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Lecture 1

Elements of General Relativity and AdS

space
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.

•Special relativity: speed of light= const. in all inertial refer-

ence frames, c = 1 ⇒
ds2 = −dt2 + d~x2 = ηijdx

idxj

is invariant → invariant distance. SR: Physics is Lorentz invari-

ant, i.e. invariant under

x′i = Λijx
j; Λij ∈ SO(1,3)

•General relativity: General spacetime: curved. Distance be-

tween points is

ds2 = gij(x)dx
idxj

Here gij(x)=arbitrary functions: the metric.

•E.g. 2-sphere in 3d Euclidean space

ds2 = dx21 + dx22 + dx23; x21 + x22 + x23 = R2 ⇒

ds2 = dx21(1 +
x21

R2 − x21 − x22
) + dx22(1 +

x22
R2 − x21 − x22

) + 2dx1dx2
x1x2

R2 − x21 − x22
≡ gijdx

idxj(= dθ2 + sin2 θdφ2)
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•But for arbitrary symmetric metric gij(x), we cannot embed

in flat space: ∃d(d+1)
2 functions gij(x) - d functions x′i(xj) and

moreover: signature of embedding space is not fixed.

•E.g. 2d surfaces can be embedded in 3d with Euclideann OR

Minkowski signature. So: general space is intrinsically curved.

•Curved space: triangle made by geodesics has angles α+β+γ 6=
π. E.G. sphere α+ β+ γ > π: positive curvature R > 0.

•But ∃ also spaces of negative curvature, for which α+β+γ < π,

e.g. Lobachevski space (or ”Euclidean AdS2),

ds2 = dx2 + dy2 − dz2; x2 + y2 − z2 = −R2

but det gij > 0 ⇒ space has (intrinsic) Euclidean signature.
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a) b)

c) d)
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Einstein’s theory of general relativity:

• A1: Gravity is geometry: matter follows geodesic in curved

space, and to us it appears as gravity.

• A2: Matter sources gravity: matter curves space ⇒ Princ.:

•1.Physics is invariant under general coordinate transformations:

x′i = x′i(xj) ⇒ ds2 = gij(x)dx
idxj = g′ij(x

′)dx′idx′j

•2.Equivalence principle: there is no difference between accel-

eration and gravity

mi = mg,where ~F = mi~a(Newton) ~Fg = mg~g(gravity)

•Dynamics of gravity: Einstein’s eqs.

7



.

•Before that: define kinematics. gµν can be put locally to zero

by coordinate transformations

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x)

→ not a good measure of gravity. What else?

•Define tensors: Aµ transforms like dxµ, Bµ transforms like ∂/∂xµ,

mixed transform as the product.

•Define: inverse metric gµν = g−1
µν , and then Christoffel symbol:

Γµνρ =
1

2
gµσ(∂ρgνσ + ∂νgσρ − ∂σgνρ) ,

and Riemann tensor

Rµνρσ(Γ) = ∂ρΓ
µ
νσ − ∂σΓ

µ
νρ+ΓµλρΓ

λ
νσ − ΓµλσΓ

λ
νρ

•Γµνρ ∼ gauge field of gravity. Rµνρσ ∼field strength. Indeed,

analogous to field strength of SO(d− 1,1) gauge group,

FAµν = ∂µA
A
ν − ∂νA

A
µ + fABC(A

B
µA

C
ν −ABν A

C
µ ),
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•Moreover, covariant derivative of tensor is

DµT
ρ
ν ≡ ∂µT

ρ
ν +ΓρσµT

σ
ν − ΓσµνT

ρ
σ ,

similar to Dµφa = ∂µφa+ (Aab)µφ
b, A = (ab). Note Dρgµν = 0.

•Then Rµνρσ → tensor, as are Rµν = Rλµλν, R = Rµνgµν. R is

coordinate invariant → true measure of curvature of space.

•The simplest choice for action for gravity is correct (compatible

with experiment)

Sgravity =
1

16πG

∫

ddx
√

−det(gµν)R

⇒ Einstein’s equation

8πG

[

δSgravity√−gδgµν +
δSmatter√−gδgµν

]

= 0 ⇒ Rµν −
1

2
gµνR = 8πGTµν

•Indeed,

δSgravity =
1

16πGN

∫

ddx
√−g δgµν

[

Rµν −
1

2
gµνR

]

.

Tµν = − 2√−g
δSmatter

δgµν
.

9



.

Global structure: Penrose diagrams

•To understand topological & causal structure: Penrose dia-

grams.

•For light propagation, ds2 = 0 ⇒ conformal factor is irrelevant.

•Make coordinate transformation that bring ∞ to finite distance,

drop conformal factors. E.g. 2d Minkowski,

ds2 = −dt2 + dx2; u± = t± x⇒ ds2 = −du+du−
u± = tan ũ±, ũ± =

τ ± θ

2
⇒

ds2 =

[

1

4cos2 ũ+ cos2 ũ−

]

(−dτ2 + dθ2)

Here |ũ±| ≤ π/2 ⇒ |τ ± θ| ≤ π ⇒ diamond Penrose diagram
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a) b)

c) d) e)

Penrose diagrams. a) Penrose diagram of 2 dimensional Minkowski space.

b) Penrose diagram of 3 dimensional Minkowski space. c) Penrose diagram

of the Poincaré patch of Anti-de Sitter space. d) Penrose diagram of global

AdS2 (2 dimensional Anti-de Sitter), with the Poincaré patch emphasized;

x0 = 0 is part of the boundary, but x0 = ∞ is a fake boundary (horizon). e)

Penrose diagram of global AdSd for d ≥ 2. It is half the Penrose diagram of

AdS2 rotated around the θ = 0 axis.
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Anti-de Sitter space

•We saw examples of 2d (curved) surfaces of Euclidean signature

(usual):

•2d sphere, embedded in 3d Euclidean space:

ds23 = dx21 + dx22 + dx23; x21 + x22 + x23 = R2 ⇒
ds22 = gijdx

idxj; det(gij) > 0

is explicitly SO(3) invariant by construction, and R > 0.

•2d Lobachevski space, embedded in 3d Minkowski space:

ds23 = dx21 + dx22 − dx23; x21 + x22 − x23 = −R2 ⇒
ds22 = gijdx

idxj; det(gij) > 0

•Is explicitly SO(2,1) invariant by construction, and R < 0.

•Generalize to Lorentzian signature. R > 0 case (generalization

of the sphere) = de Sitter space. R < 0 case (generalization

of Lobachevski) = Anti de Sitter. So, sometimes: sphere =

”Euclidean de Sitter” and Lobachevski = ”Euclidean Anti de

Sitter”

12



.

•Thus, d-dimensional de Sitter space:

ds2 = −dx20 +
d−1
∑

i=1

dx2i + dx2d+1; −x20 +
d−1
∑

i=1

x2i + x2d+1 = R2

is explicitly invariant under SO(d,1) by construction and R > 0.

•d-dimensional Anti de Sitter space:

ds2 = −dx20 +
d−1
∑

i=1

dx2i − dx2d+1; −x20 +
d−1
∑

i=1

x2i − x2d+1 = −R2

is explicitly invariant under SO(d−1, 2) by construction and R < 0.

•Metrics: Poincare coordinates (t, xi ∈ R, x0 ∈ R+)

ds2 =
R2

x20



−dt2 +
d−2
∑

i=1

dx2i + dx20





•Up to conformal factor, same as flat space ⇒ Penrose diagram

is the same. For d > 2 however, we use radial coordinate ρ > 0

instead of spatial coordinate x ∈ R ⇒ obtain half of diamond =

triangle.
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•We can make explicit also the exponential ”warp factor”

ds2 = e2y



−dt2 +
d−2
∑

i=1

dx2i



+ dy2 (x0 = e−y)

•Even though r, xi, x0 are ∞ in extent, space is not complete:

Infinity at y = ∞ is reached in finite time by a null ray:

ds2 = 0 ⇒ dt2 = e−2ydy2 ⇒ t =
∫ ∞

e−ydy <∞
•⇒ ∃ other coordinates covering whole space: global coordi-

nates:

AdS : ds2d = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ d~Ω2
d−2)

sphere : ds2d = R2(cos2 ρ dw2 + dρ2 + sin2 ρ d~Ω2
d−2)

•Coordinate transf.: global↔embedding:

X0 = R cosh ρ cos τ ; Xi = R sinh ρΩi; Xd+1 = R cosh ρ sin τ

•Finally, coordinate transf. tan θ = sinh ρ⇒

ds2d =
R2

cos2 θ
(−dτ2 + dθ2 + sin2 θ d~Ω2

d−2)
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•Here 0 ≤ θ ≤ π/2, τ ∈ R ⇒ infinite cylinder. Poincare patch:

figure of revolution obtained by rotating triangle around a side,

situated along the axis of the cylinder:

•Boundary of cylinder still reached by light ray in finite time (and

reflected back).

•AdS is somewhat like a finite box, with a boundary.

•d−dimensional boundary of AdSd+1 space: In Poincare coordi-

nates, at x0 = ǫ (and fixed) is Minkowskid,

ds2 =
R2

ǫ2
[−dt2 +

d−1
∑

i=1

dx2i ]
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•In global coordinates, at θ = π/2− ǫ is S3 ×R cylinder

ds2 =
R2

ǫ2
[−dτ2 + d~Ω2

d−2]

•But the 2 are related, in the Euclideanized version, by a con-

formal transformation:

ds2 = dρ2 = ρ2dΩ2
d−1 = e2τ [dτ2 + dΩ2

d−1]; ρ = eτ

•So conformal symmetry of boundary = invariance symmetry of

AdSd+1.

•Perhaps physics in AdSd+1 space is holographic: Physics inside

AdS = physics at its boundary.

•Reason why possible: Boundary of space is reached in finite

time.
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•Anti-de Sitter space is a maximally symmetric space: constant

negative curvature R < 0.

•Solution of Einstein’s eq. with a cosmological constant, Tµν =

Λgµν and Λ < 0, i.e.

Rµν −
1

2
gµνR = 8πGTµν

•Observation: Light takes an ∞ time to reach the middle of

AdS space, ρ= 0 or x0 = ∞:

ds2 = 0 ⇒ t =
∫

0

dx0
x0

∼ − lnx0|x0∼0 → ∞

•⇒ In order for AdS to become truly like a box of finite size,

we must cut out a tube in the middle.
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Vielbein-spin connection formulation of GR: 1st vs. 2nd
order

•Any space is locally flat: tangent space: Lorentz invariance that

is local (at any point).

