yr+(7). Write ac-
tion for massive scalars X*# in 1d on worldline, coupled to gravity

(GR). Use y/—dety x~4™" = e 1(7) and /=dety = e(7).

X'udXV
/dT e 1(7‘) —em2 :
dt dT

e\Write the equation of motion for e(7), solve it, and replace it:

1. XX
——2X2—m2=O:>62(7') = =
e

S, = %/dT[\/%X2_F ]:_m/dT\/T%_Sl

e Take m — 0O limit, then fix a gauge for reparametrization in-
variance (e(7) — €/(7)), e(r) = 1:

1 dXHdXV
Sm=0,e=1 = E/dT dr dr -
eEquation of motion (X#(7)) and constraint (for e(r) =
previous eq. for e(7)):
d <qu) 0 _ds® _ dXMdX"
dr \ dr dr? dr dr

nw =1 = 0.

28



Strings

eNambu-Goto action for bosonic string = area of "worldsheet”
spanned by string x string tension. Generalization of particle
action: area of worldsheet. X#(o,7)= coordinates in spacetime.
@ = (o0, 7) = intrinsic coordinates on worldsheet.

! / dodry/det(hy)

2o’

where h,, =metric induced on worldsheet (pullback)

SNG = —

ds? , = datde? g (X) = detde hoy(€) =

hap(o,7) = 0aX"0pX"guu(X)

eIs wordlsheet diffeomorphism (gen. coord., or reparametriza-
tion) invariant.

29



eFirst order form: again introduce auxiliary field = independent
worldsheet metric.

e—- Polyakov action. In flat spacetime,

1
/ dodr/ =~y o, X H Oy X N

SP[Xa 7] — _47TC¥/

eSymmetries:

-Spacetime Poincare invariance

-Worldsheet diffeomorphism invariance: X'#(¢',7") = X*(o, 1)
-Worldsheet Weyl invariance: ~/, = e2w(o, )y

eUse them to fix conformal (unit) gauge: v,3 = 13-

30



e Action becomes
T
§=—3 / 2on™P 0, X DX 1y

"— action for free massless scalars in 2d: conformally invariant

(conf. inv. = residual gauge invariance: dependence on o+ 7
only), with equations of motion
92 92
OXH = <802 - 87_2>X“ =0= X"o,7) = X%(O‘ —7)+XF(c+7)
eBoundary term: gives string types:
1 o=l
— /dT\/—W(SX“(%XM =0=
2ma o=0

eClosed strings (periodic): XH(r,1) = XH(1,0); ~vup(7r, 1) =
Yab(T, 0).

eNeumann open strings (free endpoints, v = ¢): 97 XH(7,0)
I XH(T,1).

eDirichlet open strings (fixed endpoints): 6 XH(7,0) = §XH(1,1)
0.

31



e(Virasoro) Constraints: equations of motion of ~,, (fixed to
unit) = T

1 1 4Sp
AT /=y 6|, =, .
O/T01 == O/Tlo == X . X/ y O/TOO == O/Tll == E(XQ —|— X/Q).

1 1 )

jhb —

eClosed strings: expand Xi(r — o) and X7 (r + o) in Fourier
modes ok, al,

V2a/ 1
>

X*(o,7) =z + opit + 4 5 — [age_m“_a) -+ &ﬁbe_m(ﬂ'”)] .

n#0
eNeumann open strings: identify af, = &b, B
eFourier modes Ly, Ly Of constraints T, Ty 4 are Ly, Ly, for
closed strings

1 00 1 +00
lj/ = ~l}l] ~
L, = 5 E o, ok Ly = 5 g Oy Ob
n=—oo n=—oo

and H = Lg+Lg = 0 (closed) or H = Lg (open) give (classically)

2 a? 1
2 — Jr— N T - 2 — JT— 0 — N
Miosed = —pup” = o E (al,ah+al,an) , Mipen = —pup” = Ton o a0,

n>1 n>1

32



e\VWVhat does the string action represent? Particle action: is first
quantized: Need to also define vertices and propagators. String
action: defines the propagator; vertex is unique!!

eQuantization: o/i &“n: creation operators. More precisely,

o, = /maly,, o =\/_JW for m > 0.

m
eBut d gauge inv.: easiest in light-cone gauge. X+ auxiliary, X*
physical. Then H = p~ and the open string mass spectrum is

1 - .
M?=2ptp — =—(N—-a), N= ol ol = nal‘a®
ppT —p'p = —( ) > al,ah =) nalld,

where

D—-2
Zzg 22n=D2;2=1:>D:26.

1=1 n>1 n>1

eBosonic closed string spectrum is similar, but with N and N,
~ .. a%‘ka%l G, ;|0)

with the constraint P =Ly — Lo =0, so N = N. Spectrum —

different fields = String theory = field theory of infinite number

of different kinds of fields.
33



eMassless fields: A,, = o' ,a” ;|0 >= {A((w)) = Guvs Alpr] —
BHY ¢ = AMF} — spacetime fields.

e [ hese massless fields create a spacetime background for the
string

S = o [Vhh*P 8o X 95X guu (XP) + PO X 05 X" By (XP)

T
—a'VER(P b (XP)]

eBut bosonic string has tachyonic vacuum: M2(|O >) < 0. Need
to get rid of it:

eSuperstring: Supersymmetric string. In Green-Schwarz formu-
lation, spacetime susy + « symmetry. (Fix a gauge for k symme-
try = worldsheet susy). Introduce 04 = Spacetime spinors and
worldsheet scalars. Replace 0, X" with spacetime susy invariant

invariant under

SXH = —edrrg,et, §04 =4

34



1

4o

S =—

/deJ\/—’y’y“bl_l’jl_IZgW—I—/deae“bl_léwl_léVBMN

eoflat space:

B = NN Byy = —idX* A (61T ,d6? — 0°T ,do) + 01T+ do* A 62T ,db?
'oKappa symmetry,
5,04 = =2, Nk | 5. XH = —8THs04
is fixed by the condition (together with lightcone gauge for
bosons)
rtol=rte2=0, r*=@2+£r%/v2

and 042 are regrouped as 2-comp. Majorana worldsheet spinors
S™, m spinor of SO(8),

1
AW Je%
eSupersymmetry means tachyons (and other states) are out of
the spectrum. Vacuum: massless states A#Y = {gM”, B*" ¢}+
others.
eStrings — couple to By .

Si. = — / 420 [0 X70°X" 4 20/570,5™] |

35



eGauge fixed Green-Schwarz action — gauge fixed action with

manifest worldsheet susy:
eSpinning string: Neveu-Schwarz-Ramond (NSR) action, with
_WL: worldsheet spinors, spacetime vectors:

1

Ao
with worldsheet susy:

S =—

[ @2 [0uX10" X + By "0ty

SXH =gt | SohpH = 99, X e

eFermionic boundary term (for open string)

Y6y —p_d_|Q,
means we can impose at 0 zpi(o,ﬂ = " (0,7), but then at «
we have 2 possibilities,

¢—|—(7T7 7-) — :lzlbl—L(ﬂ-a 7-)7

giving the Ramond (+) = spacetime fermions, or Neveu-Schwarz

(-) = spacetime bosons sectors. Closed strings: indep. for L or

R = NS-NS and R-R (bosons) or NS-R and R-NS (fermions).
36



eChirality of 64 in closed string GS theory (N = 2): same = type
IIB string theory; opposite = type IIA string theory. Open strings
(N = 1): single 6; can couple to SO(32) Yang-Mills fields (non-
anomalous theory): type I string theory. Other N = 1 theories:
heterotic (left movers bosonic, right movers supersymmetric):
50(32) or kg X Eg.

Conformal invariance in 2 dimensions

eConformal invariance: symmetry of QF T in flat space, under
coordinate transformation that generalizes scale transf., of the

type

' = azt = ds® = d7’? = o2dF? —
Ty —> a:iL(a:) s.t. ds® = deda:L — [Q(az)]_Qdasuda:M
eODbs: transf. on flat space. Transf. are a subclass of general
coordinate transf. For strings in unit gauge, ot — &7 = f(o),
o~ — 0o = g(o~) (residual gauge inv.).
37



eIn Minkowski (d — 1,1) spacetime, for d > 2, the conformal
group is SO(d,?2).

ed=2: special. Invariance group is not finite dimensional (like
SO(d,?2)), but infinite dimensional: Virasoro algebra

ds® = dzdz = 2 = f(2)

! =/
052 = ardz = 2% gz = 0 2(5. 5)dadz

0z 0z

eSO any holomorphic transformation is conformal. Generators
{Lm} (qu. version of string constraint modes): Virasoro algebra:

[Lm> Ln] — (m - n)Lm—i—n + é(m?) — m)ém,—n

eGR tensors: covariant tensor T;, ;, transforms as

17 !Jn
T (Zl 22) — T/ ‘ (Z/ Z/ )aZ 1 Oz
1100 3 J1.e-Jn \<10 <2 azil 8’22',1 ’

ePrimary fields or tensor operators of CFT defined by analogy:
"T, .z 5 is a primary field of dimensions (h,h) (even if h,h & Z)

if
, dz\" (az\"
T, .z.z= Tz,.,zz,.,z E E )

38



eOperator product expansion (OPE) (valid in any QFT, but
there only asymptotically):

Oi(x)0j(x;) = > cFyi(x; — ;) Op ().
k

and if operators O; have dimensions A;,

cki- x; + x;
(0i(2)O0j(x5)...) = D —— |A{7+A-—Ak <Ok< 5 ]> > ,
X j J

k |5177;

whereas with the energy-momentum tensor T'(z),

h 1
T(z)O(0,0) = ... + —20(0, 0) +-00(0,0) + ...,
4 4
and for a primary field
T h; 7 1 T
T(z)qbgh“hz) — —;¢(hi’hi) -+ —8q§§h‘“h1) + nonsingular.
< <

eExample: free scalars (Polyakov string action in unit gauge)
1

Vi 6%

SEZ

1 _
/ Pol0r X101 Xy + X105 X)) = 5 [ dP20X19X.

T
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e I -duality of closed and open strings: symmetry of string
perturbation theory on compact spaces.
eFor a string winding m times around X25, bound. cond.

X?3(r,0 +27) = X2°(7,0) + 2md/w.
"o [ he classical solution is

—inT
e

(aneina + &ne—ina) :
n

/
X?(r,0) = X1+ Xp = z0 —I—o/pT—I—o/wa—i—i\/%Z
n#0

where p = n/R and w = mR/a’. The constraint is now Lg—Lg =
o'pw + N+ — N+ and gives the spectrum

2 .
M¢, = p2+w2+J(NL+NL—2>

compact

2 2

= (ﬁ) + (mR) + 2N+ R - 2),
R o/ o/

e\Ve observe the T-duality symmetry of the spectrum
M?(R;n,m) = M?(R;m,n).

extended to

T <> qo, P W, ap > —ap; ap > an,
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e [ his T-duality exchanges then:

X25(T, o)X (t4+o0)+XR(7—0) < X/25(T, o) =X (t+o)—Xg(r—0)

e I -duality of open strings: Do the same exchange for the
open string solution. Obtain

25
X?(r,0) = XP(r+o0)-XP(r—0)=¢q5+ V2dai’c + V2 Z In_e=in ginne :
n
n#0

25 25
25 1 x5 — a3
Oéo pr—

2a/ ’s
eBut then the boundary condition changes from Neumann to
Dirichlet and vice versa,

Oa X% = €,305X'%>.
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eReminder: Vary Polyakov action = equations of motion, and

boundary term
1 _
. / AT/ O XHO° X |0=E =

eNeumann boundary condition: 99X, = 0|,=0.r = endpoints of
string move at the speed of light: usual.

0Sppd. = —

eDirichlet boundary condition: §X# = 0|,—=¢ . = X = constant
at o = 0, 7. — endpoints fixed.

e\We can have Neumann for p 4+ 1 coordinates and Dirichlet for
D—p—1 = "Dp-brane’.

eSpacetime fields can excite coordinates X* transverse to the
Dp-brane (Dirichlet directions) — fluctuations = this is Dp-brane
IS a dynamical object.
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T T

b)

a) Open string between two D-p-branes (p + 1 dimensional "walls”). b)The
endpoints of the open string are labelled by the D-brane they end on (out of

a

a) Closed string colliding with a D-brane, exciting an open string mode and
making it vibrate b) String worldsheet corresponding to it, with a closed
string tube coming from infinity and ending on the D-brane as an open string
boundary. Allows us to calculate the D-brane action and couplings.
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eCompute charges and tensions of Dp-branes and compare with
supergravity p-brane solutions (Polchinski, 1995) = Dp-brane =
extremal p-brane solution of supergravity.

eOpen strings have " Chan-Patton factors” at endpoints — in-
dices = open string. A§j|7:> ® |7) = massless open string state
is A, = a‘jl)\gj i) ® |j) = vector in U(N) gauge group for N D-
branes.

eAction for a single D-brane is
S, =T, / @t lee=? /= det(hy; + o/ (Fyj 4 Bjj)) + fermi + Wz
eStatic gauge: X! =¢44=0,...,p and g = Ny =

hzj (%X’uanVgluy — 777;]' —|— (%Xma]Xm

eWZ term: [y eN/2T AT AL, e.g. a term on D5 in type IIB is

1

il d6xe“1“‘“6AM1F+
27'(' M6

1216
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e[ hen, for p = 3 and a single brane

2

3 s - .
S> = const. + /d a:( T Eaixma@Xm —- ferml)

eln fact, the action: "N = 4 supersymmetric Yang-Mills" for N
D3-branes.

oFields: {A%, xollJl waly o ¢ SU(N), I € SU(4), [IJ] — anti-
symmetric of SU(4): 6 representation. (m = 1,...,6: transverse
to D3).

e Action

1 1_ 1
SN —aSy 1 = —2/d4a: trl—5Fp, = S ! = 2D, i X!

+igWUl [ X7, W] — ¢?[ X1y, X ) (X1, X 51
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eODbservation: Bosonic Nambu-Goto version — also volume
spanned by worldvolume:

S, —= Tp/dp'l'lf\/— det(hyp)

hap = aa'fuabfyguu
eln fact, strings massless fields form spacetime supergravity
multiplet.

eSupergravity has extremal p-branes solution = p-branes are
string theory nonperturbative objects: D-branes.

eSuper p-brane: generalization

a(p)é
Sp = Tp/dp+1€(— V= NNy e v
—1 1 i A A
Q- PV 1---2 +1 / 1 d
_l_ VvV —7Y (p_|_ 1)I€ p |_|Zl LT p+1A 'Ap—|—1>

eBosonic: n;f‘ — N¢ = 9, XFES.
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Lecture 3

Black holes in supergravity vs. D-branes
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Supersymmetry

eBose-fermi symmetry. e.g. 2d: 1 Majorana spinor W 4+ 1 real
scalar ¢. On-shell supersymmetry: 1 bose degree of freedom,
1 fermi d.o.f.

1 _
S =~ [ al(8,9)? + TPV]
eDimensions: [¢] = 0,[WV] = 1/2. Fermi-bose = start as

dp =€V = [e] = —-1/2 =
oW = Poe

e Action is on-shell invariant.

e Off-shell supersymmetry: W has 2 d.o.f. = need to add 1
auxiliary field

5= [ del(@6)° + Vv — F]
SF =W SV = doe + Fe;, 6p=ew
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eHowever, off-shell susy means that the algebra of susy is satis-
fied off-shell (without the use of the egs. of motion).

e [ he most general N-extended superalgebra in 4d, with central
charges, is

{Q4, @} = 2(C1")apPud” + CopUY + (Cr5)asV" |
and must be satisfied on all fields. In 2d, for the WZ model
above,

{Qh: Q%Y = 2(CV") a3 Pud” = [0e,5e)] = 227 e10)

eRepresenting the algebra with central charges and massive
states using the Wigner method, we find
1 1

= el =

1 _
be = —=[Q4— €,3Q05] al, 7

V2
so we obtain the algebra

[Q1a + €apQ3]
[Qld - 6@6@%] )

{aa,al} = 2(M — Z)805;  {ba,bl} = 2(M + Z)d,5 = M > |Z|.

and the rest zero, giving the BPS bound.
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eThe interacting N =1 chiral (WZ) model in 4d is
S = / d*z [¢"0¢ — i(8,) (") ¢ — mpyp — 2Relgphy] — |A + me + go?[*]

where the auxiliary field was solved as F* = —(\ 4+ ma¢ + gd?).
eThe N =1 vector multiplet (vector—l—splnor) in 4d (off-shell) is

Sn=1sym = (— 2)/d4xTr [—%FQ — —MDA—F D ]

invariant under
1

0A], = ey, o\ = [—E'VWFSV + 73’75D“] €, 0D* = 1ieysID \°.

e\\Vhen we couple tQ WZ m-ultiplets, we obtain the D-term (aux-
iliary field) D% = quz(Ta)Z-jch, and the scalar potential is

V=) |F]”+4°D'D".

oN = 4 SYM is obtained as N =1 SYM in 10d reduced to 4d,

1 1_
S10daN=15Y M (—2)/d10:cTr [—ZFMNFMN — EAFMDMA] =

(—2) / &z Tr [—1F2 T

o1 ) - L1y, oulle?. qW]]
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Supergravity

eSupergravity = supersymmetric theory of gravity, OR: theory
of local supersymmetry.

elLocal supersymmetry = ¢*(x) = 3 "gauge field of supersym-
metry", ”Ag(x)” — gravitino W, (z): supersymmetruc partner
of ef(x).

o\ = 1 supergravity in 4d: {e%, W, ,,}. Supersymmetry laws:
2 K

eAction:

S = SE g(w,e) + Sprs(Wy) )
/dda;(det e)R V(w)e_lueb_ly — E/dda:(det e)W P D,W,

167G
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eSecond order formalism: wwua indep., fjb dependent. How-

ever, 3 dynamical fermions, so w% = wa’(e)+17) terms, obtained
by varying action with respect to wab (as in first order formalism)

= wil(e, 1p).

eFirst order formalism: e, uq,w?’ independent.

e1.5 order formalism (best): Use 2nd order formalism, but in
S(e,y,w(e,v)), we don't vary w(e,®), since it is multiplied by
0S/0w = 0 (in second order formalism).

eln 4d, maximal susy (for multiplets of spins < 2) is N = 8.
It has graviton e%, 8 gravitini ¢!, 28 vectors Aﬁj, 56 fermions
Xijk and 35 scalars forming a matrix v or, in terms of NN =1
multiplets, 1 supergravity, 7 gravitino, 21 vectors and 35 chiral
(WZ) multiplets.

oIt is the dimensional reduction of an N/ = 1 supergravity multi-
plet in 11 dimensions, with graviton eﬁ, gravitino ¥, and 3-index
antisymmetric tensor Ayup.
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eHigher (N = 1) supersymmetry in d > 4 = matter fields in the

same multiplet: vectors A,, fermions W,, also p-form antisym-
metric fields A, .. .4,

_ d 2

S = /d :zz(dete)FNl,_._’Nn+1

By g1 = 6[M1AM2---Mn+1]

eGeneralized Maxwell invariance

0Ap .pin = Oy Npig..un]
eBlack holes and p-branes: Most general solution with spher-
ical symmetry of Einstein’'s equations in vacuum (7, = O0):

Ruv —1/2g0R = 0 is the Schwarzschild solution. In 4d,

2mG dr?
ds? = _<1 - )dt2 + e t R2d3
T
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els solution of a point particule of mass M, or of a spherical
mass distribution of radius R at » > R. If it's valid down to
r=rg=2MG: black hole. r = rg: event horizon.

eCan add charge Q. BPS bound |Q| < M. For |Q| = M: extremal
black hole (r4 =r_).

eSolution with charge: modify the Newtonian potential defining
solution,

MGy Q*Gy
Un(r) = - r T 47Te%47“2 ’
where ds? = —(1 + 2Un(r))dt? + dr? /(1 + 2Un (1)) + r2d25.
oln D dimensions, the Schwarzschild solution is