•Vielbein eaµ: ”square root” of metric, making local Lorentz

invariance manifest:

gµν(x) = eaµ(x)e
b
ν(x)ηab

→ eaµ → Λabe
b
µ.

•Covariant derivative acting on tensors (bosons): with Γµνρ

DµT
ρ
ν ≡ ∂µT

ρ
ν +ΓρµσT

σ
ν − ΓσµνT

ρ
σ

•Covariant derivative acting on spinors (fermions): with spin
connection ωabµ , multiplying the generator of the Lorentz group

in the spinor representation, 1
4Γab,

DµΨ = ∂µΨ+
1

4
ωabµ ΓabΨ
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•Second order formulation: ωabµ = ωabµ (e) satisfies ”vielbein pos-

tulate”, or ”no torsion constraint” (T aµν=torsion),

T a[µν] = D[µe
a
ν] = ∂[µe

a
ν] + ωab[µe

b
ν] = 0

(if there are no fundamental fermions; if there are, there are

extra terms). Equivalently,

Dµe
a
ν ≡ ∂µe

a
ν + ωabµ e

b
ν − Γρµνe

a
ρ = 0

•The solution is

ωabµ (e) =
1

2
eaν(∂µe

b
ν − ∂νe

b
µ)−

1

2
ebν(∂µe

a
ν − ∂νe

a
µ)−

1

2
eaρebσ(∂ρecσ − ∂σecρ)e

c
µ .

•Define the field strength of ωabµ (=SO(1, d− 1) gauge field)

Rabµν(ω) = ∂µω
ab
ν − ∂νω

ab
µ + ωabµ ω

bc
ν − ωabν ω

bc
µ .
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•Then we have

Rabρσ(ω(e)) = eaµe
−1,νbRµνρσ(Γ(e)) , R = Rabµνe

−1 µ
a e−1 ν

b

so that the Einstein-Hilbert action in second order formulation

(ω = ω(e)) is

SEH =
1

16πGN

∫

ddx(det e)Rabµν(ω(e))e
−1,µ
a e

−1,ν
b .

•But then: first order formulation: ωabµ = independent variable

in the same action, rewritten as

SEH =
1

16πGN

1

4

∫

d4xǫµνρσǫabcdR
ab
µν(ω)e

c
ρe
d
σ

=
1

16πGN

∫

ǫabcdR
ab(ω) ∧ ec ∧ ed

•Then the ωabµ equation of motion is

T a[µν] ≡ 2D[µe
a
ν] = 0

so solving it, we are back at the second order formulation.
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Black holes

•The Schwarzschild solution = most general solution of vacuum

(Tµν = 0) Einstein equation, with spherical symmetry:

ds2 = −
(

1− 2MGN
r

)

dt2 +
dr2

1− 2MGN
r

+R2dΩ2
2.

•In the Newtonian limit, with gµν = ηµν + κhµν,

κNh00 = κNhii = −2UN = +
2MGN

r
,

so we are back to the Newtonian potential, satisfying

∆UNewton = 4πGNMδ3(x) ⇒ ∆κNh00 = −8πGNMδ3(x).

•Solution apparently singular at r = rH = 2MGN , so we cannot
reach the source at r = 0?
•If the solution is valid all the way to rH, we have a (Schwarzschild)
black hole.
•r = rH is the event horizon: light, at ds2 = 0, gives

dt =
dr

1− 2MGN

r

, r → rH : dt ≃ 2MGN
dr

r − 2MGN
⇒ t ≃ 2MGN ln(r−2MGN) → ∞.
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•But at the horizon, R ∼ 1/r2H = 1/(2MGN)2=finite! ⇒ not

singular. Need better coordinates: Kruskal.

•First, tortoise coordinates,

dr

1− 2MGN
r

= dr∗ ⇒ r∗ = r+2MGN ln

(

r

2MGN
− 1

)

,

then Eddington-Finkelstein ones,

u = t− r∗; v = t+ r∗ ,

and finally Kruskal coordinates,

ū = −4MGNe
− u

4MGN ; v̄ = +4MGNe
v

4MGN ,

so that the metric is (region r ≥ 2MGN becomes −∞ < r∗ <
+∞, thus −∞ < ū ≤ 0,0 ≤ v̄ < +∞)

ds2 = −2MGN
r

e
− r

2MGN dūdv̄+ r2dΩ2
2 ,
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•Then we have

− ūv̄

(4MGN)2
= e

v−u
4MGN = e

r∗
2MGN = e

r
2MGN

(

r

2MGN
− 1

)

so the r = 0 singularity corresponds to ūv̄ = (4MGN)2, while

r = 2MGN is ū = 0 or v̄ = 0. Define t̄, r̄ as ū = t̄ − r̄, v̄ = t̄+ r̄

→ Kruskal diagram. r = 0 is then t̄2 − r̄2 = (4MGN)2.

•Penrose diagram: drop dΩ2
2 and conformal factor in Kruskal

metric. Then: subset of flat space, restricted by t̄2 − r̄2 =

(4MGN)2. The usual transformation is

ū = 4MGN tan ũ+; v̄ = 4MGN tan ũ−; ũ± =
τ ± θ

2
,

and the r = 0 singularity is then

1 = tan
τ + θ

2
tan

τ − θ

2
=

sin2(τ/2)− sin2(θ/2)

1− sin2(τ/2)− sin2(θ/2)
,

leading to sin2(τ/2) = 1/2, thus τ = ±π/2 (τmax, for θ = 0, is

π).
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Kruskal diagram of the Schwarzschild black hole.
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a) b)

a) Penrose diagram of the eternal Schwarzschild black hole (time independent

solution). The dotted line gives the completion to the Penrose diagram of

flat 2 dimensional (Minkowski) space. b) Penrose diagram of a physical black

hole, obtained from a collapsing star (the curved line). The dotted line gives

the completion to the Penrose diagram of flat d > 2 dimensional (Minkowski)

space.
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Lecture 2

Elements of string theory and D-branes
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Wordline particle action: analogy

•Action on particle worldline = proper time: in terms of Xµ(τ):

S = −m
∫

dτ
√

−ẊµẊνηµν.

•In the nonrelativistic limit: OK:

S = −mc2
∫

dt

√

1− v2

c2
≃
∫

dt

[

−mc2 +
mv2

2

]

.

•Action is reparametrization invariant, τ ′ = τ ′(τ), dxµ/dτ =
(dxµ/dτ ′)dτ ′/dτ ; X ′µ(τ ′(τ)) = Xµ(τ).
•Equations of motion and boundary conditions from δS:

δS = +m

∫

dτ
d

dτ

[

− ηµνẊµ

√

−ẊρẊρ

]

δXν + δXµm
dXµ

dτ

∣

∣

∣

∣

τf

τi

⇒ dpµ

dτ
= 0

•Couple to gravity: nontrivial: ηµν → gµν, geodesic equation.
•Couple to background charge: add worldline term =

∫

Aµjµ,
∫

dτAµ(X
ρ(τ))

(

q
dXµ

dτ

)

=

∫

d4xAµ(X
ρ(τ))q

dXµ

dτ
δ3(Xρ(τ)) ≡

∫

d4xAµ(X
ρ(τ))jµ(Xρ(τ)).
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•First order action: introduce auxiliary field = independent world-

line metric γττ , or einbein (vielbein) e(τ) =
√

−γττ(τ). Write ac-

tion for massive scalars Xµ in 1d on worldline, coupled to gravity

(GR). Use
√−det γ × γττ = e−1(τ) and

√−det γ = e(τ).

Sp =
1

2

∫

dτ

(

e−1(τ)
dXµ

dτ

dXν

dτ
ηµν − em2

)

,

•Write the equation of motion for e(τ), solve it, and replace it:

− 1

e2
Ẋ2 −m2 = 0 ⇒ e2(τ) = −Ẋ

µẊµ

m2
⇒

Sp =
1

2

∫

dτ

[

m
√

−Ẋ2
Ẋ2 −

√

−Ẋ2

m
m2

]

= −m
∫

dτ

√

−ẊµẊµ ≡ S1 .

•Take m → 0 limit, then fix a gauge for reparametrization in-
variance (e(τ) → e′(τ ′)), e(τ) = 1:

Sm=0,e=1 =
1

2

∫

dτ
dXµ

dτ

dXν

dτ
ηµν .

•Equation of motion (Xµ(τ)) and constraint (for e(τ) = 1:
previous eq. for e(τ)):

d

dτ

(

dXµ

dτ

)

= 0 , −ds
2

dτ2
=
dXµ

dτ

dXν

dτ
ηµν ≡ T = 0.
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Strings

•Nambu-Goto action for bosonic string = area of ”worldsheet”

spanned by string × string tension. Generalization of particle

action: area of worldsheet. Xµ(σ, τ)= coordinates in spacetime.

ξa = (σ, τ) = intrinsic coordinates on worldsheet.

SNG = − 1

2πα′

∫

dσdτ
√

det(hab)

where hab =metric induced on worldsheet (pullback)

ds2ind = dxµdxνgµν(X) = dξµdξνhab(ξ) ⇒
hab(σ, τ) = ∂aX

µ∂bX
νgµν(X)

•Is wordlsheet diffeomorphism (gen. coord., or reparametriza-

tion) invariant.

29



•First order form: again introduce auxiliary field = independent

worldsheet metric.

•⇒ Polyakov action. In flat spacetime,

SP [X, γ] = − 1

4πα′

∫

dσdτ
√−γγab∂aXµ∂bX

νηµν

•Symmetries:

-Spacetime Poincare invariance

-Worldsheet diffeomorphism invariance: X ′µ(σ′, τ ′) = Xµ(σ, τ)

-Worldsheet Weyl invariance: γ′ab = e2ω(σ,τ)γab

•Use them to fix conformal (unit) gauge: γαβ = ηαβ.
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•Action becomes

S = −T
2

∫

d2σηαβ∂αX
µ∂βX

νηµν

→ action for free massless scalars in 2d: conformally invariant

(conf. inv. = residual gauge invariance: dependence on σ + τ

only), with equations of motion

✷Xµ =

(

∂2

∂σ2
− ∂2

∂τ2

)

Xµ = 0 ⇒ Xµ(σ, τ) = X
µ
R(σ− τ)+X

µ
L(σ+ τ)

•Boundary term: gives string types:

− 1

2πα′

∫

dτ
√−γδXµ∂σXµ

∣

∣

∣

∣

σ=l

σ=0
= 0 ⇒

•Closed strings (periodic): Xµ(τ, l) = Xµ(τ,0); γab(τ, l) =

γab(τ,0).

•Neumann open strings (free endpoints, v = c): ∂σXµ(τ,0) =

∂σXµ(τ, l).

•Dirichlet open strings (fixed endpoints): δXµ(τ,0) = δXµ(τ, l) =

0.
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•(Virasoro) Constraints: equations of motion of γab (fixed to
unit) = Tab

Tab = − 1

4π

1√−γ
δSP

δγab

∣

∣

∣

∣

γab=ηab

=
1

α′

(

∂aX
µ∂bXµ −

1

2
ηab∂cX

µ∂cXµ

)

⇒

α′T01 = α′T10 = Ẋ ·X ′ , α′T00 = α′T11 =
1

2
(Ẋ2 +X ′2).

•Closed strings: expand X
µ
R(τ − σ) and X

µ
L(τ + σ) in Fourier

modes α
µ
n, α̃

µ
n,

Xµ(σ, τ) = xµ + α′pµτ + i

√
2α′

2

∑

n6=0

1

n

[

αµne
−in(τ−σ) + α̃µne

−in(τ+σ)
]

.

•Neumann open strings: identify α
µ
n = α̃

µ
n.

•Fourier modes Lm, L̄m of constraints T−−, T++ are Lm, L̄m, for
closed strings

Lm =
1

2

+∞
∑

n=−∞
αµm−nα

µ
n , L̄m =

1

2

+∞
∑

n=−∞
α̃µm−nα̃

µ
n.

and H = L0+L̄0 = 0 (closed) or H = L0 (open) give (classically)

M2
closed ≡ −pµpµ =

2

α′

∑

n≥1

(αµ−nα
µ
n+α̃

µ
−nα̃

µ
n) , M2

open ≡ −pµpµ = − α2
0

2α′ =
1

α′

∑

n≥1

αµ−nα
µ
n
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•What does the string action represent? Particle action: is first

quantized: Need to also define vertices and propagators. String

action: defines the propagator; vertex is unique!!

•Quantization: α
µ
−n, α̃

µ
−n: creation operators. More precisely,

α
µ
m =

√
ma

µ
m, α

µ
−m =

√
ma

†µ
m for m > 0.

•But ∃ gauge inv.: easiest in light-cone gauge. X± auxiliary, Xi

physical. Then H = p− and the open string mass spectrum is

M2 ≡ 2p+p− − pipi =
1

α′(N − a) , N =
∑

n≥1

αi−nα
i
n =

∑

n≥1

na†ina
i
n ,

where

a = −
D−2
∑

i=1

∑

n≥1

n

2
= −D − 2

2

∑

n≥1

n =
D − 2

24
= 1 ⇒ D = 26.

•Bosonic closed string spectrum is similar, but with N and N̄ ,

∼ a
i1
n1...a

ik
nkã

ĩ1
m1...α̃

ĩj
mj |0〉 ,

with the constraint P = L0 − L̄0 = 0, so N = N̄ . Spectrum →
different fields ⇒ String theory = field theory of infinite number

of different kinds of fields.
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•Massless fields: Aµν = α
µ
−1α̃

ν
−1|0 >= {A((µν)) = gµν, A[µν] =

Bµν, φ = Aµµ} → spacetime fields.

•These massless fields create a spacetime background for the

string

S = − 1

4πα′

∫

d2σ[
√
hhαβ∂αX

µ∂βX
νgµν(X

ρ) + ǫαβ∂αX
µ∂βX

νBµν(X
ρ)

−α′
√
hR(2)Φ(Xρ)]

•But bosonic string has tachyonic vacuum: M2(|0 >) < 0. Need

to get rid of it:

•Superstring: Supersymmetric string. In Green-Schwarz formu-

lation, spacetime susy + κ symmetry. (Fix a gauge for κ symme-

try ⇒ worldsheet susy). Introduce θA = spacetime spinors and

worldsheet scalars. Replace ∂aXµ with spacetime susy invariant

Πµa = ∂aX
µ − iθ̄AΓµ∂aθ

A

invariant under

δXµ = −ǭAΓµ∂aθA, δθA = ǫA
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S = − 1

4πα′

∫

dτdσ
√−γγabΠµ

aΠ
ν
bgµν +

∫

dτdσǫabΠM
a ΠN

b BMN

•flat space:

B ≡ ǫabΠM
a ΠN

b BMN = −idXµ ∧ (θ̄1Γµdθ
2 − θ̄2Γµdθ

1) + θ̄1Γµdθ1 ∧ θ̄2Γµdθ2

•Kappa symmetry,

δκθ
A = −2ΓµΠ

µ
aκ

Aa , δκX
µ = −θ̄AΓµδθA , ...

is fixed by the condition (together with lightcone gauge for

bosons)

Γ+θ1 = Γ+θ2 = 0 , Γ± = (Γ0 ± Γ9)/
√
2

and θAα are regrouped as 2-comp. Majorana worldsheet spinors

Sm, m spinor of SO(8),

Slc = − 1

4πα′

∫

d2σ
[

∂aX
i∂aXi+2α′S̄mγa∂aSm

]

.

•Supersymmetry means tachyons (and other states) are out of

the spectrum. Vacuum: massless states Aµν = {gµν, Bµν, φ}+
others.

•Strings → couple to Bµν .
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•Gauge fixed Green-Schwarz action = gauge fixed action with

manifest worldsheet susy:

•Spinning string: Neveu-Schwarz-Ramond (NSR) action, with

ψµ= worldsheet spinors, spacetime vectors:

S = − 1

4πα′

∫

d2σ
[

∂aX
µ∂aXµ+ ψ̄µγa∂aψµ

]

,

with worldsheet susy:

δXµ = ǭψµ , δψµ = γa∂aX
µǫ

•Fermionic boundary term (for open string)

ψ+δψ+ − ψ−δψ−|π0,
means we can impose at 0 ψ

µ
+(0, τ) = ψ

µ
−(0, τ), but then at π

we have 2 possibilities,

ψ+(π, τ) = ±ψµ−(π, τ),
giving the Ramond (+) ⇒ spacetime fermions, or Neveu-Schwarz

(-) ⇒ spacetime bosons sectors. Closed strings: indep. for L or

R ⇒ NS-NS and R-R (bosons) or NS-R and R-NS (fermions).
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•Chirality of θA in closed string GS theory (N = 2): same ⇒ type

IIB string theory; opposite ⇒ type IIA string theory. Open strings

(N = 1): single θ; can couple to SO(32) Yang-Mills fields (non-

anomalous theory): type I string theory. Other N = 1 theories:

heterotic (left movers bosonic, right movers supersymmetric):

SO(32) or E8 × E8.

Conformal invariance in 2 dimensions

•Conformal invariance: symmetry of QFT in flat space, under

coordinate transformation that generalizes scale transf., of the

type

x′µ = αxµ ⇒ ds2 = d~x′2 = α2d~x2 →
xµ → x′µ(x) s.t. ds2 = dx′µdx

′
µ = [Ω(x)]−2dxµdxµ

•Obs: transf. on flat space. Transf. are a subclass of general

coordinate transf. For strings in unit gauge, σ+ → σ̃+ = f(σ+),

σ− → σ̃− = g(σ−) (residual gauge inv.).
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•In Minkowski (d − 1,1) spacetime, for d > 2, the conformal

group is SO(d,2).
•d=2: special. Invariance group is not finite dimensional (like

SO(d,2)), but infinite dimensional: Virasoro algebra

ds2 = dzdz̄ ⇒ z′ = f(z)

ds′2 = dz′dz̄′ =
∂z′

∂z

∂z̄′

∂z̄
dzdz̄ = Ω−2(z, z̄)dzdz̄

•So any holomorphic transformation is conformal. Generators
{Lm} (qu. version of string constraint modes): Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n

•GR tensors: covariant tensor Ti1...in transforms as

Ti1...in(z1, z2) = T ′
j1...jn(z

′
1, z

′
2)
∂z′j

′
1

∂zi1
...
∂z′jn

∂zin
.

•Primary fields or tensor operators of CFT defined by analogy:

”Tz..zz̄...z̄” is a primary field of dimensions (h, h̄) (even if h, h̄ /∈ Z)
if

Tz...zz̄...z̄ = T ′
z...zz̄...z̄

(

dz′

dz

)h(
dz̄′

dz̄

)h̃

,
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•Operator product expansion (OPE) (valid in any QFT, but

there only asymptotically):

Oi(xi)Oj(xj) =
∑

k

ckij(xi − xj)Ok(xj).

and if operators Oi have dimensions ∆i,

〈Oi(xi)Oj(xj)...〉 =
∑

k

ckij

|xi − xj|∆i+∆j−∆k

〈

Ok
(

xi+ xj

2

)

...

〉

,

whereas with the energy-momentum tensor T(z),

T(z)O(0,0) = ...+
h

z2
O(0,0) +

1

z
∂O(0,0) + ... ,

and for a primary field

T(z)φ
(hi,h̃i)
i =

hi
z2
φ(hi,h̃i) +

1

z
∂φ

(hi,h̃i)
i +nonsingular.

•Example: free scalars (Polyakov string action in unit gauge)

SE =
1

4πα′

∫

d2σ[∂1X
µ∂1Xµ+ ∂2X

µ∂2Xµ] =
1

2πα′

∫

d2z∂Xµ∂̄Xµ.
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•T-duality of closed and open strings: symmetry of string
perturbation theory on compact spaces.
•For a string winding m times around X25, bound. cond.

X25(τ, σ+2π) = X25(τ, σ) + 2πα′w.
•The classical solution is

X25(τ, σ) = XL +XR = x0 + α′pτ + α′wσ+ i

√

α′

2

∑

n6=0

e−inτ

n
(αne

inσ + α̃ne
−inσ) ,

where p = n/R and w = mR/α′. The constraint is now L0−L̃0 =
α′pw+N⊥ − Ñ⊥ and gives the spectrum

M2
compact = p2 + w2 +

2

α′
(N⊥ + Ñ⊥ − 2)

=

(

n

R

)2
+

(

mR

α′

)2

+
2

α′
(N⊥ + Ñ⊥ − 2).

•We observe the T-duality symmetry of the spectrum

M2(R;n,m) = M2(R̃;m,n).

extended to

x0 ↔ q0; p↔ w; αn ↔ −αn; α̃n ↔ α̃n ,
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•This T-duality exchanges then:

X25(τ, σ)XL(τ+σ)+XR(τ−σ) ↔ X ′25(τ, σ) = XL(τ+σ)−XR(τ−σ)
•T-duality of open strings: Do the same exchange for the

open string solution. Obtain

X ′25(τ, σ) = X25
L (τ + σ)−X25

R (τ − σ) = q250 +
√

2α′α25
0 σ+

√

2α′∑

n6=0

α25
n

n
e−inτ sinnσ ,

α25
0 =

1√
2α′

x252 − x251
π

.