20DGP) v dr?
ds®> = — (1 — TD_gV dt® + T achaTn + r2dQ3_,.

rb-3

e [ he Schwarzschild p-brane solution in D dimension is obtained
by trivial extension of TP,

dr?
1_ 200 NGT P M

TD73fp

200G M
ds? = — (1 — N + r2d25_5_,,

2 =2
S ) dt? + d72 +
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oln 4d Einstein-Maxwell, the charged black hole is rewritten as
r

dr? N
dsQ:_AdtQ—l—%—l—rde%, A:( _7°_+><1__>

) T T
eFor the extremal case, ry = r_, and after r = M +r, we obtain

ds? = —H(F) " 2dt? + H(7)2(dF? + 72d23) ,
where H =1 + M/r is harmonic,
A(3)H — —47TM53(7“).

e The AdS-Reissner-Nordstrom solution (charged BH in AdS) in
4d is
2MG N

7’)

n Q%G  8rGNNATr2
r2 3 .

d 2
ds2 = —Adtz—l—%—l—erQQ; A=1—
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eIn D dimensions, the extremal Reissner-Nordstrom (charged
with respect to A,) black hole is rewritten by 73 = 703403
as

2

ds? = —f(F)72dt? + f(F)D3(dr? + 72dQ%_5)
“in terms of the harmonic function
. TH D-3
f =1+ (L)

eln supergravity however, we can add charge @, associated with
an Apy .., 1, With source term in the action Qp [ dPT1¢Apy y1 =

f dej/vbl"':up-l-lA'ulmlup_Fl, gIVIng

_ CPQP
AOl...p — _’)"D_p_?’ .
e T he source term can be rewritten as (on the worldvolume)
1 o
_ TP/dp—i—lgezl...zﬁl@ilXMl“.aip 1XMP+1AM1MMP o
(p+ 1)! : :

but there is actually also a coupling to the dilaton and the met-
ric, like for the string case.

eExtremal solutions M = |Qp| play a fundamental role: extended
in p4+1 dimensions: p-branes. Important nonperturbative ob-
jects.
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eExtremal p-brane solutions of supergravity (with M = |Qp|),
with action

/dD:c\/_<R——( 0$)* — —— L% d—|—1>

22 2(d+1)°
(here ¢ is a scalar = "dilaton’ ), are of type
dsBinstein = __dsstmng' =1+ |xaf|q72pp
ds2ing = Hy /2(—dt® + d*Q) + Hy/?d#3_,
e 4 = H;;TB
Aol.p = _%(Hp_l —1)

with source term [A(, 41y = [d%cj#tHp+1A4,, . ., added to
Sp.

|17

eSpans a p+1-dimensional " worldvolume™ .

ePlay a special role when supergravity is embedded in string
theory: are equal to D-branes.
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Conformal field theory in d=4

eFor d # 2, infinitesimal transf. is

aslb =z +vu(z) =

eGenerators: (ay,wur) — (Pu, Juv): Poincare (Q2(z) = 1). b, —
K. special conformal transformation, A — D: dilatation.

eForm group: SO(d,2) in Minkowski (d-1,1).

eODbs: All conformal transf. obtained from rotations, translations
and inversions:

I:a:sz—géQ(a;)za:Q
x

eSO we only need to check invariance under inversions for a
Poincare invariant theory.
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eScaling dimension: eigenvalue —tA of scaling operator D

o(z) — ¢'(z) = A2 p(\x)

"eFrom SO(d,2) conformal algebra,

(D, Pyl = —iPy, = D(FPu¢) = —i(A + 1)(Pu¢)
(D, K,] = +iK, = D(Ku¢p) = —i(A - 1)(Kuo)
eThus K, ~ a(annihilation) and P, ~ a'(creation). Generate

representation of conformal group. Operator of lowest dimension
in it = primary operator ¢g (~ |0 >), s.t. K,¢g = 0.
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e [ he orthogonal matrix representing inversion is

9 s
Ruv(z) = Liw(x) = dpp — 2 2

and transforms under conformal transf. as

(z —y)?
Qx)2(y)
e2-point correlators for scalar operators O; and conserved cur-
rents Jl‘j are

Iluy(wl - y/) — RupRyngg(w — y), (wl — y,)Q p—

OO = f;]m

51 v(z —y)
a b v

while 3-point correlators of scalar operators are
Cijk

O, ()0, (y)OL(2)) = .
(0i(2)0;(y) Ok (2)) @ — y| BB By BT ARA, _ pAet A A,

60



od = 4 — N = 4 Super Yang-Mills = representation of conformal
group {Aa,\Ugf,Xf‘U]}.
oln N = 4 SUM, beta function = 0 = scale and conformal
invariant. But A = Ag + O(g) in general. No infinities, but 3
finite renormalizations.

eSO classically: [A/‘}L] =1, [wve] =3/2, [Xf‘U]] = 1, but composite

gauge invariant ops., e.g. trFlfV, have A(g).

o\ = 4 susy invariance of SYM:
§AY = gy, W
sxit = ZellysJla
2

yHY

oWl = — - F el + 2 DXV ey — 294, (XPX ) e 5
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AdS/CFT in original formulation (Maldacena, 1997)

eString theory in AdSg x S° = N = 4 SYM with SU(N) gauge
group (low energy theory on N D3-branes), living at the bound-
ary of AdSs x S2, involving a certain limit.

eHeuristical derivation:

eD-branes = extremal p-branes = curve space. Solution:

ds®> = H™Y/?(r)dzf 4+ H'?(r)(dr? + r2d$23)

Fs = (1 4 %)dt Adxq Adzo Adag A (dH™Y)
R4
Hr)=14+—; R= 47TgsNo/2; Q = gsN
T
eAdd a M — near extremal: M = Q + 6M = horizon = emits
Hawking radiation: 2 open strings on D3 collide and form a
closed string that peels off and goes into the bulk.
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Two open strings living on a D-brane collide and form a closed string, that

can then peel off and go away from the brane.
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oP.O.V. nr. 1 D3-branes = endpoints of strings. String theory
gives:

-open strings on D3. Low energy (¢’ =+ 0) = N =4 SYM

-closed strings in bulk (all spacetime): supergravity 4+ massive
modes of string. Low energy: supergravity only.

-interactions, giving e.g. Hawking radiation as above.

S = Sbulk + Sbrane + Sinteractions

eLow energy limit, o/ — 0, = Spyur — Ssupergravity: Sbrane —
SA—aSy M, Sint X KNewton ~ gs'> — 0. Moreover, since Newton
ky — 0, = free gravity. Thus:

efree gravity in bulk
e4d NV =4 SYM on D3's.

eObs: 9(AdSsx S°) = R31 or S3x R (4 dimensionall): S° shrinks
to zero size at boundary.
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eP.O.V. nr. 2 D3-branes replaced by p-branes (supergravity
solutions).

eGeometry has two asymptotic regions: r — 0: AdSs % S° and
r — oco. Minkowskiqg. Infinitely long throat:

eEnergy at point r is

d 1 d 1
ET'N_

dr  v/—goodt /—goo
eThen at »r — 0, for fixed E, (energy of the throat) Foc — 0 =
low energy excitations.

Eoo = EBno = H Y4E,. ~ rE,

oAt r — o0, long distance dr — oo & E — 0, effective gravity
coupling GEP—2 — 0 = free gravity — in the bulk.
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eCompare POV 1 with POV 2. Same free gravity in the bulk =
Identify the others =

o4d N = 4 SYM with SU(N) on D3 = gravity at » — 0 in
D-brane background, for o/ — 0.

eBackground for » — 0, with /R = R/xq.

—dt? + di'5 + dag
TATST 0 | R2402 : AdSs x S°
X
0

ds? = R?
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Lecture 4

AdS/CFT and gauge/gravity duality in

Euclidean and Lorentzian signatures
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eLast time: 4d N = 4 SYM with SU(N) on D3 = gravity at
r — 0 in D-brane background, for o/ — 0.

eBackground for r — 0, with r/R = R/xg.
| _d? + d72 + da?
T AT T A8 | 224602 1 AdSs x 5P
2 °
0
eNow: Define limit further: r =0 = M ~ R*/r* < o/?/r%.

ds? = R?

o,V fixed and E fixed =
Eoo r )
— — = U = fixed (energy scale
E.AN o/ o ( )
e [ hen, metric is
U? dU?
2 2 -2 / 2

e And dsz/a/ finite, but in order to have small string corrections
we need also gs — 0 (quantum string corrections) and

eR% o = /4mgsN =fixed and large (small o/ corrections).
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8,

Two open string splitting interactions can be glued on the edges to give a
closed string interaction (" pair of pants”), therefore g%M = gs.

elLarge N Ilimit: 't Hooft: for gauge theories with only adjoints, we have an
effective, or 't Hooft coupling A = ¢2,,N, besides 1/N. The dependence of
amplitudes is

where L = loop nr., h = handle nr., x =2 —2h —1 (I= nr. of quark, external
lines) is the Euler characteristic of a surface. Planar limit =h =20

A AP
o AU

a) b) C)

a) Planar 2-loop diagram with 2 3-point vertices b) Planar 2-loop diagram
with 2 4-point vertices ¢) Nonplanar 3-loop diagram.
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e(open string)? ~ closed string = gs = g&,,-

eSo, limit: g2,; — 0, N — oo, but 't Hooft coupling A = g&,,N
large and fixed.

eOpposite of perturbation theory (A < 1) = duality:
Perturbation theory in string theory = nonperturbative in SYM
and vice versa: Hard to test, but useful — calculate nonpertur-
bative effects.

e3 possible versions of AdS/CFT:

-Weakest: only at gs — 0 and gsN large — string theory ~
supergravity. o’ and gs corrections might disagree.

-Stronger: valid at any finite gs/N, but only at gs — O, N — oc,
i.e. o//R2 = 1/4/gsIN corrections agree, but not gs corrections.

-Strongest: believed to be correct: valid at any gs and N (or gs
and o).
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eDefining map: (Witten, 1998)

eGauge invariant operator © of N = 4 SYM, with conformal
dimension A and representation I, of SO(6) = SU(4) <« field in
AdSs, of mass m and representation I, of SO(6) = symmetry of
55

eReduce 10d fields on S°:
¢(z,y) = Z Z Q%Z) (QU)Y({,ZL) (y)

n I

oThengﬁz)ééC%zy\Nﬁh

d2
4

eBut A doesn’'t receive quantum corrections (A(A — o) =
A (X = 0)) only for chiral primary operators = primary operators
preserving some susy: [QcomplOchpr =0

d
A=§+ + m2R?
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o'’ EXperimental”’ evidence: towers of multiplets of operators
in =4 SYM < towers of KK fields on AdSs x S°.

o6 families of chiral primary scalar representations:

Q20,, = Tr (¢U1...¢In)) « scalars with m2R2 = n(n — 4),n > 2;
On = Tr (€ Ayargpd!l...¢'n) «» m2R2 = (n 4 3)(n — 1),n > 0;
Q2Q20, = Tr (PP, 4 A5 AQXdBlXBB?qsfl...cpIn) & m2R2 = (n +
6)(n+2),n>0;

QO = Tr (Fu FH¢li. .¢pIn) <3 m?R%2 =n(n+4),n >0,

Q*Q%0n = Tr(e®PAgargpF2,¢1..¢In) <+ m2R%2 = (n + 3)(n +
7),n>0;

Q*Q*O,, = Tr (Fﬁ'yqﬁll...qﬁln) < m2R2=(n+4)(n+8),n>0.
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eGlobal AdS/CFT. Metric of global AdSs x S® and boundary:
cylinder:

R2
cos2 6
eMetric in Poincaré coords, and boundary: plane:

=2 2 2 2 2
762 — dea: + dx§ + T§dS2E g2 — R_
22 2

ds? =

R2
(dr?4-dO°+sin? 0dQ3)+R2dQE — ds? = 6—2(d7-2—|—dQ§).

dz?.

eBoundary R; x S3 (cylinder) and R* (plane) are related by conf.
transf. (irrelevant for CFT):

ds? = di® = dz® + 2%dQ235 = 22((dInz)? + dQ3) = z2(dr? + dQ3).

eCFT: operator-state correspondence. In 2d, z = e % maps
cylinder (in w: w ~ w+ 27) to plane (in z) and incoming states
(at w = —ico0) with operators on the plane.

ec.g. Closed string. Taylor exp. of operator on plane = state-
operator map:

2 1 2 )
O i o™ X (0 k10,00 45 4] 2 o™ XH(0).
G o/ (m—1)! (0) = a=yl0,0) & o/ (m—1)! (0)
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eHamiltonian on R, (cylinder KK reduced on circle) is the same
as the " dilatation operator’” on plane, generator of ¥ — Ar, since
(di? = dr? 4+ r2d6?)

HRT — 7/87' — ?:'rar — DRQ .

eln 4d, similar. Only, conformal invariance requires qu52 term
in action: on plane, =0; on cylinder: mass term —fq52/2.

eScalars Z in R*: Taylor expansion for this op. are

and correspond to KK states on cylinder, but const. term has
energy E = 1 due to mass term (is a harmonic oscillator).

eAgain, QM Hamiltonian for KK states on R, (cylinder reduced
on S3), same as dilatation operator on R#, for ¥ — A7,

74



Witten construction

eNear boundary aco = 0 in Poincaré coords., O¢ = 0 has solutions
b — cbg and ¢ — zdeo, and (O0—m2)¢p =0 (masswe) has solutions
¢ — x ¢o and ¢ — z§ Bdo (A= dim. of dual op.).

oThen ¢po= source for dual operator O.

eObservables for O « ¢:. generating functional for O:

Zboundafry — ZO CFT[(bO] — /D[SYM fie|dS]€_SN=4 SYM—"f d4$0($)¢0($)

eFundamental idea: Zboundary = Zpulk = Zstmng[¢0]v where ¢g=
boundary sources. But for o/ — 0,gs — 0, R*/a/? > 1 — string ~
classical supergravity, and Zstmng[¢0] — —Ssugraloldoll

= Zo cprlo] = e Smugraldldol]

eBut in CFT, correlators are obtained by derivation:
57?,
< O(x1)..0(xn) > = Zoloollpg=0
" 560(x1)..0¢0(zn) “
57?,
— e—Ssugra[¢[¢O]]|¢ —0
dpo(x1)...0¢0(Tn) 0

75



eDefine "bulk to boundary propagator” Kpg, a propagator with
the free leg on the boundary,

: " Kp(& a0, &) = 6" (& - ),

:c:z:o

such that the field in the bulk is written as a convolution of Kp
with ¢,

#(F,20) = [ d*FKp(#,20;)é0(@) |

and replaced in the sugra action allows us to calculate correla-
tors.

eln our case, [ o )

A

.CCO—>O AN — —/

¢ 0r—2 rxo—K
22 + (a?—:?:’)2] o SO(F-E) Y9z0
so eExample: 2 point function of scalars

_ %Ssugral¢lé0l]
\O(21)0(2)) = - 5do(x1)d¢o(a2) 400

Seugral®] _1 /b d oo To) = 2 / i / i $o(@)go (@)
ounaary

2 | — &'|2d
Cd/2
(O(21)O(x2)) = —%. OKI
|£13 _x/|2d

d
A=d dxo

|f_ a—jv|2d

Kp a(Z,xo; &) =Cy

:)30—>O
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eAnother way to think about it, which can be generalized:
Ssugraldlool] = [ d®ay/g [ a7 [ d*§OuK p(7, 20; 7)o (F)
xOMK (&, x0; 7)o (7)) + O(¢3)
S O@OE) = [ da\gOuz o Kp(F,20: 70, Kp(#,20;7)

eGeneralize: Boundary Feynman diagrams (Witten) for (O(z1)...O(xn)),

ROT

a) Tree level " Witten diagram” for the 3-point function in AdS space. b)Tree
level Witten diagrams for the 4-point function in AdS space.
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e—Xample: oS-point tunction K-current anomaly. ln general, Tor
3-point functions, we obtain

d?zd
(O(21)O0(x2)O(x3)) = _)\/%KBA (20, 2, 1) KB, a,(20, Z; Z2) KB A, (20, Z; 3).

eFor the anomaly, we calculate

5353 pnt vertex [AZ[CL?]]

Jm Jjb ch _ CS,sugra :
(J*(21)J7°(22) J*(23)) CFT, d.p. part 6a3(x1)5a?($2)5a2($3) L

usén S(A) = Tr / P (A, (8,A,)0,Ar + A* terms + A° terms) |
87'(' O M,
and find equality with the CFT result
o , - (N? = 1)idape ijh o 0 B B
5 —(Ji' (@) I (y) J;(2)) cFT.dpe = 152 Bxkﬁylé(x y)o(y — =) ,

coming from the one-loop trlanqle anomaly (which is one-loop
exact!),

Triangle diagram contributing to the (Jf(ac)J]l?(y)J,g(z)) correlator. Chiral
fermions run in the loop.
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e(Euclidean) Bulk to bulk propagator satisfies

1 . . yd—l—l
(0, = m*)G(a,y) = —=8" (@ = y) = (@~ Db(a0 — o) iy »

and is found to be
dk
Gla,y) = (voyo)? | 5 Sge

composed, as usual, of the two independent solutions to the
homogenous eq. (O —m2)d = 0,

RN, (ksS) Ky (ka3)

o R T2 (kwo) o (k) |

where ®. - is regular everywhere (also in the center g = +00),

and at the boundary (zg = 0) is a combination of the non-

P - x eig'fsz:g/zKy(kil?o)¢o(E) , P

1.k 2.k

: _ : A
normalizable mode :cOA and the normalizable mode =z, T (thus

the non-normalizable mode is leading), while <l>2 7 IS the normal-

izable mode :cOA‘ at the boundary, but blows up in the center (so
is not a physical mode). Therefore

Ay d d2 2 p2
P10 ~ x; ,Ai=§:t Z—I—mR =

¢(Z, xo) /ddyKB(f, 20; )P0 (§) ~ 28 2 ¢o(Z) = x5 po(X) .
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ePoincaré, Lorentzian signature, modes: Then k2 = —m2 < 0
on-shell, so solutions

CD:l: x eik'x(afo)d/QJj:y(lkIaTO) :

‘where v = \/d2/4 + m?2R?. Thus near boundary zg = 0,

D~ (zg)2, DT ~ (2g)2+,

so ®~ is non-normalizable and &1 is normalizable (like in Eu-
clidean case), but now both are regular in the center! (unlike
Euclidean case). Thus in the Lorentzian case we must under-
stand ®1 (normalizable and regular).

eNatural Lorentzian map: ¢ — sources, bt — states, in
boundary CFT.

eWick rotating partition function, Witten map is now (|s)=
state)

Zsugra [¢o] = eissugra[¢(¢0)] — ZCFT[be] — <3|€i faM ¢OO|3> -
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eBut state |s) mapped to normalizable mode ¢, so

#(20,7) = énlwo, )+ [ d'yKp(wo, 7 Po(d)
d

xr
= gula0,®) +c [ dly 0 do(®).
" (23 + (& — 7))
eSubstituting in sugra action, we get
J Po (&)

(GalO@|Fn)gy = 5 = Ssuaral6(60)] = dn(@)+ed [ ala 200,

e | hen non-normalizable modes are mapped to sources and nor-
malizable modes to VEVs (or states),

¢ ~ a;j(x0)¥ 2 + Bi(zo)>
implying

A
[

Hopr + ;05
Bi + (o piece).

(BilO]8;)
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eSolutions and propagators in global Lorentzian space. The
metric is

5 2
dsc =

p— p(—dt2 + dp? 4+ sin? pd23_1).

eOnly one solution regular in the center of AdS,

AL +Il4+w Ay +1l—w
2 ’ 2
oAt boundary zg = cosp = 0, two possible behaviours (solu-

tions)

. d
W1 = e ™Y 1, () (cos p) 2+ (sin p)'2 Fy < 1+ 5 sin? p) .