•But then the boundary condition changes from Neumann to

Dirichlet and vice versa,

∂αX
25 = ǫαβ∂βX

′25.
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•Reminder: Vary Polyakov action ⇒ equations of motion, and

boundary term

δSP,bd. = − 1

2πα′

∫

dτ
√−γδXµ∂σXµ|σ=πσ=0 ⇒

•Neumann boundary condition: ∂σXµ = 0|σ=0,π ⇒ endpoints of

string move at the speed of light: usual.

•Dirichlet boundary condition: δXµ = 0|σ=0,π. ⇒ Xµ = constant

at σ = 0, π. → endpoints fixed.

•We can have Neumann for p+ 1 coordinates and Dirichlet for

D − p− 1 ⇒ ”Dp-brane”.

•Spacetime fields can excite coordinates Xµ transverse to the

Dp-brane (Dirichlet directions) → fluctuations ⇒ this is Dp-brane

is a dynamical object.
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a) b)

a) Open string between two D-p-branes (p+ 1 dimensional ”walls”). b)The

endpoints of the open string are labelled by the D-brane they end on (out of

N D-branes), here |i〉 and |j〉.

a) b)

a) Closed string colliding with a D-brane, exciting an open string mode and

making it vibrate b) String worldsheet corresponding to it, with a closed

string tube coming from infinity and ending on the D-brane as an open string

boundary. Allows us to calculate the D-brane action and couplings.
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•Compute charges and tensions of Dp-branes and compare with

supergravity p-brane solutions (Polchinski, 1995) ⇒ Dp-brane =

extremal p-brane solution of supergravity.

•Open strings have ”Chan-Patton factors” at endpoints → in-

dices ⇒ open string. λaij|i〉 ⊗ |j〉 ⇒ massless open string state

is Aaµ = α
µ
−1λ

a
ij|i〉 ⊗ |j〉 = vector in U(N) gauge group for N D-

branes.

•Action for a single D-brane is

Sp = Tp

∫

dp+1ξe−φ
√

−det(hij + α′(Fij +Bij)) + fermi +WZ

•Static gauge: Xi = ξi, i = 0, ..., p and gµν = ηµν ⇒
hij = ∂iX

µ∂jX
νgµν = ηij + ∂iX

m∂jXm
Bij = ∂uX

µ∂jX
νBµν

•WZ term:
∫

Mp
e∧F/2π ∧∑nAn, e.g. a term on D5 in type IIB is

1

2π

∫

M6

d6xǫµ1...µ6Aµ1F
+
µ2...µ6
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•Then, for p = 3 and a single brane

S2 = const.+
∫

d3x

(

−
F2
ij

4
− 1

2
∂iX

m∂iXm+ fermi

)

•In fact, the action: ”N = 4 supersymmetric Yang-Mills” for N

D3-branes.

•Fields: {Aai , Xa[IJ],ΨaI
α }, a ∈ SU(N), I ∈ SU(4), [IJ] → anti-

symmetric of SU(4): 6 representation. (m = 1, ...,6: transverse

to D3).

•Action

SN=4SYM = −2

∫

d4x tr[−1

4
F2
µν −

1

2
Ψ̄ID/Ψ

I − 1

2
DµXIJD

µXIJ

+igΨ̄I[XIJ ,Ψ
J]− g2[XIJ , XKL][X

IJ , XKL]]
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•Observation: Bosonic Nambu-Goto version → also volume

spanned by worldvolume:

Sp = Tp

∫

dp+1ξ
√

−det(hab)

hab = ∂aξ
µ∂bξ

νgµν

•In fact, strings massless fields form spacetime supergravity

multiplet.

•Supergravity has extremal p-branes solution ⇒ p-branes are

string theory nonperturbative objects: D-branes.

•Super p-brane: generalization

Sp = Tp

∫

dp+1ξ(−1

2

√−γγijΠAi ΠBj ηMNe
a(p)φ
p+1

+
p− 1

2

√−γ − 1

(p+1)!
ǫi1...ip+1Π

A1
i1
...Π

Ad
ip+1

AA1...Ap+1
)

•Bosonic: ΠAi → Πai = ∂iX
µEaµ.
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Lecture 3

Black holes in supergravity vs. D-branes
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Supersymmetry

•Bose-fermi symmetry. e.g. 2d: 1 Majorana spinor Ψ + 1 real

scalar φ. On-shell supersymmetry: 1 bose degree of freedom,

1 fermi d.o.f.

S = −1

2

∫

d2x[(∂µφ)
2 + Ψ̄∂/Ψ]

•Dimensions: [φ] = 0, [Ψ] = 1/2. Fermi-bose ⇒ start as

δφ = ǭΨ ⇒ [ǫ] = −1/2 ⇒
δΨ = ∂/φǫ

•Action is on-shell invariant.

•Off-shell supersymmetry: Ψ has 2 d.o.f. ⇒ need to add 1

auxiliary field

S = −1

2

∫

d2x[(∂µφ)
2 + Ψ̄∂/Ψ− F2]

δF = ǭ∂/Ψ; δΨ = ∂/φǫ+ Fǫ; δφ = ǭΨ
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•However, off-shell susy means that the algebra of susy is satis-

fied off-shell (without the use of the eqs. of motion).

•The most general N-extended superalgebra in 4d, with central

charges, is

{Qiα, Qjβ} = 2(Cγµ)αβPµδ
ij + CαβU

ij + (Cγ5)αβV
ij ,

and must be satisfied on all fields. In 2d, for the WZ model

above,

{Qiα, Qjβ} = 2(Cγµ)αβPµδ
ij ⇒ [δǫ1, δǫ2] = 2ǭ2γ

µǫ1∂µ.

•Representing the algebra with central charges and massive
states using the Wigner method, we find

aα =
1√
2
[Q1

α + ǫαβ̇Q̄2β̇] a†α =
1√
2
[Q̄1α̇ + ǫαβQ

2
β]

bα =
1√
2
[Q1

α − ǫαβ̇Q̄2β̇] a†α =
1√
2
[Q̄1α̇ − ǫαβQ

2
β] ,

so we obtain the algebra

{aα, a†β} = 2(M − Z)δαβ; {bα, b†β} = 2(M + Z)δαβ ⇒M ≥ |Z|.
and the rest zero, giving the BPS bound.
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•The interacting N = 1 chiral (WZ) model in 4d is

S =

∫

d4x
[

φ∗
✷φ− i(∂µψ̄)(σ

µ)Tψ −mψ̄ψ − 2Re[gφψ̄ψ]− |λ+mφ+ gφ2|2
]

,

where the auxiliary field was solved as F ∗ = −(λ+mφ+ gφ2).
•The N = 1 vector multiplet (vector+spinor) in 4d (off-shell) is

SN=1 SYM = (−2)

∫

d4xTr

[

−1

4
F 2
µν −

1

2
λ̄D/ λ+

D2

2

]

,

invariant under

δAaµ = ǭγµλ
a , δλa =

[

−1

2
γµνF a

µν + iγ5D
a

]

ǫ , δDa = iǭγ5D/ λ
a.

•When we couple to WZ multiplets, we obtain the D-term (aux-

iliary field) Da = φ†i(T a)ijφj, and the scalar potential is

V =
∑

i

|Fi|2 + g2DaDa .

•N = 4 SYM is obtained as N = 1 SYM in 10d reduced to 4d,

S10d,N=1SY M = (−2)

∫

d10xTr

[

−1

4
FMNFMN − 1

2
λ̄ΓMDMλ

]

⇒

S4d,N=4 SYM = (−2)

∫

d4x Tr

[

−1

4
F 2
µν −

1

2
ψ̄iD/ ψ

i − 1

2
DµφijD

µφij

−gψ̄i[φij, ψj]−
g2

4
[φij, φkl][φ

ij, φkl]

]
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Supergravity

•Supergravity = supersymmetric theory of gravity, OR: theory

of local supersymmetry.

•Local supersymmetry ⇒ ǫα(x) ⇒ ∃ ”gauge field of supersym-

metry”, ”Aαµ(x)” → gravitino Ψµα(x): supersymmetruc partner

of eaµ(x).

•N = 1 supergravity in 4d: {eaµ,Ψµα}. Supersymmetry laws:

δeaµ =
κN
2
ǭγaΨµ

δΨµ =
1

κN
Dµǫ; Dµǫ = ∂µǫ+

1

4
ωabµ γabǫ

•Action:

S = SE−H(ω, e) + SRS(Ψµ)

=
1

16πG

∫

ddx(det e)Rabµν(ω)e
−1µ
a e−1ν

b − 1

2

∫

ddx(det e)Ψ̄µγ
µνρDνΨρ
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•Second order formalism: eaµ, ψµα indep., ωabµ dependent. How-

ever, ∃ dynamical fermions, so ωabµ = ωabµ (e)+ψψ terms, obtained

by varying action with respect to ωabµ (as in first order formalism)

⇒ ωabµ (e, ψ).

•First order formalism: eaµ, ψµα, ω
ab
µ independent.

•1.5 order formalism (best): Use 2nd order formalism, but in

S(e, ψ, ω(e, ψ)), we don’t vary ω(e, ψ), since it is multiplied by

δS/δω = 0 (in second order formalism).

•In 4d, maximal susy (for multiplets of spins ≤ 2) is N = 8.

It has graviton eaµ, 8 gravitini ψiµα, 28 vectors AIJµ , 56 fermions

χαijk and 35 scalars forming a matrix ν or, in terms of N = 1

multiplets, 1 supergravity, 7 gravitino, 21 vectors and 35 chiral

(WZ) multiplets.

•It is the dimensional reduction of an N = 1 supergravity multi-

plet in 11 dimensions, with graviton eaµ, gravitino ψµα and 3-index

antisymmetric tensor Aµνρ.
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•Higher (N = 1) supersymmetry in d > 4 ⇒ matter fields in the

same multiplet: vectors Aµ, fermions Ψα, also p-form antisym-

metric fields Aµ1...µn

S =

∫

ddx(det e)F2
µ1,...,µn+1

Fµ1...µn+1 = ∂[µ1Aµ2...µn+1]

•Generalized Maxwell invariance

δAµ1...µn = ∂[µ1Λµ2...µn]

•Black holes and p-branes: Most general solution with spher-

ical symmetry of Einstein’s equations in vacuum (Tµν = 0):

Rµν − 1/2gµνR = 0 is the Schwarzschild solution. In 4d,

ds2 = −
(

1− 2mG

r

)

dt2 +
dr2

1− 2mG
r

+R2dΩ2
2
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•Is solution of a point particule of mass M , or of a spherical

mass distribution of radius R at r > R. If it’s valid down to

r = rH ≡ 2MG: black hole. r = rH: event horizon.

•Can add charge Q. BPS bound |Q| ≤M . For |Q| =M : extremal
black hole (r+ = r−).
•Solution with charge: modify the Newtonian potential defining
solution,

UN(r) = −MGN

r
+

Q2GN

4πǫ204r
2
,

where ds2 = −(1 + 2UN(r))dt2 + dr2/(1 + 2UN(r)) + r2dΩ2
2.

•In D dimensions, the Schwarzschild solution is

ds2 = −
(

1− 2C(D)G(D)
N M

rD−3

)

dt2 +
dr2

1− 2C(D)G(D)

N M

rD−3

+ r2dΩ2
D−2.

•The Schwarzschild p-brane solution in D dimension is obtained
by trivial extension of T p,

ds2 = −
(

1− 2C(D−p)G(D−p)
N M

rD−3−p

)

dt2 + d~x2p +
dr2

1− 2C(D−p)G(D−p)
N M

rD−3−p

+ r2dΩ2
D−2−p.
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•In 4d Einstein-Maxwell, the charged black hole is rewritten as

ds2 = −∆dt2 +
dr2

∆
+ r2dΩ2

2, ∆ =

(

1− r+
r

)(

1− r−
r

)

•For the extremal case, r+ = r−, and after r =M+ r̄, we obtain

ds2 = −H(r̄)−2dt2 +H(r̄)2(dr̄2 + r̄2dΩ2
2) ,

where H = 1+M/r̄ is harmonic,

∆(3)H = −4πMδ3(r).

•The AdS-Reissner-Nordstrom solution (charged BH in AdS) in

4d is

ds2 = −∆dt2+
dr2

∆
+r2dΩ2

2; ∆ ≡ 1−2MGN
r

+
Q̃2GN
r2

−8πGNΛr2

3
.
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•In D dimensions, the extremal Reissner-Nordstrom (charged

with respect to Aµ) black hole is rewritten by rD−3 = r̄D−3+rD−3
H

as

ds2 = −f(r̄)−2dt2 + f(r̄)
2

D−3(dr̄2 + r̄2dΩ2
D−2) ,

in terms of the harmonic function

f(r̄) = 1+
(rH

r̄

)D−3

.

•In supergravity however, we can add charge Qp associated with

an Aµ1...µp+1, with source term in the action Qp
∫

dp+1ξA01..p+1 =
∫

dDxjµ1...µp+1Aµ1...µp+1, giving

A01...p = − CpQp

rD−p−3
.

•The source term can be rewritten as (on the worldvolume)

− 1

(p+1)!
TP

∫

dp+1ξǫi1...ip+1∂i1X
M1...∂ip+1

XMp+1AM1...Mp+1
,

but there is actually also a coupling to the dilaton and the met-

ric, like for the string case.

•Extremal solutions M = |Qp| play a fundamental role: extended

in p+1 dimensions: p-branes. Important nonperturbative ob-

jects.
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•Extremal p-brane solutions of supergravity (with M = |Qp|),
with action

SD =
1

2k2

∫

dDx
√−g

(

R− 1

2
(∂φ)2 − 1

2(d+1)!
e−a(d)φF2

d+1

)

(here φ is a scalar = ”dilaton”), are of type

ds2Einstein = e−
φ
2ds2string; Hp = 1+

αpQp

|~x⊥|7−p
ds2string = H

−1/2
p (−dt2 + d~x2p) +H

1/2
p d~x29−p

e−4φ = H
p−3
4

p

A01...p = −1

2
(H−1

p − 1)

with source term
∫

A(p+1) =
∫

ddxjµ1...µp+1Aµ1...µp+1 added to

SD.

•Spans a p+1-dimensional ”worldvolume”.

•Play a special role when supergravity is embedded in string

theory: are equal to D-branes.
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Conformal field theory in d=4

•For d 6= 2, infinitesimal transf. is

x′µ = xµ+ vµ(x) ⇒
vµ(x) = aµ+ ωµνxν + λxµ+ bµx

2 − 2xmub · x
•Generators: (aµ, ωµν) → (Pµ, Jµν): Poincare (Ω(x) = 1). bµ →
Kµ: special conformal transformation, λ→ D: dilatation.

•Form group: SO(d,2) in Minkowski (d-1,1).

•Obs: All conformal transf. obtained from rotations, translations

and inversions:

I : x′µ =
xµ

x2
⇒ Ω(x) = x2

•So we only need to check invariance under inversions for a

Poincare invariant theory.
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•Scaling dimension: eigenvalue −i∆ of scaling operator D

φ(x) → φ′(x) = λ∆φ(λx)

•From SO(d,2) conformal algebra,

[D,Pµ] = −iPµ ⇒ D(Pµφ) = −i(∆+ 1)(Pµφ)

[D,Kµ] = +iKµ ⇒ D(Kµφ) = −i(∆− 1)(Kµφ)

•Thus Kµ ∼ a(annihilation) and Pµ ∼ a†(creation). Generate

representation of conformal group. Operator of lowest dimension

in it = primary operator φ0 (∼ |0 >), s.t. Kµφ0 = 0.
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•The orthogonal matrix representing inversion is

Rµν(x) ≡ Iµν(x) = δµν − 2
xµxν

x2
,

and transforms under conformal transf. as

Iµν(x
′ − y′) = RµρRνσIρσ(x− y); (x′ − y′)2 =

(x− y)2

Ω(x)Ω(y)
.

•2-point correlators for scalar operators Oi and conserved cur-

rents Jaµ are

〈Oi(x)Oj(y)〉 =
Cδij

|x− y|2∆i

〈Jaµ(x)Jbν(y)〉 = C
δabIµν(x− y)

|x− y|2(d−1)
,

while 3-point correlators of scalar operators are

〈Oi(x)Oj(y)Ok(z)〉 =
Cijk

|x− y|∆i+∆j−∆k|y − z|∆j+∆k−∆i|z − x|∆k+∆i−∆j
.
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•d = 4 → N = 4 Super Yang-Mills = representation of conformal

group {Aaµ,ΨaI
α , X

a
[IJ]

}.

•In N = 4 SUM, beta function = 0 ⇒ scale and conformal

invariant. But ∆ = ∆0 + O(g) in general. No infinities, but ∃
finite renormalizations.

•So classically: [Aaµ] = 1, [ΨaI
α ] = 3/2, [Xa

[IJ]
] = 1, but composite

gauge invariant ops., e.g. trF2
µν, have ∆(g).

•N = 4 susy invariance of SYM:

δAaµ = ǭIγµΨ
aI

δX
[IJ]
a =

i

2
ǭ[IΨJ]a

δΨaI = −γ
µν

2
F aµνǫ

I +2iγµDµX
a,[IJ]ǫJ − 2gfabc(X

bXc)[IJ]ǫJ
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AdS/CFT in original formulation (Maldacena, 1997)

•String theory in AdS5 × S5 = N = 4 SYM with SU(N) gauge

group (low energy theory on N D3-branes), living at the bound-

ary of AdS5 × S5, involving a certain limit.

•Heuristical derivation:

•D-branes = extremal p-branes ⇒ curve space. Solution:

ds2 = H−1/2(r)d~x2|| +H1/2(r)(dr2 + r2dΩ2
5)

F5 = (1+ ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ (dH−1)

H(r) = 1+
R4

r4
; R = 4πgsNα

′2; Q= gsN

•Add a δM → near extremal: M = Q+ δM ⇒ horizon ⇒ emits

Hawking radiation: 2 open strings on D3 collide and form a

closed string that peels off and goes into the bulk.
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Two open strings living on a D-brane collide and form a closed string, that

can then peel off and go away from the brane.

63



.

•P.O.V. nr. 1 D3-branes = endpoints of strings. String theory

gives:

-open strings on D3. Low energy (α′ → 0) ⇒ N = 4 SYM

-closed strings in bulk (all spacetime): supergravity + massive

modes of string. Low energy: supergravity only.

-interactions, giving e.g. Hawking radiation as above.

S = Sbulk + Sbrane+ Sinteractions

•Low energy limit, α′ → 0, ⇒ Sbulk → Ssupergravity, Sbrane →
SN=4SYM , Sint ∝ κNewton ∼ gsα′2 → 0. Moreover, since Newton

κN → 0, ⇒ free gravity. Thus:

•free gravity in bulk

•4d N = 4 SYM on D3’s.

•Obs: ∂(AdS5×S5) = R3,1 or S3×R (4 dimensional!): S5 shrinks

to zero size at boundary.
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•P.O.V. nr. 2 D3-branes replaced by p-branes (supergravity

solutions).

•Geometry has two asymptotic regions: r → 0: AdS5 × S5 and

r → ∞: Minkowski10. Infinitely long throat:

•Energy at point r is

Er ∼
d

dτ
=

1√−g00
d

dt
∼ 1√−g00

E∞ ⇒ E∞ = H−1/4Er ∼ rEr

•Then at r → 0, for fixed Er (energy of the throat) E∞ → 0 ⇒
low energy excitations.

•At r → ∞, long distance δr → ∞ ⇔ E → 0, effective gravity

coupling GED−2 → 0 ⇒ free gravity → in the bulk.
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•Compare POV 1 with POV 2. Same free gravity in the bulk ⇒
Identify the others ⇒

•4d N = 4 SYM with SU(N) on D3 = gravity at r → 0 in

D-brane background, for α′ → 0.

•Background for r → 0, with r/R ≡ R/x0.

ds2 = R2−dt2 + d~x23 + dx20
x20

+R2dΩ2
5 : AdS5 × S5
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Lecture 4

AdS/CFT and gauge/gravity duality in

Euclidean and Lorentzian signatures
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•Last time: 4d N = 4 SYM with SU(N) on D3 = gravity at
r → 0 in D-brane background, for α′ → 0.

•Background for r → 0, with r/R ≡ R/x0.

ds2 = R2−dt2 + d~x23 + dx20
x20

+R2dΩ2
5 : AdS5 × S5

•Now: Define limit further: r → 0 ⇒ M ∼ R4/r4 ∝ α′2/r4.