Ay +l+4+w AL+l —-w

= ) (@)(cos p) (sin )

2 ’ 2
: A+ A+ — d
= Y gy (2)(cos )2 (SiN p) 2 ( DI 2T A 1 5 cos? p) ,

where &7 is normalizable , ®~ is non-normalizable, and in gen-
eral Wi ~CtToT 4+ C~~. But if
wp = (AL +1+4+2n),

C— =0, so Wy is normalizable (and regular).
82
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eSO unlike in Poincaré coords., the general solution is non-normalizable,
but particular discrete frequencies, it is normalizable.
eNon-normalizable modes: sources for CFT operators, but at
special AdS frequencies, normalizable modes, corresponding to
states of CF'T on the cylinder, with energies w,;; = A + 2n + [.

e\We can compute global bulk to bulk propagator,

C JAN JAN 1 1
iG(x,y) = B —n I +, + v+ 1; — e | ,
5 g\ 2 2 cosh? £
(cosh iR) 2 R

and take limits to obtain the bulk to boundary, and boundary
to boundary (thus, CFT) propagators,

cos p/ A+
cos(t —t') —sin p/Q2 - Q' + e
1

KB(b,CB) — CB [

Go(b,b) o -
[(cos(t —t') — Q2-)2 4 ie] >

eHowever, the Poincaré boundary to boundary propagator is
different: x%, = |x1 — z5|? in global coordinates is different than
the denominator of the above,

5 2(cos(t] —tr) — Q-

£r — ,

127 (cos i — Q%) (cos T — Q9)

SO in each coordinate set we must define things from the start!
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Gauge/gravity duality

eGeneralize: other max. susy CFT cases: AdS7 X sS4 AdSy X S
— "gravity dual”

eConformal invariance <« AdS space. But we can obtain less
susy by taking AdS x X, e.g. by dividing by a finite group S’f/l‘.

e\/Ve can also break conformal invariance — modify AdS space.

o [ heories with mass gap: AdS space like finite quantum me-
chanical box: must cut out a thin cylinder from the middle of
the AdS cylinder.

e\\We have an UV-IR correspondence:
E~U=7r/d = IR in CFT =r — 0 (UV) in AdS. Cut out
around r = 7Tin-

eMotion in U = r/a’ — Renormalization group flow in QFT.
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Minimal ingredients to simulate QCD:

eA large N quantum gauge theory (N — oo for small gs correc-
tions)

eBoundary at infinity identified with flat space of QCD, but bet-
ter: field theory at energy scale U corresponds to flat space at
position r in the gravity dual.

e[ hus d+ 1 dimensional gravity dual corresponds to d-dim. field
theory plus its energy scale U.

eSince motion in U is RG flow, mass gap corresponds to minimum
r of gravity dual.

eGauge group appears in gravity dual only through V.
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Map field theory/gravity dual

eGlobal symmetries in Mink, field th. < gauge symmetries in
d + 1-dim. gravity dual. — global symmetries of compact space
Xm. Jﬁ couple to Af;.

e, Noether current: Ty, <> (couples to) gur. So d-dim. transl.
inv. < diffeomorphism invariance in d + 1 dimensions.

eOpen/closed coupling: gs = g&,,/(4n).

eGauge invariant operators < (sourced by) gravity dual fields in
d+ 1 dimensions: eSupergravity fields in d+ 1 dim. (reduced on
Xm) + SYM operators (made of adjoints) (" glueballs).

eFor quarks (fundamentals of gauge group and of some global
symmetry GG), introduce SYM fields for the group G in the grav-
ity dual, coupling to G-charged, pion-like operators (made of
quarks), so "SYM< pion fields".

86



e [ hus: supergravity modes < glueballs, SYM fields <+ mesons.

eMass spectrum of tower of glueballs = mass spectrum for wave
eq. of sugra mode in gravity dual. Similar for mesons.

eBaryons: more than two fields, e.g. B!/E = ¢, ,.ql%q7I¢l*. 1In
field theory: solitonic. — e.g. topological solitons in Skyrme
model. In gravity dual: solitons: branes wrapped on cycles.

e\Wave functions of states in field theory, e’”‘f‘fv, correspond to
gravity dual wave functions ®(z, U, X;,) = 2w (U, X,).
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General properties for gravity duals for QCD-like, or SQCD-
like theories:

oAt high energy: conformal (all mass scales irrelevant). Thus,
for U — oo, AdSg x X5, or maybe with subleading corrections to
metric.

oAt low energy, mass gap, SO gravity dual must terminate at
some Umin, such that "warp factor” U? in front of dz? remains
finite.

eFor fundamental quarks, open string modes on some brane must
be introduced. Couple to meson-like operators. Alternative: free
probe branes, probing physics at various energy scales.

oIf QCD-like theory has global symm. (like flavor, or R, symm.),
gravity dual, so X,,, must have this.
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Lecture 5

Holographic renormalization and

holographic RG flow
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Holographic renormalization

e There are infinities in the AdS (or gravity dual) calculation of

the on-shell sugra action: must renormalize them.

eln part., volume near bound. isco: [ dzo\/g o< [ dxo/(z0)? .0 — 0.
eMust add counterterms to on-shell sugra action: Sren = Son—shell,sugra
+Sct, and take derivatives of Syen with respect to boundary
fields.

e\We will obtain for the exact one-point functions for nonzero

source
1 0.Sren

V9(0) 9¢(0) ()
1 0Sren
(Ji(x))A,gy, = — ~ A(pyi(z)
i) Aoy, G0y 0 A0y (@) !
1 dS5ren
- F ~ 9(d)ij (%)-
V/9(0) ©9(0)i;
*pon_g) = coefficient in expansion near boundary of the exact
solution (not determined by the near-boundary expansion of the

equations of motion), and similar for Ay, and g4y,

(O()) ¢ 0 ~ dan—q)(z)

<Tij ($)>9(o)¢j
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eFrom the exact one-point function with source, so the ex-
act solutions ¢oa_q), Am)ir 9(a)ij,» We can calculate the n-point
functions via derivatives,

3"t pon—qy(x1)
) 5)...0 €T '
?(0)(@2)...0¢(0)(zn) 50 =0
eAlso diff. and conformal Ward identities are obtained as
Vi<Tij>g(o)¢j =0, <Tiz'>g(o)ij =A.
eAsymptotic expansion. Define asymptotically AdS space-

times by near boundary (z = 0) expansion. Metric can be put
into

<O($1>O($n)> ~ (_1>n_]_

1 S
ds? = Z—Q(dZQ + g;;dz'da?)

where gij(a_:’, z) solves Einstein’'s equation and admits Taylor ex-
pansion (is smooth),

9i5 (T, 2) = 9(0Yi;(T) + 29(1):;(Z) + 229(2)@7 + ...
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eEinstein’s equations fix all g(n)(f) with n > 0 in terms of g(o)(f).
(in part., in pure gravity all odd powers vanish up to zd). If d is
even, we can also have a logarithmic term at order zd, SO

eSolutions for 9(n) in terms of 9(0) is algebraic. In the above,
9(d) iIs determined by 9(0): but h(d) equals the variation of the
conformal anomaly with respect to the metric.

eA general field ® (&, z) has the near boundary expansion

(&, 2) = 2" (D) () 27D () () .. +27" (P (2) (&) +10g 2°P 5,y (F))+..

e T he field equation for ® (second order in derivatives) has so-
lutions near the boundary 2z and zm+2”, and their coefficients,
CD(O) and CD(Qn), correspond to the source for the dual opera-
tor, and to (O) (VEV), respectively (this is true for the exact
one-point function).
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eRegularization and counterterms: Regularize the boundary:
at z = e instead of z = 0. Then regularized action is

Sreg [CD(O)> ‘5] — /( : dda?\/%[e_QVS(o) [¢(O)]+E_2y+28(2) [CD(O)]—|—...—|OQ € S(20) [CD(O)]—l—finite] .

eLeading divergent term: ~ [dz/z0tT1¢2 ~ 4=2: must be can-
celled by counterterm. Minimal subtraction scheme:

Sct[P(Z, €); €] = —div.terms in Sreg[P (o) (P(T,¢€)); €].

e | hen the subtracted action, varied in order to obtain correla-
tion functions, is

SsublP(Z, €); €] = Sreg.[P(gy; €]l + Sct.[P(T,€); €],

and has e finite (must be kept so; put ¢ — 0 only at the end
of the calculation). However, the renormalized on-shell action is
its e — O limit,

Sren[cb(o)] = EII_% Scup[P (L, €); €] .
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e | he one-point function, from which we can calculate the other
correlation functions, is roughly

. T 1 5Sren .

“but really keep € finite and put it to zero at the end, so really,
P(Z,€) = €mP gy + ... and ;5 = goyij/€* + .. Then

(O@@))ap, ) = lim ————_OOsub_
) e=0ed=m /AN IP(Z, €)
e [ he result is proportional to the linearly independent coefficient
D, (), but there could also be a local function of the source
CD(O) that leads to contact terms in the higher n-point functions,
and is scheme dependent, soO

eRG transformations in field theory arise from bulk diffeomor-
phisms that induce Weyl transformaitons on the boundary, so
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Example: massive scalar in AdS

eWriting first ® (7, 2) = 292 4(Z, 2), ¢(&, 2) is finite at the bound-
ary, and has a Taylor expansion in even powers of z,

o(Z,2z) = ¢(o) + 22</5(2) + Z4</5(4) + ...

eSubstituting in the KG eq. expanded in z, we find first m2R2 =
A(A — d), then

1

P2)(T) = 22A —d_ 2)&6@(0)

1 1
r = azaz g eeey n) — 8182 n—2)
P () 220 — d— &) 0@ P = 5 Ay Y en-2)
and so on, and the series ends when 2A —d—2n = 0, where we

need to introduce a z5log 22 term in P, so

(T, 2) = ¢(o)+22¢(2)+----|-22A_d(¢(2A—d)-|—(|09 22)¢~5(2A—d))-|----

eFrom the equations of motion, expanded in z around the bound-
ary, we find

1

e (A ) (A-5)

on the other hand ¢xa_q) IS Not fixed by them.

(8:9:)2 20y

%(QA—d) —
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eRegularization and counterterms: Regularized Kinetic on-
shell action for & is
1

Sreg. = 3 . d e /g1 (9" 9, Do, D + m2d?)
1 1
— 5 ]~ dd+1ac,/gd_|_1<b(—ElgW + m2)¢ — 5/2_6 d%. /Gd+19~ PO P,

1 1
= [ dte 2 (E(d — 8)6(F, )2 + Sed(T, DI e>) ,

where we integrated by parts, used the equations of motion,
and expressed @ in terms of ¢. This is of the general form, with

1
s = —5(d= 2
d—A\-+1
sy = —(d—=A+1)P0)o(2) = T20A —d- 2)¢(o)3z'3z'¢(o), e
~ d A_d
S(2A—d) P(0)P(2A—d) Y= (A - %) (A - d_TQ) ?(0)(9:0;) =" 2¢(0)
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eFor the counterterm action, cancel the divergences, but with

</5(2k) re-expressed in terms of ® (&, ¢). Inverting ®(Z,¢) to second
2

order in €<, we obtain
_ —d-D) (o oy 1 -
¢(O) € (CD(J;, €) 224 —d—2) O~ P (Z, e)>
_ _—(d-A)-2 "
b2 = € 20 —d—2) 1PE

where Oy is the Laplacean of v;; = 5Z'j/€2 (induced metric at
z = €). Then the counterterm action is

d— A 1
S :/ d4° P2 >0, b |+0(02)
et boundary W ( + 22A —d—2) ! >+ (B5)

eFor A = d/2+k, the coefficient of ®0O,d has a loge (for k =1,
_l|o
510g€).
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eThen for A =d/2+ 1, we obtain

§Ssub, = —%5/ dd:v\/ggZZClD@ZCID—F(S/ dd:z:\/_<d - 2—%Iogz<bny<b>+..
= / d2z\ /76D (—ed. D + (d — A)D — log O, P) =

1 0Ssub. _Z_€ B B
ﬁ el 0P + (d — A)P — logeO, P |
so that

1 9S8

SUD.  — _ 9. + (d — A)D — log 0D
VY 0P
L . 1 1 5SSUb

which is of the general form (O>¢(O) ~ ¢(2A—d) + F(qb(o)), since

for A = d/2 + 1, ¢(2A—d) = ¢(2), and 5(2> = $(2A—d) = F(¢(O))
For general A, one finds (one can show)

(Do) = —(CA =d)pan—a) + F(o(0))-
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e This proves that indeed, ¢oa_q) (the coefficient of r2) gives
the (deformation of the) operator VEV, while we had that ¢
(the coefficient of 2d= A) gave the operator deformation of the
theory (source).

eTO calculate the 2-point function from the 1-point function, we
need ¢oa_g) and F as a function of ¢y, which only is true for
the exact solution.

eFor example, for d = 4 and A = d/2 4+ 1 = 3, the regular
solution of the KG equation in momentum space (regular also
at the center) is

= 2°Kq(2),
expanded near the boundary z = 0 as

d(k,z) = %z [1 + k222 ( (2v —1) — 1 log2 4+ = Iog(kz))] .
SO we have

~k—k2 k k) = k2 | 227 — 1) + Zlog X
P2y(k) = Z¢(o>( ), d)(k) = ¢ (k) [Z( v — )+§ og§]:>

. 1 1 1 k2
(Ole = =200+ 8y = ~200®) | 52y = 1)~ J1002+ 5 ) + F10912]
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e [ hen
dp(oy(k) K2

(O(B)O(—k)) = — — —_log k® 4+ contact terms ,
Spoy(—k) 2
which Fourier transforms to the x space into
4 1
(0(2)0(0)) = —R—,
7T X

where R1/z° equals 1/2% away from = 0. For A = d/2 + k,
one obtains

F(A) - 1
rd/2r (A — d/2) xz2H8
eNote that naive Witten prescription calculation differs by (2A —
d)/A.

(O(2)0(0)) = (2A — d)

100



eRG transformations, © = ¥ u, z = z’u, onto scalar ®(Z, z), imply

_ Pon)(T) = “d_?+2k¢(2k)(flu), 2k < 2A —d
Poa-a(@) n2Pan—a) (@ 1)

Sonay@) = p2bna_ay@ 1) +109 > Gon_ay(@F )],
leading to
0
u@qﬁm)(fm = (A -d)p) (@),

O, = 12 ({0@W)g) — A = d) 109 42F(2n_a)(T1))

consistent with ¢(0) a source for an operator of dimension A,
and $(2A_d) giving the conformal anomaly.

e\We already saw that ¢oa_4) Was a deformation of the VEV of
the theory, and the above RG flow is also consistent with that.
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Holographic RG flow

eMotion in radial coordinate of the sugra solution, starting and
ending at solutions with AdS symmetry < RG flow between fixed
points of the field theory.

eRG flow initiated by relevant deformation of CFT: must deform
basis theory by some operator.

eExample: N = 1 susy deformation of ' = 4 SYM. The
superpotential of N =4 SYM,
W = Tr(®3[P1, Pso]),
is deformed by a supersymmetric mass deformation
SW = %Tr (®3) |

eObs: Superpotential is in superspace: Superfields ®(x,0),
where 6 is a fermionic (anticommuting) variable. For a 4d chiral
superfield,

P(x,0) = P(y,0) = ¢(y) + V20u(y) + 00F(y) , y* = z" + ifcH0
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oln 4d, J 2 anomaly coefficients characterizing fixed points,
central charges ¢ and a. guw < Tuv, Ay < Jy. Consider J,
the R-current (SU(4) = SO(6) global symmetry, acting on the
fermions).

eThen, anomaly in VEV of T#, (classically = 0 by conformal
invariance) and VEV of o*J,,

C 2 2
a—c ~ 5a — 3¢ N
<8M\/§JM>9MV,A+M — _247T2RWPORWPU + 72 FMVF )

where F’,LLI/ — %G'uypO-Fpo', R"Zujpo' — %GMV)\TRATPO-, and C'uj]/po' IS the
(conformal invariant) Weyl tensor,

2 2
Crvpo = RWPU_d_—Q(gu[pRU]V_QV[pRU]u)+(d “1)(d - Q)Rgu[pQU]V'

In 4d we have the topological density F, and the conformally
invariant Ig4,

Ruypgﬁuypo- — RluypgR'uypa — 4RM1/R'MV —I_ R2 E4

R2
CMVpO_C,UVpU — R/j,]/pO'RMVpO- QRM]/RMV —I_ ? I4
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eCentral charge ¢ counts perturbative massless degrees of free-
dom in CFT, up to normalization. Here, normalization chosen
such that ¢ = (N2 — 1) for N =4 SYM.
eAnomaly contributions in (0*Jy): a —c from O*J, — Ty — Ty
triangle, prop. to Z)(R(X) and 5a— 3c from o*Jy —Ju— Ju, prop.
to ZX R(X)3 : '

diagram for a-c diagram for Ha-3c

a
a) Anomalous diagram cor?tributing toa—c b) Anor‘?walous diagram contribut-
ing to 5a — 3c.

eFor N'=1RG flow on N' =4 SYM, UV: ¥, R(x) = 0,%, R(x)>,
IR: ¥, R(x) =0, ¥, R(x)3 = 3(N2-1), so

ayy —cyy = O; 5aUv—-3QN/QZ§(Af-—1),

3
0; 5arr— 3cir Z(Nc2 —1) =
air __ CIR 27

ayy  cyy 32

arr — CIR
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ec-theorem: (2d:zamolodchikov) For an RG flow between 2 fixed
points, d monotonically decreasing function along RG flow, with
value cyy in the UV and cg in the IR, called c-function. In 2d,
c appears in the trace anomaly (in conformal invariance),
C
(TH,) = _ER'

eln 4d, similar statement (Komargodski and Schwimmer, after con-
jecture by Cardy): a-theorem: for the a charge. Will be proven
constructively via AdS/CFT.

eCardy’'s statement applies in general dimension (thus including
the c-theorem and the a-theorem) to the coefficient of E; =

(TH,)) = —2(=)Y2AE, + ...

eCentral charges in N/ = 4 SYM: from holographic Weyl anomaly.
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eHolographic Weyl anomaly and central charge: The vari-
ation of the on-shell sugra action under a Weyl transformation
09(0) = 209(0); 06 = 2d0€¢ gives the one-point function of T#,

— i 1 1 oS _
(Tuy) = lim_0 iy Ty 5g~°;fyb, for A+ =d). But

Sreg = (167G )72 /ddivw/g(o)[--- + (—log €)s(q)] + Stinite ;

and the finite part is cancelled by the counterterm, so we obtain

1
0 Sfinite = —/dda: 9(0y0cA ...=> A= (—2s¢))-
(0) 167TG§\?+1) ()
oA holographic calculation leads to a = ¢, so
a
A= — E Ig) ,
167r2( 4+ 1)

and (G5 = G\ /R5Qs, and Q5 =73 )
2R3 TR3

a = cCc = —z _

p5 8G§\?)
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eHolographic RG flow and c-function: Kink ansatz. Holo-
graphic RG flow ansatz must be Kkink-type:

ds?® = A0 (—dt? + d75_,) + dr? = A0y datda” + dr?

and ¢; = ¢;(r). AdS: A(r) =r/R,¢p; = 0. Thus, at endpoints:
Aq(r) ~ T/Rl(UV),AQ(T‘) ~ T/RQ(IR), ¢; ~ 0, with Ry < R7.
eConsider perfect fluid T),, = diag(p, p1,...,Pq_1), Satisfying weak-
est energy condition (satisfied by all QFTs), p+ p; > 0, then
Einstein equations for the above ansatz, with

Ry = 240 A" + d(A) ;. Rer = —d[A” + (A)?]

one finds the condition A” < 0. This means that we have the
monotonically non-increasing function

C(r) =a(r) = (Ag(zl—l'
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eWith the proper normalization, we find the c-function (or a-
function) in d dimensions, which gives ¢ and a at the endpoints
(fixed points),

.

r@/2)(p eyt

eNote this also gives the value of the holographic central charge
in d dimensions!

eSupersymmetric flow For the N = 1 mass def. of N =4 SYM,
in N/ = 8 sugra: interpolate between the N' = 8 susy AdSs and
another NN =2 AdSs (1/4 susy). Thus susy kink = dgysyy = 0.
eSupergravity scalar potential V in terms of superpotential W is

C(r) =a(r) =

9 2
v==-% — 312|W 2.

5%
e [ hen from gravitino variation &bu = 0 and spin 1/2 variation
Sy ¢ = 0, we find

ow
ooy

do; 3l2 ow
dr 2 P@cbi ’

A= —15W;
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eSO the c-function or a-function in this case is

2

(1%5)>9w3 ’
“eFor the flow of interest, we indeed find a(0)/a(c0) = 27/32!

C(r) =a(r) =

eExtension and application: radial time evolution (holo-
graphic cosmology). Consider the Domain Wall/Cosmology
correspondence = double Wick rotation redefining radial r as
time ¢, with background taken together as (note: z is not the
previous onel!! )

ds® = ndz? + a?(2)di? , ® = ¢(z2)
where n = +1, solutions to the action (k2 = 87Gy)

S = QLI#/d4x\/|g| R+ (89)2 + 2x2V ()]
eCosmologies are solutions to the equations
' 1 3
Y= W, =W, 29k2V = W,)2 - w2,
a 2 2
where W is a " fake superpotential” (V(W) the same as in susy).
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eAsympt. AdS: a(z) ~ €%, o ~ 0 at z — oco. Formalism in-
cludes also sympt. power law (non-conformal AdS/CFT), a(z) ~
(z/20)™, ¢ ~V2nlog(z/zg), zg = n — 1. These domain walls be-
come cosmologies for n = —1.
eAsympt. AdS in Fefferman-Graham coords. vs. ADM parametriza-
tion:

1
ds® = — [alz2 —+ <g(0)z'j + ...+ zdg(d)z-j -+ )}

Z
ds® = gudrtdz’ = 7;;dz'dz’) + 2N'dz'dr + <N2 + N-NZ) dr?
match in the gauge N = 1,N; =0, for z = e™", sO 7;; = g;; =
5(9(0); (&) + ) =€~ r(g(O)z] (@) +...).
e The usual canonical momenta in ADM formalism (with action

2,]%2 dd_l_lw\/_N(R + K K/u/K’uV 2H2£m)),

v 5L _ 1 (KW” KW) | T _ 5L
become equal to the momenta obtained from the variation of
the on-shell action with respect to the boundary variables,

0Son— 0Son—
W“V(rl,f) = on shﬂl ’ Wl(rl,f) — on—shell 7
5’7#!/(7“1» ) 0Py

1 — OCQ.
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eBut since

(T3 (%)) = 1 5Son—shell(g(0)a ) (OF) = M
! v 9(0) () 090y (&) ’ opl
we obtain
' 2 1 . . d
{ 3(5’7» ( \/5771)@ 8GN ( J ’YJ)(d) 167rGNg(d) J(CU)
. 1
(O(@)) = \/—§7T{AI) )

where the subscript means keep the part with the correspond-
ing engineering dimension (or dilatation eigenvalue), d for T or
A for O; or the given term in the near boundary expansion in
z (terms of less dimension are divergent, and are removed by

renormalization). (6r >~ dp, and dpme,);; = —NT(,)5)-

e [ hen, according to the general theory, 2-point function from
1-point function with nonzero source,

e Tt = VI(©)ij 09(0yki (Y) e = V()i 99(0ykt (Y) <_\/§Wij($)>(d).

e[ he r.n.s. can be calculated in gravity, and is related to the
2-point functions of gauge invariant fluctuation modes ~;; and
¢, linear combinations of the h;; and ¢ fluctuation modes of the
cosmology.
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Lecture 6

Finite temperature and N =4 SYM plasma

112



eFinite temperature in field theory: QM transition amplitude

(d,t)q,t) = (e T D gy = 3" () (q)e B0 |
n
with t — —itp, t/ —t — —i83,1S — —Sp, gives
(812,00 =3 Y )y (g)e PP,
eIn the case ¢’ = ¢ and integrating over ¢, we get
| data; 51a,0) = [ da’3 > gn(a) e * = Trie P} = z15]
eBut the transition amplitude is a path integral,

(g, t) = / Dq(t)elaM]

so Wick rotating it to periodic euclidean time, we obtain

7 — DbeSEB — 1.~ BH
BB = [ prirmsoin O e
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eEuclidean (Wick-rotated) Schwarzschild black hole

2A4€hv dTQ
2MG

. " 1 - r =

eDoes not make sense for r < 2MGp (unlike Minkowski signa-

ture) since signature of space changes! But near r = 2MG Gy,

r—2MGN =7 = p? =

+ r2d$25

d32:—|—<1— )d72+

p2d72
(AMG )2

e This is of the type of a cone, ds? = dp? + p2d6? in general, and
only if 8 ~ 6 4+ 27 is a plane.

ds® ~ 8MG y [dpz + ] + (2MG N)?d$23

A flat cone is obtained by cutting out an angle from flat space, so that
0 € [0,27 — A] and identifying the cut.
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eTO avoid conical singularity at »r — 2MGx = p2 = 0, we need
7/(4MGp) to have period 27, so 3 temperature

Iy = L !
Br 8mMGyN
eBut Schwarzschild black hole is thermodynamically unstable,
since the specific heat
__OM 1
—oT _87TT2GN
eSO we can't interpret the black hole as putting the QFT at
finite temperature. In AdS space however, this can be done, as

we will see.

<0
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oeSpin structure in black hole background. At r — oo, the
Euclidean BH solution is

ds? ~ dr? + dz? |

‘where 7 ~ 74+ 8rMGpy, so R3 x S1: KK vacuum. |
eEXxpand in Fourier modes. But fermions can acquire a phase ¢
around a circle, here Sl at infinity,

b — €Y,
known as spin structures. o« = 0, always OK, others depending
on L.
oAt horizon r = 2M Gy, metric is ~ R? x S2, where Q5 is the
sphere at co. But R?2 x S2 is simply connected, i.e., 3 nontrivial
cycles: any loop can be smoothly shrunk to 0. Thus no non-
trivial fermion phases possible around any loop, so 3 unique spin
sctructure!
eBut what is it at infinity?  — 74 8 at infinity is 8 — 604+ 27 near
horizon, i.e., rotation in 2d plane, under which a fermion gets
a minus sign. Thus unique spin structure is antiperiodic around
circle at infinity.
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o KK masses and susy breaking: If fermions are antiperiodic
at infinity, they must depend on the Euclidean time 0, ¢ = ¢ (0).
Then at infinity

Jp =0 = §% = O4q¢ = 0.
eBut under dimensional reduction 0O,,; = O3, + 02/962, so

2
0 = Oygp = <D3d + %) Y = (O3 — m?) ,

so fermions become massive in the presence of the black hole
(from the p.o.v. of the reduced 3d theory).
eBosons can be periodic at infinity in 8§ ~ 6 4+ 27, so, e.g. for a
scalar under KK reduction

2

0 = O4q¢ = <D3d‘|‘ %) ¢» = U340,
so they remain massless.
eBut for susy we need megcq1ar = Mfermion: SO SUSY is broken by
the black hole.
eln fact, one can prove that finite temperature always breaks
susy in QFT (regardless of the existence of AdS/CFT). So we
have a way of breaking the unrealistic N = 4 susy by finite
T
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The AdS black hole and Witten’s finite temperature
prescription witten, 1998

eWitten: to put AdS/CFT at finite T, put a black hole in AdSs.
Black hole in global AdS,,41:

dr?

2
2 T wnM 2 2 2
) ) 87TG§\¢’+1)
oAt M = 0O, we obtain AdSs in global coord. (w, = )

—

eFollow Schw. case, first: (outer) horizon r4 is largest sol. of
2 wn M

.
ﬁ —I— 1 — ,r.n—Q - O
eEuclidean sol. near outer horizon (0r =r —r4) is
2 — 2w, M dor)?
ds® ~ | X (n = 2)wnld ) 5, 42 4 (dor) + r2.d3,
R ¥ S (QP% - M)
+

eMetric is free of conical singularities if the period in t is

g = 4 . 4
T 2r (n—2)w,M ~—  nr (n—2) °
R;_ _I_ 7";71 R;_ _I_ T+
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Then the temperature of the AdSg black hole is
nr_zi_ + (n — 2)R?
B 47TR27“_|_

oFrom T'=T(ry) and r4 = r4 (M), we get T'=T(M). From
d/dM on the horizon eq., we find

—1
|+ -2 =

SO dry /dM > 0. Therefore the min. of T'(M) is when dT'/dr4 =

0, giving
n—2 nry \/n(n — 2)
= R = Thin = = :
"+ \/ n min 27 R, 27 R,

eLow M branch (M < M(Tmin)) has C = oM /0T < 0, so is
thermodynamically unstable (is a small enough perturbation of
the flat space: Schwarzschild; black hole small w.r.t. AdS radius)
eHigh M branch (M > M (Tmin)) has C = OM /0T >), so thermod.
stable.
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' % <0
T (unstable) \,gl}[‘l ~0
Tmin
]y[ min I\{I 1 >1\'{[

T(M) for the AdS black hole. The lower M branch is unstable, having
OM/OT < 0. The higher M branch has OM/9T > 0, and above Tj it is
stable.

eNeed to check also that free energy, Fgy < Fags.- Free energy
is def. by Z = eI, but in gravitational theory

Zgrav =e ",

where S=Euclidean gravity action. Then

F
S(Euclidean action) = T

so the comparison we need to do (and can prove) is
n—1

Fpr — Fags = T(Spu — Saas) = T >T1 =
2T R

> Tmin-
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eOne more problem: Metric at r — oo is
2 R 2
ds? ~ (%dt) + <?dr) + r2dQ2_,

.and, while the transverse S7—1 has radius r — oo, only the
relative distances matter in CFT at infinity, so r scales out, and
boundary is S7~1 x S1, instead of R" 1 x S1 (flat space with
periodic Euclidean time). Then we must have

=R-T—>0c0o=1T —>00= M — o0,

1
T
and we need to rescale coords. to get finite results. We find
M ~ r™ and r2dt?2 must be finite, so

[ waM 1/n _ [ waM —1/m
r= Rn—2 py t= Rn—2 T

and M — oco. Then (dz; = (wnM/R”_Q)Qin)

=M

2 n—2 2
P R dp
d32=< - _2>d72—|— > Rn2+p E:dwz,
RZ T 2 1=1
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e | he temperature is found from the period of 7, now
4R R
n £1 4

.oFor n = 4 dim., the metric becomes

2 4 2
R d
ds? =L 11— 2 ) dr? + R?di?| + R? P |
R? p* 2( _R_4)
P P

and after % = U%; r=t9; F= Y55, and adding back in
R2dQ2, we find

ds? = UQ[ f(U)dtQ—I—d‘Q}—I—RQ du + R2dQ2
© T R? v U2 £(U) 5
U4
fUu) = —U—a.

e This is the nonextremal AdSs x S% in Poincaré (1) coords. But
that was near-horizon of D3-brane, so this can be obtained also

as near-horizon of near-extremal D3-brane.
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eMoreover, after U/R = R/z and Ug/R = R/zp as usual, we find
finite T' version of Poincaré-AdS

5 R? dz?
ds* = — |—f(2)dt* + dj* + + R2d02
=L, f(2)
<

with temperature T"'= 1/(7zg) (consistent with previous, 8 =
TR = By = mzg)

eSO putting a large M black hole in AdS space < putting the
boundary field theory at finite temperature.

elnterpretation: It takes radiation a finite time to get to oo and
back = radiation of black hole gets back in: stability (unlike flat
space, where the time is infinite, so only BH is at finite T).
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oIln AdS-BH, susy is broken. Fermions antiperiodic around Eu-

clidean time (which is an S1), so we KK reduce N =4 SYM to
3d.
eFermions are massive, gauge fields are massless (protected by

gauge inv.), but scalars, classically massless, become massive
through a quantum fermion loop. Then we have 3d pure dglue
theory (A7)!

eCan we understand mass gap in pure dglue theory from
AdS/CFT? — spontaneous appearance of mass for quantum
physical states in QFT — of classical physical states in AdS.
eScalar field sol. to O¢p = 0 can be put in factorized form

é(p, Z,7) = f(p)eT.

eHorizon: bd. cond. that sol. is smooth, df/dp = 0 (horizon
= like origin of plane in cyl. coords.). At p — oo, impose nor-
malizability (state = physical), so f ~ 1/p*. The 2 conditions
give a quantization condition on parameters, 152 = m? = discrete
spectrum.

eEffective QM box between 74,5200 = Tmin anNd r = oo (light
takes a finite time) = discrete modes my, <> masses of nonper-
turbative objects = glueballs in QFT. Simplest model with a
mass gap!
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eBlack hole horizon at finite r = cuts out a small cylinder from
the middle of AdS — like the case of mass gap described before:

Black holein Anti de Sitter space:

time
event horizon
sectio 74742
ez
<—boundary of space box
S
oven
*light takes a finite time between horizon L -
and boundary: like a perfect ovenin a B . =
reflective box:

houndary

*M/ if ¥ for large enough M
* small M: likein flat space

—Black hole can be in equilibrium with Anti de Sitter

— fixed temperature inside Anti de Sitter
Black holein AdS<—= fixed, finite temperatureinflat 4

dimensional world (Witten, 1998)
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N =4 SYM plasma from AdS/CFT

e\Without dim. red. to 3d, N/ = 4 SYM at finite T: very different
from QCD. Nevertheless, find that various results in N’ = 4 SYM
at finite T are similar to QCD at finite 7T: universality?
eBrookhaven's RHIC and LHC's (CERN) ALICE, one obtains
sQGP (strongly-coupled quark-gluon plasma). Even though dy-
namical and spatially bounded, we can use the previous methods
to good approx. But they have also finite density p, finite chem.
pot. u, and magnetic B fields important, so need to describe.
Bulk properties: Entropy of 5d BH: Bekenstein-Hawking:

A
- 4GN]
and should equal QFT’s entropy. But area of horizon, A =

Ij—gfdyldyzdy:g is oo, Therefore the entropy density is

s R

[ dyidyodys  4Gnszd
eBut 2x%, = 167Gy 10 = (27)"g2a/* and in AdSs x S°, R*
o/zg}%MN = o/%(47gs)N.

S
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e [ hen reducing on an S° of radius R, with Qg = w3 gives

4 e 2
o T 8 o N,]_O o T 3 o T 2,3
GN,lO = —2N2R = GN,S = . 5 = —2N2R = S)\=o0c0 — EN T=.

e T his is entropy density at oo coupling. From ¢ = 0P/90T and
e=—P+Ts, we find

T 2 % 2

at infinite coupling. But at weak coupling, one free bosonic
d.o.f has s = 27r2T/45, and one free fermionic d.o.f. has 7/8
of that. The for N = 4 SYM (8 bosonic d.o.f and 8 fermionic
d.o.f., all in adjoint of SU(NN)), we have
B 7 5 2273 272 5 3

S = <8—|—88> (N2 - )= = ZN2TS
so we obtain the ratios (for pressure, we use the same thermod.
relations)

SA=00 __ 3 P)\zoo — EA=0c0 __ 3

b
Sx=0 4 Pyx—=o Ex=0 4

o' Experimentally” (in lattice QCD), we find 80%, close to the
above 75%.
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eEnergy loss: drag on heavy quarks When a fast heavy quark
(would-be "jet") passes through sQGP plasma, loses energy at
high rate: "jet quenching’: observed experimentally at RHIC
and ALICE.

eAdS/CFT: heavy quark is long string stretching between the
boundary at oo and interior of AdS. Moving heavy quark on
straight path: string moving at oo on straight path. The other
end: asymptotically to the horizon. Force against momentum
loss keeps it at constant velocity.

eAnsatz: Boundary endpoint: z = 0 and y(t,z) = ot + h(z).

Static gauge o = z,7 = t, so NG action in AdS-BH is:

/dz \/f(z)—v + /()202(2)
S = —
2ol f(2)
oS = S[h/(2)] = canonical mom. is conserved:
) §S  6S  R? 1 32N (2)

Pl = = = — — .
T(z)  yY(2) 21l 22\ /F(2) — v2 + £(2)2Kh2(2)
eSolve for h'(z). Then denom. and num. =0 at same time, so

h/Q(Z) — (

27T0/PZ1>2 24 f(z) —°

R2
% .= le = =+ 5YV.

f(z)? f(z) — (27raP1)224 2ma’zg
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eFinally, integrating h'(z), we find

h(z) = _ =0 [arctanh <i> — arctan <i>] :
2 20 20

AdS boundary z=0

— external
force

event horizon z=z,

A quark being pulled by an external force at the boundary, and a string trailing
behind it, hanging down from the boundary.
e hen momentum loss in the plasma is

d R?

“P _ _pl _

— = — v
dt “ 27?0/2:8’y

oIn N = 4 SYM variables, R?/a’ =X and T = 1/(wzg), so (p =
M~v is the heavy quark momentum, np is the drag coefficient)

dp 7'('\/— > T 5
P e TAT? = V2T? = —npp .
dt 2 T o "op

eReasonable comparison to QCD, if g&,, — g%CD(,u).
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eAdding finite chemical potential © %= 0. N =4 SYM charge
= R-charge (for SU(4) = SO(6) global symm.). Gravity side:
sourced by Af;.

eCoupling [ d%J*a,, a,= boundary value of A,. Then charge
density JO couples to ag. Thus boundary condition for nonzero

Charge is A= Ag(z)dt+ ..., z—0
eBut source coupling must be gﬂ, so Ag(z = 0) = ag = u,
chemical potential of R-charge. So boundary cond. is A — udt

as z — 0.
eSolution with nonzero gauge field at finite temperature: Reissner-
Nordstrom-AdS. In Poincaré coords. we just change f(z) to
charged expression, and add the gauge field,

R2 sz
2 — & | _ 2 =2
ds® = . ( f(z)dtc 4+ dz< + f(z))
2\ ¢ . 2(d—1)
f(z) = 1—-(14Kz3p?) <_> + K232 <_)

Z_|_ Z_|_

(d — 2)/1]2V,d_|_1

(d—1)g°R?

o= ep-G)]

e\We cannot drop constant part of Agp, since we need A = 0 at
horizon z = z4 (nonsingular A at horizon).

K
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e Temperature of BH solution: like before, resulting in
1

47TZ+

e Thermodynamic potential at constant u (as opposed to con-
stant charge density p), the grand-canonical potential Q(u, V,T) =
U—-TS—uN, is found from the same on-shell sugra action (always
the thermod. pot. equals Son_snell).