•Er
√
α′ fixed and E∞ fixed ⇒

E∞
Er

√
α′

=
r

α′
≡ U = fixed (energy scale)

•Then, metric is

ds2 = α′
[

U2

√
4πgsN

(−dt2 + d~x23) +
√

4πgsN

(

dU2

U2
+ dΩ2

5

)]

•And ds2/α′ finite, but in order to have small string corrections
we need also gs → 0 (quantum string corrections) and

•R2
AdS =

√
4πgsN =fixed and large (small α′ corrections).
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Two open string splitting interactions can be glued on the edges to give a
closed string interaction (”pair of pants”), therefore g2YM = gs.

•Large N limit: ’t Hooft: for gauge theories with only adjoints, we have an

effective, or ’t Hooft coupling λ = g2YMN , besides 1/N . The dependence of

amplitudes is

A ∼ (g2N)LN1−2h ,

where L = loop nr., h = handle nr., χ = 2−2h− l (l= nr. of quark, external

lines) is the Euler characteristic of a surface. Planar limit ≡ h = 0

a) b) c)

a) Planar 2-loop diagram with 2 3-point vertices b) Planar 2-loop diagram

with 2 4-point vertices c) Nonplanar 3-loop diagram.
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•(open string)2 ∼ closed string ⇒ gs = g2YM .

•So, limit: g2YM → 0, N → ∞, but ’t Hooft coupling λ = g2YMN

large and fixed.

•Opposite of perturbation theory (λ≪ 1) ⇒ duality:

Perturbation theory in string theory ⇒ nonperturbative in SYM

and vice versa: Hard to test, but useful → calculate nonpertur-

bative effects.

•3 possible versions of AdS/CFT:

-Weakest: only at gs → 0 and gsN large → string theory ≃
supergravity. α′ and gs corrections might disagree.

-Stronger: valid at any finite gsN , but only at gs → 0, N → ∞,

i.e. α′/R2 = 1/
√
gsN corrections agree, but not gs corrections.

-Strongest: believed to be correct: valid at any gs and N (or gs
and α′).
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•Defining map: (Witten, 1998)

•Gauge invariant operator O of N = 4 SYM, with conformal

dimension ∆ and representation In of SO(6) = SU(4) ↔ field in

AdS5, of mass m and representation In of SO(6) = symmetry of

S5

•Reduce 10d fields on S5:

φ(x, y) =
∑

n

∑

In

φIn
(n)

(x)Y In
(n)

(y)

•Then φIn
(n)

↔ OIn
(n)

, with

∆ =
d

2
+

√

d2

4
+m2R2

•But ∆ doesn’t receive quantum corrections (∆(λ → ∞) =

∆(λ = 0)) only for chiral primary operators = primary operators

preserving some susy: [Qcomb]Och.pr = 0
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•”Experimental” evidence: towers of multiplets of operators

in N = 4 SYM ↔ towers of KK fields on AdS5 × S5.

•6 families of chiral primary scalar representations:

Q2On = Tr (φ(I1...φIn)) ↔ scalars with m2R2 = n(n− 4), n ≥ 2;

On = Tr (ǫαβλαAλβBφ
I1...φIn) ↔ m2R2 = (n+3)(n− 1), n ≥ 0;

Q2Q̄2On = Tr (ǫαβǫᾱβ̄λαA1
λβA2

λ̃
B1
α̇ λ̃

B2

β̇
φI1...φIn) ↔ m2R2 = (n +

6)(n+2), n ≥ 0;

Q4On = Tr (FµνFµνφI1...φIn) ↔ m2R2 = n(n+4), n ≥ 0;

Q4Q̄2On = Tr (ǫαβλαAλβBF
2
µνφ

I1...φIn) ↔ m2R2 = (n + 3)(n +

7), n ≥ 0;

Q4Q̄4On = Tr (F4
µνφ

I1...φIn) ↔ m2R2 = (n+4)(n+8), n ≥ 0.
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•Global AdS/CFT. Metric of global AdS5 × S5 and boundary:

cylinder:

ds2 =
R2

cos2 θ
(dτ2+dθ2+sin2 θdΩ2

3)+R
2dΩ2

5 → ds2 =
R2

ǫ2
(dτ2+dΩ2

3).

•Metric in Poincaré coords, and boundary: plane:

ds2 = R2d~x
2 + dx20 + x20dΩ

2
5

x20
→ ds2 =

R2

ǫ2
d~x2.

•Boundary Rt×S3 (cylinder) and R4 (plane) are related by conf.

transf. (irrelevant for CFT):

ds2 = d~x2 = dx2 + x2dΩ2
3 = x2((d lnx)2 + dΩ2

3) = x2(dτ2 + dΩ2
3).

•CFT: operator-state correspondence. In 2d, z = e−w maps
cylinder (in w: w ∼ w+ 2π) to plane (in z) and incoming states
(at w = −i∞) with operators on the plane.
•e.g. Closed string. Taylor exp. of operator on plane ⇒ state-
operator map:

αµ−m =

√

2

α′
i

(m− 1)!
∂mXµ(0) ⇒ αµ−m|0,0〉 ↔

√

2

α′
i

(m− 1)!
∂mXµ(0).
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•Hamiltonian on Rτ (cylinder KK reduced on circle) is the same

as the ”dilatation operator” on plane, generator of ~r → λ~r, since
(d~r2 = dr2 + r2dθ2)

HRτ = i∂τ = ir∂r = DR2 .

•In 4d, similar. Only, conformal invariance requires
∫

Rφ2 term

in action: on plane, =0; on cylinder: mass term − ∫

φ2/2.

•Scalars Z in R4: Taylor expansion for this op. are

z
(m)
α1...αm ∼ (∂α1...∂αm)Z ,

and correspond to KK states on cylinder, but const. term has

energy E = 1 due to mass term (is a harmonic oscillator).

•Again, QM Hamiltonian for KK states on Rτ (cylinder reduced

on S3), same as dilatation operator on R4, for ~r → λ~r,

HRτ = i∂τ = ir∂r = Dplane.
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Witten construction

•Near boundary x0 = 0 in Poincaré coords., ✷φ = 0 has solutions

φ→ φ0 and φ→ xd0φ0, and (✷−m2)φ = 0 (massive) has solutions

φ→ xd−∆
0 φ0 and φ → x∆0 φ0 (∆= dim. of dual op.).

•Then φ0= source for dual operator O.

•Observables for O ↔ φ: generating functional for O:

Zboundary = ZO,CFT [φ0] =
∫

D[SYM fields]e−SN=4 SYM+
∫

d4xO(x)φ0(x)

•Fundamental idea: Zboundary = Zbulk = Zstring[φ0], where φ0=
boundary sources. But for α′ → 0, gs → 0, R4/α′2 ≫ 1 → string ≃
classical supergravity, and Zstring[φ0] = e−Ssugra[φ[φ0]].

⇒ ZO,CFT [φ0] = e−Ssugra[φ[φ0]]

•But in CFT, correlators are obtained by derivation:

< O(x1)...O(xn) > =
δn

δφ0(x1)...δφ0(xn)
ZO[φ0]|φ0=0

=
δn

δφ0(x1)...δφ0(xn)
e−Ssugra[φ[φ0]]|φ0=0
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•Define ”bulk to boundary propagator” KB, a propagator with

the free leg on the boundary,

”✷~x,x0”KB(~x, x0; ~x
′) = δ4(~x− ~x′) ,

such that the field in the bulk is written as a convolution of KB
with φ0,

φ(~x, x0) =
∫

d4~x′KB(~x, x0; ~x′)φ0(~x′) ,

and replaced in the sugra action allows us to calculate correla-
tors.
•In our case,
KB,∆(~x, x0; ~x

′) = Cd

[

x0

x20 + (~x− ~x′)2

]∆

.
x0→0→ xd−∆

0 δ(~x−~x′) , x0
∂

∂x0
KB

∣

∣

∣

∣

x0→0

∆=d
=

dxd0
|~x− ~x′|2d

so •Example: 2 point function of scalars

〈O(x1)O(x2)〉 = − δ2Ssugra[φ[φ0]]

δφ0(x1)δφ0(x2)
|φ0=0

Ssugra[φ] =
1

2

∫

boundary

d4x
√
h(φ~n · ~∇φ) =

Cd

2

∫

dd~x

∫

dd~x′
φ0(~x)φ0(~x′)

|~x− ~x′|2d ⇒

〈O(x1)O(x2)〉 = − Cd/2

|~x− ~x′|2d . OK!
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•Another way to think about it, which can be generalized:

Ssugra[φ[φ0]] =

∫

d5x
√
g
∫

d4~x′
∫

d4~y′∂µKB(~x, x0; ~x′)φ0(~x′)

×∂µKB(~x, x0; ~y′)φ0(~y′) +O(φ30)

⇒ 〈O(~y)O(~z)〉 =

∫

d5x
√
g∂µ~x,x0

KB(~x, x0; ~x
′)∂µ~x,x0KB(~x, x0; ~y

′)

•Generalize: Boundary Feynman diagrams (Witten) for 〈O(x1)...O(xn)〉,
e.g.

a)

b)

a) Tree level ”Witten diagram” for the 3-point function in AdS space. b)Tree

level Witten diagrams for the 4-point function in AdS space.
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•Example: 3-point function R-current anomaly. In general, for
3-point functions, we obtain

〈O(x1)O(x2)O(x3)〉 = −λ
∫

ddzdz0

zd+1
0

KB,∆1
(z0, ~z; ~x1)KB,∆2

(z0, ~z; ~x2)KB,∆3
(z0, ~z; ~x3).