T = (d — K(d — 2)ziu2) :

ZCFT — G_BQ — Zsugra — e—Ssugra = Q= TSSugra.

eOne finds Ri-1
Q=— 14+ K22 u?) Vyq.
2,{]2\721( + 24 M )Vd 1
e [ he charge density is a one-point function,
5SSU ra
p=(J°) = s )
aQ ag=0

eAlternative: keep fixed charge density p, so thermod. pot. is
FF=Q + pu@. Thus add a term linear in u = ag to Son_shell:
boundary term (h, = boundary metric)

1
+= / Ao/ —hn®F,, A
g< Jz—0

eSO we keep n%F,, fixed instead of A, on boundary, hence the
conjugate of ag = u, i.e., p.
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eAdding magnetic field B = 0. Magnetic field in gauge theory
is magnetic field in the bulk: Magnetic field: gauge the U(1) C
SU(4) symm. by coupling the current to a gauge field € Ja,
(without kinetic term for a,: external magnetic field): same as
J J*a, coupling to bulk.

e AdSs more complicated (F = Bdz! A dx? breaks isotropy), so
show AdS,: generalize previous sol. (ford =3) to A = Ap(z)dt+
B(z)xdy. Then replace f(z) with electric-magnetic duality inv.

z z

3 4
f(z) = 1-[14+K(z53p°+21B°)] (—) + K (23.4° 4+ 25 B?) <_)

. Z_|_ . Z_|_
= 1-[14+h+4 (i) + (h% +¢) (i) ,
Z4 Z4
and add gauge field
A:,ull—i dt + Bxdy = F = ! [hdx A\ dy + qdt N dz].
Z4 zi\/E

eBoth E and B finite at boundary, but B=external magnetic

field, and E=source for charge density.
e Temperature and thermodynamical pot. (grand-canonical) are
1

T = o [3 — K(z?l_,uz -+ ziBz)}
s
R2
Q = ————=[1+K@Gip® - 321 B%)] Va.
2mN2+
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Lecture 7

Solitons and probes in AdS/CFT
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_ Instantons vs. D-instantons
elnstantons in GG gauge theories: BPST SU(2) instantons , em-
bedded in G. YM action

1 1 1
4—92 d4$(F,LCLLy)2 — /d43j [4—92F5V*FGMV—|—8—92(F5V— *F/ELV)Q )
-iIS minimized on self-dual configurations, Fﬁy = *Fl‘},/, which are
real only in Euclidean space: BPS bound. But

2

g / 4 1%

d xTr [F,, x F'H
1672/ 4 ET Fuw J

IS a topological invariant = instanton nr. or Pontryagin index.
[It's topological since Tr [Fj,,x F*] = 4Tr [FAF] and Tr [FAF] =
dLcs = d|AdA+ZANANA]L
eBPST instanton solution (quantum properties: 't Hooft) is

a __ 2 Ufw(fﬂ - wi>V

aTCErS
where 77% is 't Hooft symbol, 77374 = € Nig = 5?2, Ng; = —0;
Then —lTr [F,F*] = 48 p = Sinst = 8i
2 g2 [(x — ;)% + p2]* g?
eEuclidean instanton action gives transition probabilities, be-
tween static configurations at x4 = —o0 and x4 = —oo, = configs.

of different winding numbers. Probability ~ e~ Sinst.
134



eD-instantons in string theory: D(-1)-branes: Neumann bd. cd.
in all directions. But Dp-brane = source for Ap—l-l' so D-instanton

— source for IIB axion scalar a. In flat space, e? = H_ 1 and
a—aOOZH_l—loce_¢—1/gs
eD-instantons in AdSs x S, near the boundary of AdSs (zo = 0)

is found to be 6 247 T3TS
e’ = gs+N2[ +|x_$|2]4-|—
a4 = Goote?— .

gs
e [ he variation of the on-shell dilaton action gives

1 R3

_ 4 17
5S = 3.2 d*z —506 09|,
eFor the dilaton profge of the IZZSmstanton with R3 = kgN?2/(4n?),
560(@) | 4mgi [+ |7 — @
1
= S (TE@).

Y M
so with 4ngs = g2,,;, we find the instanton bgr., with p =z

4
L (TrFZ @) =

29y 01 QYM[22+|CU_$ |

2]4
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Baryons as solitons via AdS/CFT

eMesons in SU(N.) gauge theory with fundamental quarks: M1/ =

glq’" (group inv. 7). Baryons: with group invariant e,
QCD (NC = 3), eijk:

LIy Lii  Iniy. . IJK __ Ii Jj Kk
BN =€ g™, QCD: B = €;kq 'q°7'q

oln SU(N.) gauge theory without quarks (like N'= 4 SYM), de-
fine baryon vertex, connection N external (heavy, non-dynamical)
quarks, formally ¢;, ;,, above. The baryon vertex has (solitonic)
energy, even in the presence of external quarks only.

eBaryons as solitons in Skyrme model: Low energy QCD: the-
ory of pions @ (Goldstone bosons for SU(2) 4 breaking); together
with o (" Higgs' for breaking), element in SO(4) ~ SU(2); X
SU(2)p global symm. group:

iy 1N

7
U = —(oc+7-T)| .
exp[fﬂ( + )]

eLow energy QCD action in terms of L, = U~19,U:

L = Lyin + Lint , Lkin = ZTF [L,L"], e.g.of Lin= ZTr ([L,, L]?)
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eConserved topological current and charge:
B¥ = b P’ Tr[L,L,L,], B = !
2472 Pl D472

.eFor small fields @ we obtain an explicit map between SU(2) ~
SO(3) of group (index a) and SO(3) of spatial rotations (index
i), SO B counts wrappings of the former on the latter:

1
= 1om2/3°
eConfiguration with B #= 0 = soliton, identified with baryon:
hedgehog configuration,

/ Pz Ty [L;L;Ly).

”’feabcamaajwbamc + ...,

U=exp[iF(r)n-7], n

S 3y

eBaryon as wrapped branes in AdS/CFT: Strings ending on
D-branes with |ij) in N ® N. External fundamental quark: long
and massive: one end on a separated D-brane. In AdS/CFT:
one end at infinity, the other in AdS.
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eBaryon vertex: in AdS, place where N fundamental strings end
= must be a D-brane. In fact: Db5-brane at a point in AdSs

and wrapping S°. Indeed, it needs exactly N strings to end on

. s
it. But in AdSs, [gsd2zel1H5-1L1s — N so from WZ term on

T
D5-brane,
1
21
N units of A, charge on S° that need to be absorbed by N
strings. Also, vertex energy o é ~ N. OK!

6 . 116 + — %
/S5><]Rd xe A Fys g =N - dz" A, ,

Wilson loops in QCD and AdS/CFT

eQCD: dynamical quarks, but we can also consider external (very
heavy) quarks. Yet only in gauge invariant combinations: N¢
quarks 4+ baryon vertex (before), or quark-antiquark (since QCD
is confining). Very heavy quarks = fixed: define contour. Ob-
servable: gq potential, qu(L).
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eDefine Wilson line = path ordered exponential in a gauge theory,

P(y,x; P) = P exp {z/y Au(f)dﬁ“} = lim [ &)

n—oo

eUnder an (Abelian or non-Abelian) gauge transf. with Q =
eX(®) it transforms as

®(y, z; P) — eXW b (y, 2 P)e (@)

oIt provides parallel transport along the curve, since, for a
charged scalar field,

d(x) = XD g(z) = XW) (D (y, x; P)p(z)) .

eFor a closed path (y = ) AND taking the trace, the Wilson
loop is gauge invariant and indep. on z, only on the curve C,

W(C) = Trdo(x,z;C) ,
due to cyclicity under the trace.
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eIn Abelian case, for x = y, we can put & in explicitly gauge inv.
form,

CDC = ei fC’:@Z Aﬂdgu p— ei fZ F,W/do-'uy

Y

and in the non-Abelian case only W[C] can be put, to first
nontrivial order,

- 1 -
o, = e 4 O(a*) = Wo, = STr{®o}=1- ;—NTr (FuFu} + 0(ab).

eDefine the Wilson loop for the calc. of qq potential, a very long
rectangle in the time direction (and short in the spatial one).

Y

T time
q q q q

a) b)

a)Heavy quark and antiquark staying at a fixed distance L. b)Wilson loop

contour C for the calculation of the quark-antiquark potential.
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e hen from the VEV of the Wilson loop, as T' — oo, extract qq

potential, (W(C))o o e VaaFIT
eConfining theory: constant force — linear potential,
ng(R) ~ R,
o= QCD string tension. QCD string = flux tube of constant
cross section. Qfs\@
S

flux lines

R

Between a quark and an antiquark in QCD, flux lines are confined: they live
in a flux tube.
eFor a conformal (scale inv.) theory, like QED, Coulomb poten-

tial, V.-(R L@

a(R) ~ —

e[ hen in a confining theory like QCD, area law,
<W(C)>O - e—O'T-R — e—aA(C') ’

while in a conformal theory like QED, conf. inv. result, e.q.

(W(C))g ox e "R
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eSeparate one D-brane to obtain U(/N) fundamental quarks, with
Chan-Patton state [N 4+ 1) ® |7).

¢AdS/CFT: Mass M = 5., = ~-. One end is at infinity (sepa-
rated D-brane), one in AdS (the rest of the D-branes). Infinite
mass: U — oco. From the point of view of U(N+ 1) gauge theory,
string is a "W boson” (vector field made massive by Higgsing to
U(N) x U(1) via (bi-)fundamental scalar).

eFor Wilson loop then, put Wilson contour C at infinity (bound-

ary condition). String stretches inside AdS and forms a smooth
surface. Indeed, there is a gravitational potential. Qualitatively,
compare with Newtonian approx. to see that there is a potential
leading to minimum U

U2
R? /o’
So string at U = oo drops down to U = Up, where it is held back
by its tension.

U(N) U(1)

i=1,...N i=N11

One D-brane separated from the rest (N) D-branes acts as a probe on which
the Wilson loop is located.

(—dt? +dz®) + ... < ds® = (1 +2V)(—dt® + ..).

ds? = o/
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gravity

flat space Ads space

b)
a) The Wilson loop contour C is located at U = oo and the string worldsheet

ends on it and stretches down to U = Uy. b) In flat space, the string world-
sheet would form a flat surface ending on C, but in AdS space 5 dimensional
gravity pulls the string inside AdS. ¢) The free "W bosons"” are strings that
would stretch in all of the AdS space, from U = oo to U = 0, straight down,

forming an area proportional to the perimeter of the contour C.
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eBut strings situated also on S°, with coordinates ¢! « X!
scalars of N =4 SYM, transf. under SO(6) R-symmetry. Then,
string worldsheet is source for susy generalized Wilson loop,

WIC] = %Tr Pexp [74 (iAMa':M + GIXI(a:“)\/aTQ) dT] |

(1) : loop, 64: on unit S°. We consider only #/=const.: rect-

angular Wilson loop is 1/2 susy. (invariant under susy transf.).
It is always locally susy,

Ssusy W[C](2) (iéAux'“ 4 efaxf(xu)@) —0,

but globally susy only if variations at each point commute.
eThen the Maldacena prescription in sugra limit (gs — 0, gsN
fixed and large) is derived

<W[C]> — string[C] — e_SStrmg[C] 3

but the naive result is infinite, since U goes from oo to Up. But:
must subtract the " free W boson” (no N = 4 SYM interactions)
mass term, from U = oo straight down (parallel to C) to U = 0.
Then true prescription is

(W[C]) = e~ Fo=19),
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eCalculating the ¢g potential. Contour C with g at x = —L/2
and ¢ at x = +L/2, and (since T' — oo) approximate worldsheet

as time-translation inv. Then, using Euclidean AdSs x S° with
Euclidean NG string action, and static gauge o = x, 7 = t, then

single variable is U(z), and the action becomes (R?2 = R?/d/)

1 U4
Sstring = ;T/dm\/(c‘)xU)Q + =
eThen implicit solution for z = z(y,Ug),y = U/Upy, and the
corresponding L/2 = x(oco,Up) is
B E U/Us dy £ B E 00 dy B R2 \/273/2
Uo J1 2yt —1 2 Ui y2/4*—1 Uol(1/4)%

eFinally we find U /ood /2 D,
1 Y Vytr—1

An2 /292, N
r(1/4)4 L '

so a nonperturbative result o /g2 ,,N.
eNonsusy (regular) Wilson loop (Alday+Maldacena, 2007): Same

prescription, except Neumann bd. cond. on S°, instead of
Dirichlet.

X
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Brane probes in AdS/CFT: We have seen that some solitonic
branes, like D5 wrapped on S5, correspond to solitons in QFT.

eBut a single moving brane can probe the QFT. If motion in
U: can probe different energies (in non-conformal gauge/gravity
duality). Brane excitations (fluctuations): meson spectra: mass-
less scalar = pion, massive vectors: vector mesons, etc.

e Also baryons can be understood, but as solitonic solutions on
the probe brane.

e Then motion in U: (Hamiltonian motion on the) RG flow, for
the various hadrons.
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"Hard-wall’’ model for QCD and Polchinski-Strassler sce-
nario for scattering

oQCD in the UV: approx. conformal = gravity dual should be
approx. AdSs x X2 at large r (fifth dimension). Modified in
some way at small ». Simplest: hard cut-off at » = rqpin (Space

terminates). 2

dr 2
ds? = R—da?2+32 + R%ds%
= 2/ B4z + dy? + R2ds%.
eMomenta p; = —i0; in QCD are related to 10d momenta p; by

y R
Pup — —Pu-
r

eA characteristic mom. scale in 10d is p~ 1/R, so QCD mom.
D~ r/RQ. But the characteristic QCD momentum scale is Aqcp,
SO

min — RQAQCD-
eScattering in this " hard-wall” model: AdS fields (states): glue-
balls or mesons/baryons, coupling to glueball operators in QFT.
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e\VWavefunction for glueball etk mapped to gravity state wave-
function in AdSs x X°,

® =T x W(p, Qx,).

eAssume gravitational states scatter locally as in flat space,
ansatz for scattering (Polchinski4Strassler, 2001):

Aqcp(pi) = /drdSQX5\/_gAstring(ﬁi> [[w: (r, x5 -

eDefine a " QCD string scale” &’

&' = (g2, N)"Y2A"2 | such that \/7p—\/7p(rmm) \/7]9

eAlso, since M8, ~ 1/(g?a/*), we define a " QCD Planck scale”,

in hard-wall model,

4 1/2
Mp = g5 1/4 51— 1/2_9YM/ /\(g}Q/MN)l/4=N1/4/\.
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eRegge behaviour: When s > —t > 0, gauge theories expected
to have Regge behaviour,
=~/

A(s, 1) ~ B(#)s®D . a(t) = ag + %t.

eBut string 2 — 2 flat space amplitude (Virasoro-Shapiro),

2 13 r(—a/é?;/4) / ~
= K(\
Astring = g3 ngt,u F(1+ azay | KV

becomes in the Regge limit o/s > 1,d/|t| fixed, of the same
Regge form,

itjo42 (=a't/4)

(14 a't/4)
eBut, doing the PS integral in the "hard-wall” of the Regge
limit, the integral is dominated by lowest » = rqin, SO by the
integrand there = flat space amplitude. So: QCD has Regge
behaviour:

Astring(s,t) ~ gsza’3[polariz.tensors] (a's)“

Aqcp(p) ~ B(t)(as)2 T2
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Gravitational shockwave scattering as a model of QCD
high energy scatterig

eHigh energy scattering in gravity: particles become grav. shock-
waves of " parallel plane” (pp) type. In flat space: Aichelburg-

Sexl: ds? = 2dxTde™ + H(zT,2")(deT)2 + Zdazzz :
)

which is an exact solution to Einstein’s equations with a massless
pointlike source, reducing to

Ry = —%87?H(x+,wi) = 8rGT 4 = pd? 2 (2§ (xT).
Then the solution is
H(zT,2") = 5(zT)d(a), 97d(a") = —16mGy gpd* 2(a")
leading in flat space to
® = —4Gng4lnp?, (d=4)

167TGN,d D (d N 4)

<> ,
Qq_3(d —4) pd—4
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eNote that for pp wave solutions, 3 o' corrections: all R2 corr.
vanish on-shell, so: Exact string solutions!

e [ hen for scattering with Gys ~ 1, but Gys < 1, we have one
particle an A-S wave, the other moving in it. For Gys > 1, both
particles are A-S waves. Before collision,

ds? = 2dzTde™ + dz? 4 (dzT)2 D1 (a") + (dz™ )2 Po(a?).
eThen (Penrose, at b = 0, Eardley+Giddings at 0 < b < bmax),
a "marginally trapped surface” forms at collision point rT =
x~ = 0 (Schwarzschild BH: rg = 2M G is @ marginally trapped
surface), so (GR theorem): BH must form in the future of the
collision. Then, BH formation in collision, with ogy > Wbmax

eIn hard-wall model (cut-off AdSs x X°: curved space): same
mechanism. Then, use PS formula to related to QCD. But:
need gravity amplltude corresponding to bmax. This is obtained
in the black disk eikonal approx., S = €, with Re[5(b,s)] = O,
Im[6(b,s)] = O for b > bmax, Im[d(b,s)] = oo for b < bmax. Then
the amplitude is

]- - i bmax(s) 2 .
_A(s,t) —= —i/dzbezq'b(e“s _ 1) — Z/ bdb/ deequcose
S 0 0

21 bmi;—(S) J1 <\/_bmax(5))
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eEnergy regime in gravity dual ("hard-wall”) of QCD: Agqcp <
(545)_1/2 - (g}Q/MN)l/Q/\QCD < Mp — N1/4/\QCD- For /s > Mp,
in dual we create small black holes. But for £ > Ep = M§R7 in
gravity dual, so /s > Ep = N?Aqcp in QCD, BH of size larger
than RAdS-
eYet 4 higher energy scale in QCD, depending on the details of
the gravity dual: Ep <> Ep, such that BH is effectively on the IR
cut-off rqin itself. Then, in QCD, Froissart unitarity bound,
otot <CIN2 >, C <o,

S0 ms
where my is lowest energy state in theory.
eDescribe this via collision of 2 (A-S-type) gravitational shock-
waves on the IR cut-off = IR brane, in a symmetrical situation

(IR brane position acts as a pion field, see before),

2]y

ds? = e R dZ? + dy? + R?ds% .
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warp factor
-~

small R
black hole

effective
scattering regions

IR cut-off 5"-“ dimension
(IR brane)

Jwarp factor created

black hole

Jvarp factor _— large R,
black hole:
effectively

on the brane

scattering
gravitational
waves

5" dimension 5" dimension

IR cut-off IR cut-off
(IR brane) (IR brane)

b) C)
a) At small enough energies, the created black hole is small, and fluctuates
(is created at a random point) inside a small region of effective scattering. b)
At large enough energies, the created black hole is so large, that is effectively
fixed (has small fluctuations) and it looks like it sits on the IR brane. c) At
these large energies, the process is effectively classical: two shockwave going
in opposite directions scatter creating a black hole larger than the scattering
region.
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e T he shockwave profile is found to be (My is the first KK mode
when reducing 5d theory onto IR brane, Rs = Gy 4+/5)

[yl
Al o I e r R
AG N g+1pe” 2r a4 d/z( q)
P(r,y) = +_ = dgq=z Jea(qr)
(2m)= r=z Jo 2 Iy2-1(Rq)
2R )
S(ry=0) ~ Ro/ZCie M Mlz%l.
T

eJ Exact analysis, but simple arg.: & ~ /se Mi" so for 2
A-S waves at impact parameter b, emitted energy « \/Ee—Ml”'“.
Minimum energy = Mp, reached at bmax, SO

b In ° = oot = b2 7r|n2 °

maXx Ml Mpl tot — max M]? MPI-
eDescription matches 1952 Heisenberg model for nucleon-nucleon
high energy collisions. ® — pion wavefunction (indeed, IR brane

position = pion field). But, Heisenberg: pion field overlap
~ e M0 so emitted energy ~ /se”™m0 bmax: when emitted en-
ergy = average per pion emitted energy (FEg), which is ~ constant
only for DBI action (action of IR brane), whereas for canonical

scalar with polynomial V', (Eg) o< +/s. Thlen /s
S

\/Ee_mﬂbmax == <E0> = bmax == |n =
mar <Eo>
T T
Ttot = b2 .y = In? .
tot max m72r <E0>
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Gl e

[t

M,

Scattering of nuclei or heavy ions at higtirenergyi

Heisenberg model.

eLower bound on entropy formed in collisions:

Aev.hor. 2 Amarg.trap. = Semitted = SBH =

eGubser et al.. shockwave with T 4 = Es(zT)6(z —

R2

Aev.hor.

mQCD described by the

A
> marg.trap..

4GN,5 B 4GN,5

R)§42(2Y),

ds® = (2dac+dx + (dz1)? 4 (dz?)? 4+ d= ) + ECD(:Cl, 22, 2)6(zT)(dzt)? =

Z

2GNsE 1+ 8q(1+q) —4/q(1+¢)(1 + 2q)

@zt a?z) =

R Vva(l+q)

q

(2)? + (=°)* + (=

4zR

eTreating dg;; = R/z®(x!,22,2)5(xT) as a perturbation,

R3 1

2R*E

T (X)) = lim —dg,;; =
< Zj(x» 47TGN,5 z—0 24 i3

m[R2 4 (1) + (22)?2]

§(zT).
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Lecture 8

The pp wave correspondence and spin

chains
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The Penrose limit and pp waves
ePP waves: Linearized _solution is exact! Only nontrivial Ricci
is Ry = —202H(21,2"). For shockwaves, Ty o §(zT), so

H(zT,z") = §(zT)P(z%), but here: waves not localized in zT.
eln supergravity: 11d sugra, pp wave solutions with

Fy = dCB+ A Qb : F(4)+M1,LL2,LL3 — ¢(3)M1N2N3
dp=0, dx¢p =0, —07H = |¢|°.

oFor H =Y ;; Aj;z'al, —2Tr A = |¢|?, we have solutions with 1/2
susy, but there |s a unique sol. with ALL susy,

9 9

H = ZAZ]LE ) = — Z —:132 §—6xz2

1=1,2,3 1=4
gbzudx A dz? A dx>.
eIn 10d IIB sugra, pp wave solutions with

Fs = dzt A (w + *w) : F—I—ul.../u = Wiy ptg s F—I—,ug,...,ug — Wys...us
H=>) Ayz's); ¢=¢o, dvo=0, dvw=0, 07H = —|w]’.

eAgain, sols. have 1/2 susy, but 3! sol. with full susy,

H=— s wzgdxl/\de/\dx3/\dx4.
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ePenrose limit: Penrose theorem: near a null geodesic in any
metric, the spacetime becomes a pp wave. Null geodesic defined

by V=YY" = 0,U = 7, we can always put the metric in form
(Penrose): , -
ds® = dV | dU +adV + ) BidY' | + > CydY'dy7,
7 1]
‘where U,V are lightcone coords., and take the limit

U=u V=— vYi=%l R,
R2 R

to obtain a pp wave in u,v,yi, but in Rosen coordinates,

ds® = 2dudv + g;;(u)dy'dy’ , g;;(v) = C;;(U =u,V =0,Y" = 0).
e[O go to the standard Brinkmann coordinates form, write
gij(u) = e%(u)e?(u)c?ab, then

1 . . .
. - - i1..a..b T __ 1 _.a
u=zx" , v=x —|—§emebx x , Yy =ex,

then obtain A, = ém-e’é. Interpretation of Penrose limit: boost

aI?ng direction z, while taking the overall scale of metric to
infinity:

' =coshB t+sinhB z; 2’ =sinhB t+coshp ==
-t =ePlx—-1t); 2+t =€ (x+1),

then scale all coords. by 1/R and identify e = R — .
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ePenrose limit of AdSsx S°: boost along an equator of S defined
by 6 = 0 and stay at center of AdSs at p = 0 (is a null geodesic).

Ads,

Null geodesic in AdSs x Ss for the Penrose limit giving the maximally super-
symmetric wave. It is in the center of AdSs, at p = 0, and on an equator of
S5, at 6 = 0.

ds?> = R2(—cosh?p dr? + dp? + sinh? p d32) + R <c052 6 dip? 4+ d6> + sin2 0 ngQ)
~ R2[= (14 p?) dr?+ dp? + p2a3] + B2 | (1 — 6%) dy® + o> + 6%dS2%°

eThen define null coords. = = (r +)/+/2, and rescale to
obtain the pp wave,
Ft=at, =2 p=_: g=Y =
R? R R
ds? = —2dzTdx~ — p?(# 4+ §2)(dx™T)? + dy? + di®.
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Penrose limit of AdS/CFT: large R-charge Berenstein, Malda-

cena, Nastase, 2002
oE =i0; in global AdSs, and J = —id,, (for rot. X° «» X°).

eBut £ «++ A and J < U(1) C SU(4) = SO(6) R-charge rotating

X5 & X6
ePenrose |limit _ . i 1
P = —p4 = 10y = 107+ = E(av +a¢) — E(A —J)
| Oz i AN |
t— oy —. =0 —9,) =
p - p— 7’81' ZRQ \/§R2 (87' a@b) \/§R2 .
eRescale p~ by uv2 and pt by 1/uv?2:
P A+ J
—=A—J; 2upt= :
., pp 72

eFor string theory on pp wave, p+,p_ finite, so as R — oo, keep
A—J and (A+J)/R? fixed, so A ~ J ~ R? — co. Thus Penrose
limit is large R—charge limit in AdS/CFT!

oIn N' =4 SYM, & = /47g,N = /g2 ,,N, so for gs fixed, we
have J ~ R?2 ~ /N, so

2
N
i=fixed and JYM

VN J?2

= fixed.
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String quantization and Hamiltonian on pp wave

ePolyakov action on pp wave (z¢ = (7, 7))

S =—

1 /! 1 -
/ do / dT—\/—’y’y“b [—28ax+8bx_ — M%faaﬁabf -+ aaxlabxﬂ .
27'('04/ 0 2

eIn conf. gauge, /—y7* = n, light-cone gauge z1(o,7) = 7
(rescale 7 by o/pt), and then | = 27a/p T,

1 27To/p+
S = - / dr /O do

2mo!

2

L. i\2 N2y | M 2

e | he equations of motion and solutions are
(—82 4+ 02)a' — p?2' = 0. = g’ x e WnTHno 2 — 22

oln flat space u = 0, wn = kn, = n, but now we rescaled by o/pT,
SO

2

_ 2 n
wn—J/J +(a’p+)2'
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eLight-cone Hamilltonian H,. = p~ has no 0-modes p’ (z' mas-
sive), soO

H=Y Nown, No=Yailal +3 pT62.
- nez 1 &
eAs for flat space, transl.inv.: P =5, nN, =0. In N =4 SYM,
E/p=NA—J2uptT ~2J/R?, so
2 2
(A—J>n=@=\/1+gYMévn -

7 J
String states from N =4 SYM; BMN operators
eVacuum: E = 0, so A —J = 0. Oscillators at gy, = O:
A —J =1. Construct operators out of fields with A —J =1, on
top of operator with A — J = 0.
eFicld with A = J =1: Z = &>+ id>: unique! (charged under
J). (Z has Delta=—-J =1, s0 A —J=2).
eFields with J=0and A=1((soA—-J=1): & m=1,....4
and D, Z = ouZ + [Au, Z] (bosonic) and X§:+1/2 (fermionic, 8
comps.; other 8: X?z—l/Q)'
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eVVacuum, with up™ = J/R?:

1 J
0 Tr[Z7].
0,pT) = TINTT? [Z7]
eOscillators with n = 0 (BPS operators with A — J indep. of
gy y), obtained by inserting aJ(r)T = = (D, Z,®™) or bT —
x§:_1/2 in it, e.g.
s 1 !

J—1
2mine
eExcited levels (n > 1): add momentum wavefunction e L

around the closed string SO, e.d. ajM insertion is
J 1
Z
eBut this vanishes by cyclicity. Nonzero: at least two excita-
tions, so that P=)_, nNn, =0, e.g.
J
St +y 1 1
n4a—n3|0p > Z J/24+1
VI o NI/

2minl

T = Tr [Zlo% 27 e™T

n4‘0 p

2minl

Tr[©3Z2lp% 77 e 7

e [ hese are " BMN operators’. Study "dilute gas approx.”: few
"impurities” among Z’'s.
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Discretized string action from N =4 SYM

eOperator-state correspondence in CFT: zggn)am ~ Oaq...0a,, Z ON

R* — KK states on Ry X S3, SO constant Z: energy 1 = harmonic
osc. of w = 1, with cr.op. (bT)Zj. Similarly, for &, (aT)Zj, e

states |a;> — Tr [(bT)laT(bT)J—l} 0).
elnteracting Hamiltonian

Hint = —gga 17 {[@F, /][, )]}
I>J

has then term that can act on operators O,

_ T
Hint = —goy Tr {[Z, @™][Z, ™} — 292 /N b, ¢][b, ¢); =a$a’ ,

whose action is through Feynman diagrams, as

[OORC

Feynman diagram for the 2-point function of O(x) at one-loop.

(@]
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o't HoOft Ilimit = only planar dlagrams

LU

} . a)@m " B,
0OX0 0O%C
N gb(% ,i C);—zl
WOHOCY [000er

d) e)
Planar Feynman diagrams for the 2-point function of @. a) The planar tree

level diagram. b) Planar one-loop Feynman diagram with hopping from [ 41
to I. ¢) Planar one-loop diagram with hopping from [l tol+ 1. d) One-loop
planar diagram with gluon exchange e) One-loop planar diagram with scalar

self-energy.
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eAfter a calculation, find the Hamiltonian (when acting on states

<> operators) i i
J a;a; -+ a;a.;

_ J 2
H = - 5 + (2 )2 Z (¢] ¢j—|—1) :
j=1
"eContinuum version of Hamiltonian = light-cone string on pp
wave, L 1 . 27J
H:/ do=[d? 4+ 2+ 62, L =22 = 2nalp™T
; QM ¢ ¢<] Y p

SO as a discrete "spin chain”

1111

A periodic spin chain of the type that appears in the pp wave string theory.
All spins are up, except one excitation has one spin down.
eBut: made up of Cuntz oscnlators or rather, indep. Cuntz

oscillators at each site:
M@ZQ&@Z%,EEM:1HQM%

=1
[aiaa’j] — [CLI,CLJ‘] — [a’;raa;] — 07 7’# ]
aal =1, ala;=1—(]0)(0]);; as]0); =O0.
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eDefining Fourier modes for the Cuntz oscillators,

and acting on states in the dllute gas approx.”, |y n7,> —
10)1---|n4,).-|n;,)..-|0) s, SO that the commutators become almost

the usual ones, [an,am]|¢{ni}> ~ (Opm + O(l/J))|¢{ni}>, we can
further write superpositions of the left- and right-moving modes,
and finally diagonalize by a Bogoliubov transformation,

Cn,1 + Cn,2 _ Cp1 —Cp2

Y

\/ET TV f

Cp,1 = GnCnq + bncml Cp,2 = GnCnq — bncn,l :

to obtain the eigenfrequencies

N
wn—\/1—|—4|an| —\/1—|—gY]\g S|n27TJn

7

an —

with the corresponding Fock states

f
' B an:I:aJ
Cn,1/2|o> — NG
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eFock states mapped to the BMN operators
1 1

1l s J—l 2minl . /2minl
> TF[CD Z'®+Z77"] |cos or 7sin ,
\/_l 1N2 J J

.eNote that for n < J, both w; and the states match the string
on pp wave. For n ~ J, we also have a match, but not to the
pp wave (Penrose limit of AdSs x S2), but a different limit.
eNote that wy is valid to all orders in A (even though the Hamil-
tonian was one-loop, i.e. >\1), though only for few impurities
(M <« J). Why? It seems to resum all interactions.

One loop: spin chain interpretation ©™ — of, Z — bl: like a
spin chain of length J, with spins "up” | 1) for Z and "down"

| J) for . Though until now, only "dilute gas” analysis.
e T he interaction Lagrangian (or Hamiltonian, as before)

Lint = 2973, 11 [Z, ™[ Z, ®™] = 297, (2Tr [®"ZP"Z]) — Tr[(ZZ 4+ ZZ)P™" ™))

leads, through Feynman diagrams for " hopping’ acting on op-
erators, to 1-loop 2-point function

O@O" ) = |§§+2 14 g2 NIG) (7 45
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where

I(z) = |x|4 /d4 ! L 10g(|z|A) + finite

Xr) — Xr .
an2)2 ) C YV A ZnE T ag2 09

.o T hen we can deduce the one-loop wy as
N 2Tn 1

* S

(O@O(0) = s |1 - 208N (cos () ~ 1) ~5100(aln)]

N

212(J+14+(A—T)[g2N])

N
~ D) [1 +2(A — J)[g2N] In(|z]) + ] =
] 2
B _ gy N _. o (TN
(A =D = |14 =sin (J)]

e [ his matches the first order expansion of the exact Cuntz
result.

169



Spin chains

eFull spin chain: SO(6), for the 6 scalars &l with operators
O[] = /1 ILTr [®), ... P/ ], defined through: the identity oper-
ator, the trace operator K (from contractions of fields of the
same operator) and the permutation operator P (from contrac-

tions of fields of different operators, hopping one site),
J1Ji141 J;,Jp JiJi41 Ji41 oJ,
p— Ji41 p— !
Kfz1l+1 Iy, 1 l+1(S ’ PIlJl—H 5Il 5Il+1'
eRenormalization of operators, with anomalous dimension ma-

trix S A A B dZ 1
@ =7 @ ) [ = 4 )
ren B din A
and leads to 2-point functions of eigenvectors of [ as

const.
|aj — y|2(L+’7n)'
eT hen for N =4 SYI\/I at one-loop, one finds the Hamiltonian
N
Z...JlJl_|_1... — 1 gYM In A (5

(O (@)OR (W) =(Z-0Z - 0) =

L

2

1 1 g N

H' = =222 5N "(K) 41 +2—2F41).
lom<s /=
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SU(2) sector and Hy yx from N =4 SYM

e\WVe can construct a sub-spin chain that is the extension of
the dilute gas approx. one, in an SU(2) sector with 2 scalars,
corresponding to "spin up” and "spin down",

Z =l 4+id?: and W= 3+ id%,

acting on operators (and their generalizations with " magnon”
momenta)

Jula — 1 (71w 2] 4 .. (permutations).
e [ he interaction Hamiltonian in this subsector is
Hint = —g% 0 [2,W]Tr [Z, W],
so the renormalization factor and the one-loop Hamiltonian are

"'JlJl—i—l“' o gYMN Jl Jl—l—l - Jl—l—l Jl
Z...IlIH_]_... T 1| —I_ 167.‘.2 In /\ 2 51[ 5Il—|—1 51[ 5Il—|—1 :>
2 L
1 _ @ 9y
leanar — I_|olanar T 1672 Z 2 (1 - Pl,l-|—1) :
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e A more precise concept of Hamiltonian, extendable to higher
loops, is of a dilatation operator D, obtained by attaching Feyn-

man diagrams to operators,
Do J17J2(w) _ ZD OJl’Jz(a;) ’

and can be written in terms of adding and removing fields in

the operator, using Z] = dg - so that

2
PO =T1r (ZzZ+WwWW), DD = —gg’—ﬂfTr [z, W][Z, W].
7T

e | hen the dilatation operator acts on operators as spin chains as

2 L
(1) gy mN
D|olanar _ ) <1|l,l—|—1 - Pl,l-l—l) )
[+1
which is the Heisenberg X X X1, Hamiltonian, with J = g¢;,N/(1672).

Indeed, that is

L L
H=-J) &j-Gjt1=-2J) (Pjj+1-1),
where we have used that on t

e | 1),| ) basis on the chain, the
permutation operator is F;; = o

/]\
+ 35, -

Nl—

IR
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Coordinate Bethe ansatz

eDenote |z1,...,xys) State with spins down at positions x1, ...,z

along the chain. Then the "one-magnon’ eigenstate of Hx x x
and its energy are

L .
P(p1)) = 3 eP1z) ,  E(p1) = 8Jsin?(p1/2)[v(p1).
r=1

e [ he 2-magnon state is

1Y (p1,p2)) = > (w1, x0)|wy, 20)
1<z1<2o<L
W(xy,x0) = e P1e1tPar2) 4 g(p, pi)elP2r1HP122)

where EE = FE(p1) + E(p>) and the 2-body S-matrix is

_ ¢(p1) — #(p2) +
o(p1) — ¢p(p2) —i

eFor M magnons, in terms of ¢(p) = w = rapidities (for true
magnon momenta, u called Bethe roots), the energy is

1 p
S(p1,p2) ¢(p) = 5 cot5 = u.
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eFor 2 magnons, from periodicity of ¢¥(x1,x>) we have the Bethe

equations eGPl = S(py.ps) = cotpi/2 — cotpy/2 4+ 21
b cotpy/2 — cotpa/2 — 2i
ipaL S( ) cotpa/2 — cotp1/2 + 2i
e p— ) p— -,
bz cotps/2 — cotpi /2 — 24
'S0 p1 +p2 = %72, and for real pp = —p1, p1 = #2%. In this case,

the 2-magnon wavefunction |s
2141
60 = 9o (), —pr(n))) = O3 cos ==
=1

and this corresponds to a N/ = 4 SYM operator (eigenstate of

D) that for n < L, L , — co becomes the BMN operator,

2l +1
O)? = Cn» cos|mn Tl WZ'WZz'7 =
L—1

[=0

)|x2-+l x2) , CLL::Qe_f%,

21mnl
L

L—1
O)? — Cn,)» cos Tr (WZz'wz" .
I=0

oFor M <« L,n < L, we obtain the spectrum of operators by act-
2minl
ing with aJ,; — %Zlee L al_, and, for momenta p; ~ 27wn/L,

the anomalous dimension in SYM is

2 Pk A -
2_8—2_: 2L22nk

Y=A-L-M=-
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eFor M magnons, the wavefunction is

M .
. [ 05
Y(x1, ..y Ty) = g exp {t g pPp@)Ti + 5 E 5P(z’)P(j)] , S(pi,pj) =€,

pPePerm(M) 1=1 1<J

~and the Bethe ansatz equations are (again from periodicity)

M up — /2 o M U — Ui — T

o - g ’Z.:>< _ ) — ( _3_), k=1,.. M.
c i#!;lzl (pkp) uk—|—z/2 j;égzl uk—uj—|—i

e | heir solutions are called Bethe roots, and need not be real,
only the energies need be real. Then u; root implies u}; root.
e T hermodynamic limit In the limit L — oo, M — oo, taking the
log of the BEA, and since p; ~ 1/L, u; ~ L, so xI = u;/L finite,
we have

1 2 M 1
— =+ 2mn; = 7 Z . :
L ki k=1%i — Tk

Then also uy, = u; =14, so up, = Re(u) + ik form Bethe strings,
that curve a bit for M — oo as well. They satisfy (and other
equations)

p(

Y) 1
2P/d — T4 . LcC.
- yy . " —+ TNE(y)r T -
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Spin chains and Bethe strings from AdS

eStrings moving in S3 C S® defined by X'Xt =1, i = 1,...,4,
with Z = X1 4+iX2, W = X3 4+ iX*%, and then SU(2) element

— z W and matrix currents
g_ _W Z ’ 4

Ja = g_laag = Tr (ja)2 = =2 Z (aaXi)(aaXi) ;
1=1

so the string action in conformal gauge, moving in S3 is

47 JO

and has as eq. of m. 945 + 0-j4 = 0. We can then check
that

J+

lFx

Oyj——0—jr +lijr,7-1=0, Jr = =
8_|_J_ - 8_J_|_ —|— [J_|_, J_] =0 , V.

e [ hat means that J, is a flat connection, with monodromy

Q(z) = Pex [—/%d J]—Pex [/de 3( I+ + I )]
v=aeb T 0o = e o T T a1/ |
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eDefine then
TK

r+t1

TrQ(x) =2cosp(xr) = eP(@) 4 o—ip(2) p(x) ~ — + .., x— F1

B TK Tk
G(x 4+ 10) — G(z — i0) = 27mip(x).

eThen p(x) satisfies, after rescaling « — 4nLx/V/\,

p(y) T A
— py T —|— 27rnk

/da:p@:) = T+ "

/da:p(;) = 2m™m

/d:z:p(x) _ A—I—LzLH(l_IOOp),

872

8n2L
which in the thermodynamic limit A\/L? — 0, LL —0, 251
gives the same equations as for the Bethe strings. Thus each
Bethe strings corresponds to an individual macroscopic string in
AdS.
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Lecture 9