•For the anomaly, we calculate

〈J ia(x1)J jb(x2)Jkc(x3)〉CFT, dabc part = −
δ3S3−pnt vertex

CS,sugra [Aaµ[a
d
l ]]

δaai (x1)δa
b
j(x2)δa

c
k(x3)

∣

∣

∣

∣

∣

a=0

,

using
SCS(A) =

N2

18π2
Tr

∫

B5=∂M6

ǫµνρστ(Aµ(∂νAρ)∂σAτ + A4 terms +A5 terms) ,

and find equality with the CFT result

∂

∂zk
〈Jai (x)Jbj (y)Jck(z)〉CFT,dabc

= −(N2 − 1)idabc

48π2
ǫijkl

∂

∂xk

∂

∂yl
δ(x− y)δ(y − z) ,

coming from the one-loop triangle anomaly (which is one-loop

exact!),

Triangle diagram contributing to the 〈Jai (x)Jbj (y)Jck(z)〉 correlator. Chiral

fermions run in the loop.
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•(Euclidean) Bulk to bulk propagator satisfies

(✷x −m2)G(x, y) =
1

√
gy
δd+1(x− y) = −δd(~x− ~y)δ(x0 − y0)

yd+1
0

Rd+1
,

and is found to be

G(x, y) = (x0y0)
d/2

∫

ddk

(2π)d
ei
~k·(~x−~y)Iν(kx<0 )Kν(kx

>
0 ) ,

composed, as usual, of the two independent solutions to the
homogenous eq. (✷−m2)Φ = 0,

Φ
1,~k

∝ ei
~k·~xxd/20 Kν(kx0)φ0(~k) , Φ

2,~k
∝ ei

~k·~xxd/20 Iν(kx0)φ0(~k) ,

where Φ
1,~k

is regular everywhere (also in the center x0 = +∞),

and at the boundary (x0 = 0) is a combination of the non-

normalizable mode x
∆−
0 and the normalizable mode x

∆+
0 (thus

the non-normalizable mode is leading), while Φ
2,~k

is the normal-

izable mode x
∆−
0 at the boundary, but blows up in the center (so

is not a physical mode). Therefore

Φ1,2 ∼ x∆±
0 , ∆± =

d

2
±
√

d2

4
+m2R2 ⇒

φ(~x, x0) =

∫

ddyKB(~x, x0; ~y)φ0(~y) ∼ xd−∆
0 φ0(~x) = x∆−

0 φ0(~x) .
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•Poincaré, Lorentzian signature, modes: Then k2 = −m2 < 0

on-shell, so solutions

Φ± ∝ eik·x(x0)d/2J±ν(|k|x0) ,
where ν =

√

d2/4 +m2R2. Thus near boundary x0 = 0,

Φ− ∼ (x0)
∆− , Φ+ ∼ (x0)

∆+ ,

so Φ− is non-normalizable and Φ+ is normalizable (like in Eu-

clidean case), but now both are regular in the center! (unlike

Euclidean case). Thus in the Lorentzian case we must under-

stand Φ+ (normalizable and regular).

•Natural Lorentzian map: Φ− → sources, Φ+ → states, in

boundary CFT.

•Wick rotating partition function, Witten map is now (|s〉=
state)

Zsugra[φ0] = eiSsugra[φ(φ0)] = ZCFT[φ0] = 〈s|ei
∫

∂M φ0O|s〉 .
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•But state |s〉 mapped to normalizable mode φn, so

φ(x0, ~x) = φn(x0, ~x) +
∫

ddyKB(x0, ~x; ~y)φ0(~y)

= φn(x0, ~x) + c
∫

ddy
xd0

(x20 + (~x− ~y)2)d
φ0(~y).

•Substituting in sugra action, we get

〈φ̃n|O(~x)|φ̃n〉φ0 =
δ

δφ0(~x)
Ssugra[φ(φ0)] = dφ̃n(~x)+cd

∫

ddx′
φ0(~x

′)
|~x− ~x′|2d .

•Then non-normalizable modes are mapped to sources and nor-

malizable modes to VEVs (or states),

φ ∼ αi(x0)
d−∆ + βi(x0)

∆ ,

implying

H = HCFT + αiOi ,
〈βi|O|βi〉 = βi+ (αi piece).
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•Solutions and propagators in global Lorentzian space. The

metric is

ds2 =
R2

cos2 ρ
(−dt2 + dρ2 + sin2 ρdΩ2

d−1).

•Only one solution regular in the center of AdS,

Ψ1 = e−iωtYl,{m}(Ω)(cos ρ)∆+(sin ρ)l2F1

(

∆+ + l+ ω

2
,
∆+ + l− ω

2
; l+

d

2
; sin2 ρ

)

.

•At boundary x0 = cos ρ = 0, two possible behaviours (solu-
tions)

Φ+ = e−iωtYl,{m}(Ω)(cos ρ)∆+(sin ρ)l2F1

(

∆+ + l+ ω

2
,
∆+ + l − ω

2
;∆+ +1− d

2
; cos2 ρ

)

Φ− = e−iωtYl,{m}(Ω)(cos ρ)∆−(sin ρ)l2F1

(

∆− + l+ ω

2
,
∆− + l − ω

2
;∆− +1− d

2
; cos2 ρ

)

,

where Φ+ is normalizable , Φ− is non-normalizable, and in gen-

eral Ψ1 ∼ C+Φ+ + C−Φ−. But if

ωnl = ±(∆+ + l+2n) ,

C− = 0, so Ψ1 is normalizable (and regular).
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•So unlike in Poincaré coords., the general solution is non-normalizable,
but particular discrete frequencies, it is normalizable.
•Non-normalizable modes: sources for CFT operators, but at
special AdS frequencies, normalizable modes, corresponding to
states of CFT on the cylinder, with energies ωnl = ∆+2n+ l.
•We can compute global bulk to bulk propagator,

iG(x, y) =
CB

(

cosh2 s
R

)

∆+

2

2F1

(

∆+

2
,
∆+ + 1

2
; ν + 1;

1

cosh2 s
R

− iǫ

)

,

and take limits to obtain the bulk to boundary, and boundary
to boundary (thus, CFT) propagators,

KB(b, x) = CB

[

cos ρ′

cos(t− t′)− sin ρ′Ω ·Ω′ + iǫ

]∆+

G∂(b, b
′) ∝ 1

[(cos(t− t′)−Ω ·Ω′)2 + iǫ]
∆+

2

.

•However, the Poincaré boundary to boundary propagator is

different: x212 = |x1 − x2|2 in global coordinates is different than

the denominator of the above,

x212 =
2(cos(t1 − t2)−Ω ·Ω′)

(cos τ1 −Ωd
1)(cos τ2 −Ωd

2)
,

so in each coordinate set we must define things from the start!
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Gauge/gravity duality

•Generalize: other max. susy CFT cases: AdS7×S4, AdS4×S7

→ ”gravity dual”

•Conformal invariance ↔ AdS space. But we can obtain less

susy by taking AdS ×X, e.g. by dividing by a finite group Sk/Γ.

•We can also break conformal invariance → modify AdS space.

•Theories with mass gap: AdS space like finite quantum me-

chanical box: must cut out a thin cylinder from the middle of

the AdS cylinder.

•We have an UV-IR correspondence:

E ∼ U = r/α′ ⇒ IR in CFT = r → 0 (UV) in AdS. Cut out

around r = rmin.

•Motion in U = r/α′ → Renormalization group flow in QFT.
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Minimal ingredients to simulate QCD:

•A large N quantum gauge theory (N → ∞ for small gs correc-

tions)

•Boundary at infinity identified with flat space of QCD, but bet-

ter: field theory at energy scale U corresponds to flat space at

position r in the gravity dual.

•Thus d+1 dimensional gravity dual corresponds to d-dim. field

theory plus its energy scale U .

•Since motion in U is RG flow, mass gap corresponds to minimum

r of gravity dual.

•Gauge group appears in gravity dual only through N .
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Map field theory/gravity dual

•Global symmetries in Minkd field th. ↔ gauge symmetries in

d+1-dim. gravity dual. → global symmetries of compact space

Xm. Jaµ couple to Aaµ.

•Pµ Noether current: Tµν ↔ (couples to) gµν. So d-dim. transl.

inv. ↔ diffeomorphism invariance in d+1 dimensions.

•Open/closed coupling: gs = g2YM/(4π).

•Gauge invariant operators ↔ (sourced by) gravity dual fields in

d+1 dimensions: •Supergravity fields in d+1 dim. (reduced on

Xm) ↔ SYM operators (made of adjoints) (”glueballs”).

•For quarks (fundamentals of gauge group and of some global

symmetry G), introduce SYM fields for the group G in the grav-

ity dual, coupling to G-charged, pion-like operators (made of

quarks), so ”SYM↔ pion fields”.
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•Thus: supergravity modes ↔ glueballs, SYM fields ↔ mesons.

•Mass spectrum of tower of glueballs = mass spectrum for wave

eq. of sugra mode in gravity dual. Similar for mesons.

•Baryons: more than two fields, e.g. BIJK = ǫijkq
IiqJjqKk. In

field theory: solitonic. → e.g. topological solitons in Skyrme

model. In gravity dual: solitons: branes wrapped on cycles.

•Wave functions of states in field theory, eik·x, correspond to

gravity dual wave functions Φ(x, U,Xm) = eik·xΨ(U,Xm).
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General properties for gravity duals for QCD-like, or SQCD-

like theories:

•At high energy: conformal (all mass scales irrelevant). Thus,

for U → ∞, AdS5 ×X5, or maybe with subleading corrections to

metric.

•At low energy, mass gap, so gravity dual must terminate at

some Umin, such that ”warp factor” U2 in front of d~x2 remains

finite.

•For fundamental quarks, open string modes on some brane must

be introduced. Couple to meson-like operators. Alternative: free

probe branes, probing physics at various energy scales.

•If QCD-like theory has global symm. (like flavor, or R, symm.),

gravity dual, so Xm, must have this.
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Lecture 5

Holographic renormalization and

holographic RG flow
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Holographic renormalization

•There are infinities in the AdS (or gravity dual) calculation of

the on-shell sugra action: must renormalize them.

•In part., volume near bound. is∞:
∫

dx0
√
g ∝

∫

dx0/(x0)d+1|z0→0 → ∞.

•Must add counterterms to on-shell sugra action: Sren = Son−shell,sugra
+Sct., and take derivatives of Sren with respect to boundary

fields.

•We will obtain for the exact one-point functions for nonzero

source

〈O(x)〉φ(0) = − 1
√g(0)

δSren

δφ(0)(x)
∼ φ(2∆−d)(x)

〈Ji(x)〉A(0)i
= − 1

√g(0)
δSren

δA(0)i(x)
∼ A(n)i(x)

〈Tij(x)〉g(0)ij = − 1
√g(0)

δSren

δg(0)ij
∼ g(d)ij(x).

•φ(2∆−d) = coefficient in expansion near boundary of the exact

solution (not determined by the near-boundary expansion of the

equations of motion), and similar for A(n)i and g(d)ij.
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•From the exact one-point function with source, so the ex-

act solutions φ(2∆−d), A(n)i, g(d)ij, we can calculate the n-point

functions via derivatives,

〈O(x1)...O(xn)〉 ∼ (−1)n−1
δn−1φ(2∆−d)(x1)

δφ(0)(x2)...δφ(0)(xn)

∣

∣

∣

∣

∣

∣

φ(0)=0

.

•Also diff. and conformal Ward identities are obtained as

∇i〈Tij〉g(0)ij = 0; 〈T ii〉g(0)ij = A .