Applications to condensed matter:
AdS/CMT
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eAdS/CMT: phenomenological approach. " Top-down”: define
some known duality, see if physics matches anything. OR: " bottom-
up'”: construct AdS theory that, given holographic map, would
imply wanted properties for the field theory, and then calculate

other properties.
Gravity dual of Lifshitz points

eCMT: usually nonrelativistic. Construct nonrelativistic gravity
dual. E.G.: " Lifshitz scaling” :
t— N°t, & — A\T.

z=dynamical critical exponent. Model example:
L= / d?x dt [(919)? — k(V29)?].
e [ hen, phenomenological gravity bgr. for Lifshitz scaling,

dt?  dz? u?
2 D2
dsgy1 = R ( 2z+—+—>

’lL

(obs.: geodesically incomplete for z # 1 at © = o) has scaling
invariance

t— Nt, T— M\, u— du,
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with generator (Killing vector)
D = —i(zto: + azi&i + u0y).
~eOther generators (Killing vectors)
M;; = —i(2'9; — 278;); Py = —id; H = —idy,
forming together the Lifshitz algebra,

[D,H] = 20y =izH
D, Bl = 9;=1iF; [D,Mj]=0
[Mz-j,Pk; = 0,0; — 01,0; = (6}, P; — 6, P;)
[M;j, M) = i(6;Mj; — 65 My — 65 Mg, + 051 M;y,)
[P, P;] = 0.
e [ he background is a solution to several relativistic actions,
e.g.,
1 D 1 v 1 o9
S=—5 [ dtd”xdr/—g |R — 2\ — —F,,, F*Y — —m~<A AF| |
DK%, 4" 2 N

or in non-relativistic gravity, e.g. Horava gravity.
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Gravity dual to Galilean and Schrodinger symmetries

el arger algebras: -conformal Galilean algebra: M;;, P;, H, D, but

also conserved rest mass, or particle number N and Galilean
poosts t—t, x; — x;— vit.

eFor z = 2, extra generator C, special conformal generator:
Schrodinger algebra (symmetry of the Schrodinger equation of

a free particle). oAdS/CFT realization (geometrical): d 4+ 2-
dimensional gravity dual (&, u extra):

12 B2 (_ dt?  dz? | du? = 2dt dg) |

Tt T

u2? U U U

eNoOt time-reversal 2|nvar|ant (t «+» —t), nonsingular: conformal
R
to pp wave: o _ < A0 1 2dt de + di —l—du)

)
u
elnvariant under scaling

=2t =A%, o =M, ¢ =N\,
for generator
D = —i(2t0; + 2'0; + udu + (2 — 2)€0) .
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eEXxtra symmetry: Galilean boost K;,

—/

1 |
T =T — vt, £’=§—|—§(217-:E'—v2t), K; = —i(x"0¢ — t0;).

and particle number N = —idg, so that the (conformal Galilean)
algebra is
[Kz'a P] — 52385 25 N
D, K;| = =zt0; — 337“85 + (2 — z)azzﬁ —t0; = (1 — z)zK
[Kk, Ml = ¢(0;10; — 6;x0;) + 62" 35 — 82! O = (8, K; — 61, K)
.Kia H_ — —(97; — —iPZ'
[D,N] = (2—2)0:=(2—2)iN
K;,N] = [H,N]=[F;,N]=[M;;, N]=0.

177
eFor z = 2, extra special conformal generator C, for

uw— (1 —at)u, z'— (1—at)z’

t — (1 — at)t, §—>£—g(f2—|—u2).

Then the extra commutation relations for C' give the Schrodinger
algebra,

[D,C] = —2iC, [H,C]= —iD, [M;;,C]=0=[K;C].
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eString theory realization of Galilean algebra, by "null Melvin
twist” on AdSs x S° with temperature T,

2 2 52 Qf(r) 2 f(r) 2 72 dr? (dw + A)2 2
) = 1- k(r)—1+5 T=T+
r

ﬁ.
eForI'=0,k= f =1 and KK reducing on ¥ and >4 gives z = 2

metric (Schrodinger).
Spectral functions

eRetarded Green’s functions for observables O 4, Op,

B 0w, k) = =i [ d'ta dt 1 TETG()([0,4(t 2), 0(0,0)])

describe the time evolution of small pert. about equilibrium, in
linear response theory,

5(04)(w, k) = G 0, (w, k)¢ g0y (w, k).

eRetarded (30(t)) = 2 conditions (close w contour in complex
upper-half plane):
1) G%AOB(w, k) is analytic in the complex w plane for Im(w) > O.

2) G%AOB(w, k) — 0 for |w| — O.
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eConditions imply representation as I contour integral (real line,
closed by semicircle at oo in upper-half plane) in ¢ or z,

d¢ GE
GRGey = 2T
| r2m( — z
giving the Kramers-Kronig relations,

+ /I Re, o/
ReGI'(w) = P/ > dw m? ()
— 00 7T w —% /
+oo du R
ImGR(w) = —P/ T e? (W)
— 00 T w — W

and the w — 0O limit gives a thermodynamic "sum rule” (GR
both inside and outside the [),

+oo dw/ImGngB (W', x)
/ Y

lim GR W, I =/
w—04i0 0,405 %) - w

while x is a static thermodynamic susceptibility (like x = 0D/0F),

X

0{04)
99pB(0)

XAB —
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eSpectral function for x4p is

XA — —ImGgAOB(w, k‘) .

e Advanced Green’s function

G605t ) = Fi0(—)([04(t,2),0p(0,0)]) ,

and from it the spectral function p@A@B(w,k),

po.0,(t,T) = ([0a(t,T),05(0,0)]) =i(GE 0, (t.T) — G50, T)) =
po.0,(w, k) = / A1z dte™ T ([0 ,(t,2), 0p(0,0)]) = i(GT — G (w, k) |
since

/ ! 1.
GR’A(CU E) — dw p(w 7k) _
’ 27 w — W £ e

ReGR(w. k) = ReGA(w,k) =P /

dw' p(W', k)

w — w'

IMGT(w, k) —IMGA(w, k) = —Ep(w, k).
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Transport

eKubo formula for electric conductivity: In gauge Ag = O,

electric field source FE; = Fp; = —8t5Aj, in momentum space
E; = —z‘wcSAj(o). Linear response for J;:
(Jz) = 0By = —itwodAy ) =
S e w,lg
o(w, k) = A >.
w

eThe (real part of the) DC conductivity is then

R -
a(0,k) = — lim im& x‘]x(w’k> .
w—0 w
eKubo formula for shear viscosity: Shear viscosity, in rela-
tivistic theory — from expansion of Tj,, solving V,TH" = 0 as
expansion in derivatives. For dissipative fluid, to first nontrivial
order,

THY

outu” + PPH* + I_I’(Li/)
outu” + P(g"" + uu”) + 2not” — COPHY
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where PHY = gt + vwHu” and oH*¥,0 are from decomposition of
V¥u#, in the Landau framE m yuyu =0,

1
Viut = —a*u” 4+ " + ¥ + ] o PHY
at u’'Vyut
oMY VWY + VVuHt — —1 o PHY
d —
W = vl oy leg?] 7

eFor hgzy perturbation on fluid at rest,

Toy = P hay+nthey + O(hZ,) + 0(0%hay) =
Ty (w) —niwhay + O(hZ,) + O hay) |

(ignoring 6 fct. coming from const. term), we get the Kubo
formula for shear viscosity, , -

_Y zG? 7. (W, k)

n(w, B) =
w

or, for the (real part of the) static shear viscosity,

n(0,0) = — lim MG, 12, (4 ©) |

w—0 w
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eAdS/CFT in Minkowski space at finite temperature son,
Starinets, 2002. If we can write the on-shell sugra action in asypmt.
AdS space as a function of the boundary value ¢qy as the bound-

ary term JdE B B PRl
Son—shell = (zﬁ)dqﬁo(—k)]:(kazwo(k)

Y
z=zp

the the prescription for the retarded Green’'s function is
eEquivalent formulation: Sren. = S[0.¢] + Spoundary, SO

(E)Ai B 05[9(0)] _ 0Spoundary
VI 00:000)(2)  dpy(2) |

z

©) = i

while we saw

A —d 5
Sboundary = /z—>0 dd$ﬁ¢

2Rd—A A
6 = (5) s+ (%) Pea-pt
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e [ hen:

, R\A 2z
o = -y () 0t
2N\ — d
= & Pon—d) =
R _ 0(0y) _ 2A 4 —doPa2n—d)
Oa0p ™ 5 -~ R 5 |
?B(0) 56 y=0 ?B(0)

Kubo relations for other transport properties: For u # 0, so
charge density p #= 0, heat and electric currents mix, so

(Je)\ _ [ o T Fy
(Qz) ol RT )\ Yl )
e [ hen similarly, Kubo formulae:

ZGR:EJ”; (w)

a(w)T

w
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Viscosity over entropy density from dual black holes: Witten
metric (AdS-BH in Poincaré c.):

2 4 R2 d 2
ds? = — (— (1-%) dt2+df§)+—2 i
T T

o R2 Ty

r

“and change coordinates u = r3/r? so that

2 2 2
r5 1 R< du
ds? = -9 = (— f(u)dt? 4 da2 ; =1-u?,
= vy o LA
giving a perturbation 5
/r' . - — —
hay (%, 1) = — e ITTTg, (1) |

R2u
and vary ¢4ma—g) In the exact solution w.r.t. it. But: hard.

Instead, n at horizon ~ at boundary, so calculate approx. sol. at

horizon, W
¢7 = ¢o(1 —u)='arT |

and selecting infalling sols. (" —="), we find

GR(w,E) — —2.7-_(w,/2, U)y—1 =
R A 3 3
w—0 w lérGnys 8
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eSince s = w2/2N2T3, we find (conjectured to be lower bound,
but it is not)

77_1

S 4
T he holographic superconductor Gubser, 2008; Hartnoll, Herzog,

Horowitz, 2008

elngredients: a) AdSs background: CFT near transition point.
High T, superconductors (non-Fermi liquids) are 24-1d. b) charge
transport: conserved U(1) Ju, dual to A,. c) Temperature, so
black hole in AdS4. d) symmetry breaking, so (O) #* 0, for a

complex field charged under U(1). s wave superconductors =
charged scalar 2.

el_agrangian for gravity theory (d = 3)

1 d(d —1) 1 |
c=_4 (R+ p )—4—g2F,i,—\<au—quu>wrQ—m2w2—vw>,

for V=0, m2R2 > —4—;2 = —9/4 (BF bound) (scalar stable at

e\We want ¢ #= 0 near BH horizon, for T' < T¢, and ¢ =0, T > Tg.
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eSuperconducting ansatz:

ds® = gu(r)dt® +grr(r)dr® +dss(r) , Audat = d(r)dt, ¢ = (7).
e [ hen we obtain an effective mass in L,

~(Bu—igA) |2 —m2[p|? — —g"" O P —mEe |2, mE = mi+gtlgtd?
but we want & = 0 at horizon, yet m2., < —9/4 (BF bound), so
unstable at horizon. The scalar operator VEV is

20 — d
(0) = V(2A—d)
so we need a normalizable mode Yoa—q) # 0 for T < Te.
e T WO possible backgrounds: AdS- Relssner-Nordstrom (Gubser),

dr? = 5 2M | Q% r?
dQ ) = k — .
f(r) T 2,k f(r) T T 42 R?
o) = 2% y=o,
T TH
or neutral AdS-BH (Hartnoll, Herzog, Horowitz), £ = 0, so
dQ35 , = dz? + dy?, and Q =0, so

2 oM
f)=1p—"" ®=y=0.

ds® = —f(r)dt® +
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e [ he scalar @ is a probe in background. Boundary conditions

w(l) ¢(2)

Y = +—+ .., <D=,u—B—|—...,
r r r

-but both ¥1,1Y> normalizable. Then, condensates

(0;) = V2D, i=1,2.
and numerically, one finds near T ~ Tk,

(O1) 0.3T.(1 — T/T:)1/?
(O0p) ~ 144T2(1 —T/T)Y?, T ~0.118,/p.

2

eEffective mass at horizon: needs to be smaller than BF
bound at horizon, for instability.

2 .2 22R2
mgfr=m2—%<m2, V2 =7 5
2R KN 4

eHorizon: AdS; x S2, with AdS, BF bound m?R3 = m?R?/6 >
—1/4 (stronger than at infinity, where m?R2 > —9/4).
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eElectric conductivity: Perturbation 64, = §A.(r)e !, such
that at boundary,

A, — 540 4 W) o

r

where (J;) = (5A§;1) is the normalizable mode. Then

(1)
o(w) = (Jz) . (Jo) _ . 64z

Eaj —ZCU5A:U B Zw5AéO) ’

and numerically, one finds a mass gap: ¢ =0 for w < wg, and

wg & (q((’)))% : ;—i ~ 8.4 ,
approx. matching exp. data. for high T, supercond.
eBUT: weakly coupled supercond. wg = 2F4; (E4= energy gap
in charged spectrum), while for high T. (strongly coupled), E4 #

wg/2. Holographic: true, except for A =1 or 2, when Eg = wq/2.
Puzzle!
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Transport properties in strongly coupled systems via

_ AdS/CFT _ _ _
eRegion (“membrane”) near black hole horizon in gravity dual —

has fluid properties (gravity/fluid correspondence): “membrane
paradigm’.

eMembrane paradigm — calculation: quantities are r-indep. (should
be calculated at oo, but calculated at horizon). Linear response
to perturbations of background = transport.

eCalculate electric and heat conductivities (AdS/CFT: either
Kubo formulas, or membrane paradigm: at the horizon)

— O'Z'jEj —_aw(V]T) - .
TOéij — KWLJVJT y Rig — Reg5 — Tozz-k(a )klozlj.

Ji
Qi
eAlso, effect of other parameters on transport (n, ¢ for fluid, for

instance). But we have/ o «
— — DXS ,
ol k

where D= diffusivity matrix, xs= susceptibility matrix, obtained
from thermod. pot. 2 (and then we can derive D),

19 1 °Q
o V. op? BT V 0Tou B
Xs T P T 9#Q ’
Vv |4

8M8T‘B VT2 B,
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Transport properties of strongly coupled 241d CFTs
from properties of 4d AdS-black hole solutions

eGravity theory in 4d: + scalars (dilaton ¢, axions xi1,x2) +
electromagnetic (A, = Fuv) (e.9.,L. Alejo, P. Goulart, HN, 2019; D.
Melnikov, HN, 2021)

— /d4x\/— [16 o <R — %[((‘MS)Q + ®(¢) ((0x1)* + (0x2)?)] — V(cb))
4(2) W(qb)FMVF'LW]

eBackground solution: black hole = has event horizon at » = rg.
X1 = kix, xo = koy breaks translational invariant in 2 spatial
directions of field theory.

ds®° = —U(r)(dt+ Biy dz)? + d( )+e2V("“>(da; + dy?)

Ay =a(r), Az =—-By+ (a(r)—p)B1y
X1 =kix, x2=koy, ¢=q¢(r)
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eEvent horizon: U(ry) =0, U(r) ~ (r —ry)U'(ry), temperature
_U'(ry)
e4d A, = — By source gives magnetic field B in 24-1d dimensions.

B1 generates energy magnetization density, Mp = _\%l —g%ﬂB 0’
. 1:

pu=chemical potential.
eThen, add perturbations (—F + &a(r))t in Ay and —&tU(r) in
gtz, Where E; = E§;, and #V,T = &6, is field perturbation =

generate response, ¢ fields, in order to satisfy eqs. of motion.
eMembrane paradigm: r-indep. (electric) currents

Jr = Zg(f)\/—gF“-I—4\/—gW(¢)F”,
4

J = Zg(f)\/—_ngT-F‘l\/—_gW(qb)F’y’"—ﬁM(r),
4

but at oo, M(r) = M, and we obtain the usual transport cur-
rents,

T (r=ryg) =T (r— oc) =Y _ep = 5t

while at rg easier to calculate. Similar for heat currents.

e T hen: Find currents as functions of E,¢£: e.9., jz from 6g¢s, 0 Az, 0hry,

VT

related from the egs. of motion to E and § = =
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e | hen, derive the transport coefficients:
e?V k2P (2r3g4p° + 263 B2Z% 4 g2 Ze?V k2 )

Ger = 4/«:4g4B2 2 —|— (2k2B2Z 4 g2e2Vk2P)? . ’
. 4.2B k2gap® + k2B%Z2% + g3Ze?V k%D o
Toy = TRaDP 2,2 2132 2.2V 1.2)2 ’
ArkggiB2p? 4+ (2k5B2Z 4+ g2e2VE2 D) -
2/14g4spezvk2cb
axx — J
A4rk3g5B2p2 + (2k3B2Z + g2e2Vk2)?2 -
5 2Kk2gap% + 2Kk3B%Z2% + g2 72V k2P
Ory — 22Kk38B 5 5
AkggiB2p? + (2k2B2Z + g3 e2Vk2®)2|
@ _ (2/«:2)32 94 [(2'14)BQZ + 94 QVkQCD}
T “ (2k2)2940°B? + ((2K3)B2Z + g3e2VEk2®)?
@ — (2/@21)82 QAQL(QKAQL)QAQLPB .
T (222987 B2 + ((262) B2Z + 22V 2 )2
eHere p = —Ze2Vd/ is field theory charge density (A; = a(r) ~

a'(rg)(r —rg) o« p).

eFind interesting properties of strongly coupled transport, like
S-duality, part of Si(2,Z) group.
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eS-duality acting on ¢ = ouy + iowr as 0 — o/ = —1, or ol =

Oxrr - /! Oxy _
oz, toz, Prz, Oxy = 0202, Pzy-
oAt p = B = 0, & finite, ogx = Z(ry), ozy = —4W(ryg) =
transformation on Z, W that leaves gravitational action invariant:
_ _ W
Fuu — Z((b)F/u/ — W(¢)FM Z(¢) ,ul/pa Fr7 — f]-qs)
Z(¢) . W ()
Z — - = , W — = :
W= e rwer V7 2@+ W

e [ransport formulas match 241d CMT strongly coupled model
for near-transition supercond -insulator of Hartnoll, Kovtun, Muller,

o2V 1.2
Sachdev (2007), for w — w + — > 52T
mp 4

eS-duality extended; also p —+ B, B — —p.
e [ranslational invariance breaking A o« & acts as an RG scale for

an RG flow. og = % is the critical point (UV) conductivity.
4

raey/T | 29
il 2% 4 O(T).

AlSO Lyp = “fgf”/T = L if B=0, ® # 0, but very small.

rxr

oA generalized Wiedemann-Franz law L =
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eToy model in 3d: ABJM model: 3d N = 6 susy CS gauge
theory with group SU(N)xSU(N), gauge fields A,,, A, 4 complex

bifundamental scalars CI, 4 fermions wf, I =1,2,3,4., in the
global R-symmetry group SU(4) = SO(6) (full R-symm. SU(4) x

U(1)), with
21 - - 20 o o

S = /dzw ;
4

s

—Tr (D,CDHCT) = T (1 Dur) + Vo(CT) + Tr (CCTypyt term)]

and N/ = 6 enhanced to N =8 for k =1 or N = 2. 3 mass
deformation that preserves N = 6.

eGravity dual of ABJM: string theory in AdS, x CP3, obtained as
CP3 = 87/7;, for k — oo.

eS” defined by constraint Y% ;|Z%? = 1, obtained as a Hopf
fibration with fiber S, over CP3, St fiber: phase Z¢ — e*Z! i =
1,...4. Action of Z,: Z' e %" n=0,1,.. k—1.

eABJM at finite temperature: AdS4-BH, xCP3. Hence toy model
for 3d CFTs.
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Lecture 10

Applications to QCD
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eTwo large classes of models: "top-down” (dualities derived
from decoupled systems of branes) and " bottom-up” (phenomeno-
logical models: cook up a gravity dual with desired properties).

Top-down models

eFinite temperature (Witten) model: toy model for QCD3
(pure glue)

2 Rn—Q
ds? = (p _ )dT + -

2
RQ pn—Q —I_ p Z dCB =

R2 p n—2

r2 dr?

2 2 2
= Bt 1>]+er< 5

for n = 3, and adding S° metric. It satisfies the minimal ingre-
dients and general features for QCD-like duals.
oCut-off AdSs: modified " hard-wall”. Cut-off at rqin =
R?AQcp-
eImprovement: cut-off dynamical, as D-brane at rmin. Then,
modes on D-brane: source pion-like operators. Position: model
for the pion, for a precise version of the Froissart bound satura-
tion (with my in it).
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ePolchinski-Strassler solution: gravity dual of N = 1* SYM
— massive def. of N = 4 SYM. Toy model for N = 1 SYM
and QCD. Brane config.: D3-branes "polarizing” (" puffing up”,

extra space appears) due to nonzero flux. Mass gap appears
similarly to finite temp. AdSs x S>.

ds2iing = 23 Y2d@3, 1 + Z}2(dy? + y?d2 + dw?) + 25 wd2?
R* p2 2

Ly = Zy=Zy= ; ZQ:ZO[ ]

’ p3p> p2 + p?

205 !

P+ — (yz + (w + 7“0)2)1/2; R* = ArgsN;, pe = g};‘;a , o = ra'mN
20 — 92 p> .

T p2 + p2

eMetric goes over to AdSs x S at large p = p_ ~ p4. Near-core
is p ~ rg: typical warp factor Z1/2 finite.

eKlebanov-Strassler solution: N =1 susy SU(N+M)xSU(N),
wiht two chiral bifundamental Ay, A5 in (N + M,N) and two
B1,Bs in ((N+M),N). Brane config.: M " fractional D3-branes”
on a conifold point in the near horizon.
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eaS duallly CasCade . ApPPIlYy Sciberg duality (strongly C. SU (iV¢)
with N, flavors into weakly c. SU(Ny— N¢) with N, flavors). Re-
duce thus gauge group, successively: SU(N + M) x SU(N) —

SU(N) x SU(N — M) — ...minimum groups, at different energy
scale = cascade. Metric:

2 __
dsijg =

dsz =
+

K(7)

h(r) =

Y2 (r)dzE? + hl/Q(T)dsg
SR |3 07+ 6%+ cosh? (T) (0 + (90)?)

sinh? (3) ((92) + (92)2)]

(sinh(27) — 27)1/3
21/3sinh
22/3 >  rcothz —1

a— dx —
4 /. sinh“ x

(sinh(2z) — 2x)1/3 .

. eAt large 7, Iog -Gorrected AdS§(>< T11 in terms of r ~ [e2eT]1/3,

ds?
h(r)

2
dSTn

= R Y2(r)dz2 + W2 () (dr? + r2ds3..)

(gsM)2 In(r/7s)
4

Y

Tr

2
= (dw + ) cosd; dqbZ) + = Z(d92_|_s|n 0;dd?)

1=1,2 1=1,2
1
= 5(95)2 + Z(gz’)Q :
1=1
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eDilaton approx. const., ¢ = ¢g. Again, log-corrected AdSsx X5.
el_LOg correction related to renormalization of QFT= running
coupling const.

oln the QFT IR, at small =, metric terminates smoothly and

warp factor aé/Q remains finite,

2 2
ds? = ag"?di® + a}/? (C% + a3+ (o) + (92)2)) |

eMaldacena-Nuiez solution: 4d N = 1 SYM+ massive modes.
Brane config.: type IIB NS5-branes (S-dual to D5-branes) wrapped

on S2. String frame metric and dilaton:
1 ~a a
dS%O — ds%,stm'ng + O/NZ(w — A )2
11 ~a a ~b b ~C c 1 a ~a a
H=N —deabc(w — AY N (0 — A°) A (D _A)+ZF A (0% — A%)

ds%string = dil_7%+1 + o/N[dpQ + RQ(p)dQ%]

_ 1 2 i ? ! =
A= (ota(p)dd + o®a(p) sin 0 dp + o> cos dg| ; a(p) = sinh 2p
2()) = pcoth(2p) i !
R=(p) = pcoth(2p) — sinh2(2p) 4

20 _ 200 2B(p)
sinh(2p)
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e10d sol.: uplift sol. of N = 1 7d sugra on S3 transverse to
5-branes. w?®: left-inv. forms on S3. D5-brane metric is S-dual:

¢ — dp = —¢, gk, — gk, so:

1 ~a a
dsgiring = P [dfﬂ?@ +o'N (dp2 + R(p)dQ3 + > (07— A >2>]

26p — 26p,05NN(2p)
2R(p)
CD string tension Ts = £2°% and M2 M?2 1
1@ string tension Ts = 5, an lueballs ~ Mg ~ 72 ~
1

o7 SO decoupling of KK states would mean Ts < M,%K —

e?DON < 1.
eBUT: sugra approx. — curvature small in string units — e?DON >

1: opposite. So can't decouple KK modes.
oUV of QFT: p — o0,

_ log
R? ~ p. a~2pe 2P, ¢~ do—p+ P

4
i 1
ds®> = di3.;+ o'N |dp® + pdQ35 + Z(f&?“ - AG)QI

=

N :sz 1 _
= di5., +d'N — + (—log 2)d23 + Z(wa — A“)2] .
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eBut dilaton nontrivial, so is actually equiv. to log-corrected
AdS5 X X5Z

1
S = — d°z\/—gs (/ \/gX5> g"e ??[Ry — 0, X0, X + ...],
2/€N X5
d 2
ds? = A0 di2, | + dp® + ds% = e Pdi2, | + ziQ +ds% =
1
S = — fx@(/ g&)JMWWW&W—@X@X+“L
2/€N X5

so the condition for log-corr. AdSs x X5 is in fact

d—¢pg— A e —p(+log corrections) = +log z(+ corrections) ,
and is satisfied (A=0, ¢ =¢g—p+..=¢g+10gz+..). So

uV: OK.
oIR of QFT: at p — 0O, the effective warp factor e2(A=¢) is con-

stant,

RP=p°4+00Y; a=14+002); ¢=¢g+00°).
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eMaldacena-Nastase solution: analog of Maldacena-Nunez for
3d: 3d N =1 SYM, with a Chern-Simons coupling, coupled to
other massive modes. Brane config.: NS5-branes wrapped on

S3. CS level k: gravity dual k = N/2. Index comp.: 3 unique
vacuum, confining. Solution:

1
dS%O — ds%string + OAINZ(’IIJG T AG)Q
11 ca aas ox rb oAby o rme aex v L a e
H=N —deabc(w — AYN(w0° — A”) A (w _A)+ZF A (0" — AY) | + h

ds%stm'ng — df%_'_l + O/N[dpQ + Rz(p)dQ%]

1
g— v+ '
2
11
h = N[w3(p) — 3w(p) + 2]-—=€mpew® A w’ A W€,

166
w® are left-inv. forms on S3 for dQ2, W% are same for transverse
53 and w(p), R(p)m¢(p) are found numerically.
eQFT UV: large p: .

3
R%(p) ~2p; w(p) ~-—; ¢=—-p+=logp,
4p 3
SO log-corrected AdS, x Xg, since

¢ —¢pg — A — —p -+ log corrections .
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oIR of QFT: p— O,

R2(p) = p? + O(p*); w(p) =14+0(?); ¢=¢o+ O>(?),
'so has finite warp factor, e2(4=¢) = ¢=2¢0+t-..
eDynamical susy breaking: Put small nr. n branes (n < N/2) on

noncontractible S3, so dual QFT has k = N/24n: susy unbroken
if n > 0 (branes), but broken if n < 0 (antibranes).

eSakai-Sugimoto model: has quarks (fermions in the funda-
mental) in the probe approx. (so, no back-reaction). Quarks:
either fixed D-branes (e.g., branes at orientifold point for N' =2
AdS/CFT), or probe D-branes: here.

o N. Wick-rotated D4-branes at finite temperature, for gravity
dual similar to Witten model,

2= () v v+ (7) (i@

U\ 3/4 21N U3
¢ (_) O c . ) — 1 _ KK
€ gS R ’ 4 V4 641 f( ) U3

+ U2dQ§>
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eIn this background, Nf D8-brane probes, with transverse coord.
U, dep. on worldvol. coord. 7, U = U(r). Probe interpreted as
D8 — D8 = susy breaking, joined in bulk.

U=00
ut D8&-brane D8&-brane

The Sakai-Sugimoto model has a probe D8-brane in the gravity dual, starting
from infinity and returning to it. At infinity, it looks like a D8-brane/anti-D8-
brane pair (parallel branes of opposite orientation).
eSolution for U(7) to equations of motion:

) o 1/2 U dU
(U) =Ug f(Up) /UO (%)3/2f(U)\/U8f(U> — Ugf(Uo).

eModes on D8 couple to mesonic ops. (pion-like), charged
under global symm.
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eBackground related to Witten model for QCD4: D4-branes at
finite T, (some transf. and) compactify on periodic Euclidean
time. Metric at large U (UV of QFT): in terms of p = VU:

dp2
F(p)p?

eIs conformal factor x AdSg x S*: OK for compactif. to 4d
theory.. Cut-off at finite U = Ukk in IR of QFT. Obs.: 7 is
compact, and also 7 = 7(U), so D8-brane probes 4d theory.

ds® ~ p |p?(f(p)dr? + di®) + + dQ7| .

eMass spectra in gravity duals from field eigenmodes. For
a field in AdS space, dual tower of glueball states: tower of
discrete modes.

eE.G. Scalar dilaton (massles) ® dual to Tr[F,,F*], glueball
01T, and its excited states.

eField theory mass:. from x space or p space 2-point functions
of the operator,

(O(x)O(y)) e—mlljylu#e—mzlw—yl + ).
(OP)O(-p)) ~ > ——

.
j Pem;
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oIn AdS, spectrum of k2 = —m?2 for solutions of the free eq. of
m. for &.

eInfinite discrete spectrum (with no accumulation points) if light
takes finite time from boundary to boundary (horizon).

eFor an AdSn_|_1 x S space, made non-extremal by a blackening
function, we have a finite bd. to bd. time,

2 _ up 2 du” 2
ds 1——m dr? — dt —I—d:vn > + —— + dS<27,.
u (-
eDefining time of flight variable = by dx = dp\/gpp/gtt, massless

KG eq. OW = 0 becomes 1d QM problem for E = m?2 = —k2 (k
is 4d momentum),

d2
i+ (V@) - B)| () =0

eSO xmax finite means V(z) has finite support, so E, 2

discrete, infinite in nr., with no accumulation points, as for 1d
QM box.

m
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eBut this is not the only way to obtain mass gap! NS5-branes
in flat space have

dle ,string — d:v5_|_1 +dp® +dQ3, ¢ = —p.

"eBut O contains the Einstein metric. So repeating procedure
for gW, one finds V(x) = 1, with = ranging from 0 to co. So
continuous spectrum above a mass gap, though not discrete.
eFor Witten's QC' D3 model, one finds x between 0 and zmax = C,
and V(0) - —oco (V(z) ~ —1/(4z2)), V(C) —» 400 (V(z) =~
15/(4(xz — C)?)). Then one finds m?R?2 = 6n(n + 1), so at large
n, Fn = m2R? « n?, like for particle in a box.

eFor Polchinski-Strassler, one finds a finite time of flight at in-
finity, and near the core, one finds a near-shell approx., with a
5-brane throat, so strictly speaking one cannot regulate the di-
vergence.

eFor Klebanov-Strassler, again finite time of flight at infinity, but
smooth cut-off at small r (like the plane in spherical coords.),
so time of flight is regulated, and spectrum of scalar is discrete.
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eFor Maldacena-Nutnez, V(p) = 4/3 + ... in the IR and V(p) ~
1+ 1/(2p) in the UV, whereas for Maldacena-Nastase, V(p) ~
4/(4p2) in the IR and V(p) ~ 1 4+ 3/(4p) in the UV. So contin-
uum of states at high energies above a mass gap, though there
could be discrete states as well (if there is an energy well at
intermediate energies). Modification of the flat space 5-brane
spectrum.

eMass spectra in dgravity dual from mode expansion on
probe branes Sakai-Sugimoto model: Find worldvolume action
for Ay, M = 0,1,...,4, for the D8-brane KK reduced on S%. Use
coordinates (y,z) where the D8-brane is flat, situated at y = 0O
(extends in z):

(y,z) = (VU3 = 1cost,/U3—1sin7) .
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e The DBI4CS action for Ay; = (Au(2”, 2), Az(2¥, z) is

_ ANe 4 1 _1/3,2 5
— 216773/d xdzTr IEK / F2,+ KF2,| +
al 2
+24;2 /M4wa5,cs(A) , K(2) =142°.

eExpand in complete and orthonormal sets {an(z)},>1 and {¢n(z) }n>0
(such that —K1/30,(Kd.an) = p2an),

o

Z Alg”) (") an(2)

n=1

A(a”,2) = D@ )go(2) + D e (@)n(2)

n=1

Au(xuv z)

and obtain the kinetic terms

(0. @] 1 -
Sps = [ d*aTr [(%0(0))2 +2 (E(%Az(/”) — 8y AUN)2 + p2 (AT — 1%@(”))2)] +int,
n=1

allowing us to identify ¢©(0) with the pion, and Agm become
massive by eating gp(n)Z vector mesons.
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Phenomenological (bottom-up) gauge/gravity duality:
AdS/QCD

eExtended " hard-wall’” model. Extend hard-wall of Polchinski-
Strassler. Ehrlich, Katz, Son, Stephanov, 2005. Add gauge fields
A%u’ A%iu coupling to currents of S(Ny), xSU(Ny¢)g flavor symm.,
qrY* T, and gry*R% R, and bifundamental tachyonic scalar xop
of m?2R2 = —3 > —4 (BF bound) coupling to chiral order param-

eter Ox = cjj‘éqg. Action:
1
S = /d5$\/ —glr —lD,uX|2 + 3|X|2 - 4—92(F[24u/ T F%,LLV> y
5

eBoundary conditions: in the IR: (F1).y = (Fr)zu = 0; in the
radial gauge A, = 0 becomes Neumann: aZAL,RM — 0; also for

X (Neumann or Dirichlet). In the UV (z = 0): A"JL,RM — a"JL,RN
(sources for J¢ Ru)’ and also (Ox has A =3 ind=4):

1 1
X = 272 (Xo+ 2227 Xaa_q)) = 2Xo+ 22X (0) = EMZ + 5223 ,

where Xg= source for Ox= MP/2 (quark mass matrix) and
X(p) = =¥/2 gives VEV of Oy, = = (734}).
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olff M = my1l and >~ = o 1l, 4 parameters: mgq, o, zm,g5 and 3
fields: Ar,, Ag,, X. Can introduce vector V, = (Ap,, + Ary)/2
and axial vector A, = (Ar, — Agr,)/2 coupling to gv,T%g and
qv5vuT%q.

eIR+UV conditions imply quantized solutions (discrete spec-
trum).

eIn gauge V.(Z,z) = 0, in Fourier modes for ¥ (Q? = —g2), we
have, from the eqs. of m.,

2 2
Vi@ 2) = V@ Vo@D V(@z=0=1=V(Q2) =1+ L@ + ..
e2-point function for currents:
a b . 5 Ssugra 1 / a a

(@) 4,(0)) = Vg @)5\/&(0) 292 6V (:c)évgy(O) e ( Vaw)

/ P (J0(2)I20)) = 6 (quay — o) (Q7)
N 1 0.V(q,z) __i
My(QY) = 27 = | 2g5InQ .

eCompare with perturbative result:

N 5 5 1272
In = g5 — ———.
a2 QT T =T

My (Q%) = —
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eDecay constants into vector meson p, and pol.vector ¢, defined
by:

(01J416%) = Fnd™e,
“which implies
Fo S S o)l L 0]
! m3 (g — mg + ie) T M2 —mE +de) T

n n

— (01X (~0)|0) = —362M,(¢?)
q

to be matched against (¢, (z) are quantized (discrete) sols. for
vector meson states)

-, / VY (2)Yn(2") D ¢/(€)/6|2
G(q,z,z)—zn:qg_m%+ze,:>ﬂv( q) = 95; 2+ ieym2
leading to

= LW/ = [w (0)]2.
95

eOther masses, couplings, decay constants can be calculated:
fix parameters, then predict others.
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eSoft-wall model for QCD. Modify background to have good

QCD properties for the spectrum. In particular, m% x n (for

hard-wall, m2 x n? at large n) and for high spin S > 1, m2 « S.
More precisely,

m,,% ~ on,; m?g ~ o8S.
eAnsatz
ds® = gy ndz™Mdz = e24(2) (nlu,/da:“da:'/—l—sz) — ezA(u)nuyda:“da;V—l—duQ.

eAs before, relevant combination is ®(z) — A(z), so we want
boundary conditions:

UV (2 = 0) i d(2)—A(2) ~logz, IR (2 = 00) : d(2)— A(2) ~ 22
eSimplest solution:

d(2) — A(z) = 22 + 109 =.
eAction (has dilaton & extra):

) 1
S=/d5x —ge— PG Ty —|DMX|2+3|X|2—4—92(F,§W+F§W) |
5
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eBoundary conditions appear because: Schrodinger eq. with
potential V(z), for B(z) = ®(z) — A(2),
1 1
_QM{ + V(2)n = m%¢n , V(z) = Z(B/)Q — EB”.
.Then V(z) x 22 at large z for E, = m2 x n, implying B(z) « z°;
also B = z2/z2, + log z gives

2n!

CETYS

m2z2 = Ep = 4(n+1) = Vp(z) = eB(z)/an(z) = 2°

eDecay constants become

1 8(n+ 1)
FF = SV (0] = =5
dg dg
eTo fix ® and A, not just ® — A, need higher spin (S > 2),
¢y ... Mg totally symmetric, with gauge invariance 0¢n;, vy =
Dy én,... M) @nd same equations of motion, just with B =

g;- (25 — 1)A. Then again V(z) x 22 at large z, but indep. of
, SO 2 2

¢:z—,z—>oo, Ax —logz,z— 0. Ifd>=z—2, A= —-logz =
Zm Zm
22 2(8-1 S?2 —1/4
V(z) =+ ( 5 )+ 2/ , En=m? g2, =4(n+9).
Zm, z5 z
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elImproved holographic QCD: engineer a scalar potential in
the gravity dual to holographically give wanted running coupling
constant.

eBUT: A(u) not known, so we need an ansatz: from integrating
2-loop beta function,

d\ dA 2 3 4 4
_— p— — — A __b A b A b A ono:
'ud,u dlog z BN 0 ! 2
1 b1 b7 log L (1)
— = = L—-—=logL+ —= +O(—= ), L=—-bglog(zN\).
o by ° b3 L L2 0109(zA)

eGravity dual (see previous) A(z) ~ —logz, z = 1/FE, so du =
eA(2) qy gives u ~ logz, du = —dlog E.
e\Write potential for A = Ne® and expand
oo
V1 Vo bi1. logL 1
V(N = VoA = V; . V- O (—) .

() n;on O+L+L2+b01L2+ 13
eV, from Einstein equation for action (coming from sugra plus
N effective D4 — D4 pairs= Dp— Dp wrapped on compact space),

S = M8|,5N62/d5a:\/—_g [ - g(a@)z - V(A)] .
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eFrom the equations of motion written in terms of A\, and then
in L, their compatibility requires that

8 23b2 — 36b; 8 23b2 — 36b;
Vi = —bVp, Vo="720 Vo=V ="y 1+ =bo 0 A\? O(N\3),
1 goVo 2 34 0 o<+9o-|— 34 >+()
o - g . 4 (26 + 92—% — 182—% log (b log Zi/\))
Tz 32 log(z/\) 341092 (2A)
log?log(zA)\ ] R?, | - .
O dz2 + d72).
+ < 0g’eny )| w2\ )

eObs.: we matched the UV asymptotics, but the IR one (most
interested in) needs large A\ beta function, for which we have an
ansatz: extra layer of phenomenology.
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