•Asymptotic expansion. Define asymptotically AdS space-

times by near boundary (z = 0) expansion. Metric can be put

into

ds2 =
1

z2
(dz2 + gijdx

idxj) ,

where gij(~x, z) solves Einstein’s equation and admits Taylor ex-

pansion (is smooth),

gij(~x, z) = g(0)ij(~x) + zg(1)ij(~x) + z2g(2)ij + ...
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•Einstein’s equations fix all g(n)(~x) with n > 0 in terms of g(0)(~x).

(in part., in pure gravity all odd powers vanish up to zd). If d is

even, we can also have a logarithmic term at order zd, so

gij(~x, z) = g(0)ij(~x)+z
2g(2)ij(~x)+...+z

d(g(d)ij(~x)+h(d)ij(~x) log z
2)+...

•Solutions for g(n) in terms of g(0) is algebraic. In the above,

g(d) is determined by g(0), but h(d) equals the variation of the

conformal anomaly with respect to the metric.

•A general field Φ(~x, z) has the near boundary expansion

Φ(~x, z) = zm(Φ(0)(~x)+z
2Φ(2)(~x)+...+z

2n(Φ(2n)(~x)+log z2Φ̃(2n)(~x))+...)

•The field equation for Φ (second order in derivatives) has so-

lutions near the boundary zm and zm+2n, and their coefficients,

Φ(0) and Φ(2n), correspond to the source for the dual opera-

tor, and to 〈O〉 (VEV), respectively (this is true for the exact

one-point function).
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•Regularization and counterterms: Regularize the boundary:
at z = ǫ instead of z = 0. Then regularized action is

Sreg[Φ(0), ǫ] =

∫

(z=ǫ)

ddx
√
g(0)[ǫ

−2νs(0)[Φ(0)]+ǫ
−2ν+2s(2)[Φ(0)]+...−log ǫ s(2ν)[Φ(0)]+finite].

•Leading divergent term: ∼ ∫

dz/zd+1φ2 ∼ ǫd−∆; must be can-

celled by counterterm. Minimal subtraction scheme:

Sct[Φ(~x, ǫ); ǫ] = −div.terms in Sreg[Φ(0)(Φ(~x, ǫ)); ǫ].

•Then the subtracted action, varied in order to obtain correla-

tion functions, is

Ssub[Φ(~x, ǫ); ǫ] = Sreg.[Φ(0); ǫ] + Sct.[Φ(~x, ǫ); ǫ] ,

and has ǫ finite (must be kept so; put ǫ → 0 only at the end

of the calculation). However, the renormalized on-shell action is

its ǫ→ 0 limit,

Sren[Φ(0)] = lim
ǫ→0

Ssub[Φ(~x, ǫ); ǫ] .
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•The one-point function, from which we can calculate the other

correlation functions, is roughly

〈O(~x)〉Φ(0)
= ”

1
√g(0)

δSren

δΦ(0)(~x)
” ,

but really keep ǫ finite and put it to zero at the end, so really,

Φ(~x, ǫ) = ǫmΦ(0) + ... and γij = g(0)ij/ǫ
2 + .... Then

〈O(~x)〉Φ(0)
= lim

ǫ→0

1

ǫd−m
1
√
γ

δSsub
δΦ(~x, ǫ)

.

•The result is proportional to the linearly independent coefficient

Φ(2n)(~x), but there could also be a local function of the source

Φ(0) that leads to contact terms in the higher n-point functions,

and is scheme dependent, so

〈O(~x)〉Φ(0)
∼ Φ(2n)(~x) + F(Φ(0)).

•RG transformations in field theory arise from bulk diffeomor-

phisms that induce Weyl transformaitons on the boundary, so

xi = µxi
′
; z = µz′.
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Example: massive scalar in AdS

•Writing first Φ(~x, z) = zd−∆φ(~x, z), φ(~x, z) is finite at the bound-

ary, and has a Taylor expansion in even powers of z,

φ(~x, z) = φ(0) + z2φ(2) + z4φ(4) + ...

•Substituting in the KG eq. expanded in z, we find first m2R2 =
∆(∆− d), then

φ(2)(~x) =
1

2(2∆− d− 2)
∂i∂iφ(0)

φ(4)(~x) =
1

4(2∆− d− 4)
∂i∂iφ(2), ..., φ(2n) =

1

2n(2∆− d− 2n)
∂i∂iφ(2n−2) ,

and so on, and the series ends when 2∆− d−2n = 0, where we

need to introduce a zδ log z2 term in Φ, so

φ(~x, z) = φ(0)+z2φ(2)+...+z2∆−d(φ(2∆−d)+(log z2)φ̃(2∆−d))+...

•From the equations of motion, expanded in z around the bound-
ary, we find

φ̃(2∆−d) = − 1

22∆−dΓ
(

∆− d
2

) (

∆− d−2
2

)(∂i∂i)
∆− d

2φ(0) ,

on the other hand φ(2∆−d) is not fixed by them.
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•Regularization and counterterms: Regularized kinetic on-

shell action for Φ is

Sreg. =
1

2

∫

z≥ǫ
dd+1x

√
gd+1(g

µν∂µΦ∂νΦ+m2Φ2)

=
1

2

∫

z≥ǫ
dd+1x

√
gd+1Φ(−✷gµν +m2)Φ− 1

2

∫

z=ǫ
ddx

√
gd+1g

zzΦ∂zΦ ,

= −
∫

z=ǫ
ddx ǫ−2∆+d

(

1

2
(d−∆)φ(~x, ǫ)2 +

1

2
ǫφ(~x, ǫ)∂ǫφ(~x, ǫ)

)

,

where we integrated by parts, used the equations of motion,

and expressed Φ in terms of φ. This is of the general form, with

s(0) = −1

2
(d−∆)φ2(0)

s(2) = −(d−∆+1)φ(0)φ(2) = − d−∆+1

2(2∆− d− 2)
φ(0)∂i∂iφ(0), ... ,

s(2∆−d) = dφ(0)φ̃(2∆−d) = − d

22∆−dΓ
(

∆− d
2

) (

∆− d−2
2

)φ(0)(∂i∂i)
∆−d

2φ(0)
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•For the counterterm action, cancel the divergences, but with

φ(2k) re-expressed in terms of Φ(~x, ǫ). Inverting Φ(~x, ǫ) to second

order in ǫ2, we obtain

φ(0) = ǫ−(d−∆)

(

Φ(~x, ǫ)− 1

2(2∆− d− 2)
✷γΦ(~x, ǫ)

)

φ(2) = ǫ−(d−∆)−2 1

2(2∆− d− 2)
✷γΦ(~x, ǫ) ,

where ✷γ is the Laplacean of γij = δij/ǫ
2 (induced metric at

z = ǫ). Then the counterterm action is

Sct. =
∫

boundary
ddx

√
γ

(

d−∆

2
Φ2 +

1

2(2∆− d− 2)
Φ✷γΦ

)

+O(✷2
γ) ,

•For ∆ = d/2+k, the coefficient of Φ✷γΦ has a log ǫ (for k = 1,

−1
2 log ǫ).
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•Then for ∆ = d/2+ 1, we obtain

δSsub. = −1

2
δ

∫

z=ǫ

ddx
√
ggzzΦ∂zΦ+ δ

∫

z=ǫ

ddx
√
γ

(

d−∆

2
Φ2 − 1

2
log zΦ✷γΦ

)

+ ..

=

∫

z=ǫ

ddx
√
γδΦ(−ǫ∂ǫΦ+ (d−∆)Φ− log ǫ✷γΦ) ⇒

1
√
γ

δSsub.

δΦ
= −ǫ∂ǫΦ+ (d−∆)Φ− log ǫ✷γΦ ,

so that

1
√
γ

δSsub.
δΦ

= −ǫ∂ǫΦ+ (d−∆)Φ− log ǫ✷γΦ

〈O〉φ(0) = lim
ǫ→0

(

1

ǫ∆
1
√
γ

δSsub.
δΦ

)

= −2(φ(2) + φ̃(2)) ,

which is of the general form 〈O〉φ(0) ∼ φ(2∆−d) + F(φ(0)), since

for ∆ = d/2+ 1, φ(2∆−d) = φ(2), and φ̃(2) = φ̃(2∆−d) = F(φ(0)).

For general ∆, one finds (one can show)

〈O〉φ(0) = −(2∆− d)φ(2∆−d) + F(φ(0)).
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•This proves that indeed, φ(2∆−d) (the coefficient of x∆) gives

the (deformation of the) operator VEV, while we had that φ(0)
(the coefficient of zd−∆) gave the operator deformation of the

theory (source).

•To calculate the 2-point function from the 1-point function, we

need φ(2∆−d) and F as a function of φ(0), which only is true for

the exact solution.

•For example, for d = 4 and ∆ = d/2 + 1 = 3, the regular

solution of the KG equation in momentum space (regular also

at the center) is

Φ = z2K1(z) ,

expanded near the boundary z = 0 as

Φ(k, z) =
1

k
z

[

1+ k2z2
(

1

4
(2γ − 1)− 1

2
log2+

1

2
log(kz)

)]

+ ... ,

so we have

φ̃(2)(k) =
k2

4
φ(0)(k) , φ(2)(k) = φ(0)(k)k

2

[

1

4
(2γ − 1) +

1

2
log

k

2

]

⇒

〈O〉φ(0)
= −2(φ(2) + φ̃(2)) = −2φ(0)(k)

[

k2
(

1

4
(2γ − 1)− 1

2
log2+

1

4

)

+
k2

4
log k2

]

.
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•Then

〈O(k)O(−k)〉 = −
δφ(2)(k)

δφ(0)(−k)
=
k2

2
log k2 + contact terms ,

which Fourier transforms to the x space into

〈O(x)O(0)〉 = 4

π4
R 1

x6
,

where R1/x6 equals 1/x6 away from x = 0. For ∆ = d/2 + k,

one obtains

〈O(x)O(0)〉 = (2∆− d)
Γ(∆)

πd/2Γ(∆− d/2)
R 1

x2∆
.

•Note that naive Witten prescription calculation differs by (2∆−
d)/∆.
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•RG transformations, ~x= ~x′µ, z = z′µ, onto scalar Φ(~x, z), imply

φ′(2k)(~x
′) = µd−∆+2kφ(2k)(~x

′µ), 2k < 2∆− d

φ̃′(2∆−d)(~x
′) = µ∆φ̃(2∆−d)(~x

′µ)
φ′(2∆−d)(~x

′) = µ∆[φ(2∆−d)(~x
′µ) + logµ2φ̃(2∆−d)(~x

′µ)] ,

leading to

µ
∂

∂µ
φ(0)(~xµ) = (∆− d)φ(0)(~x

′µ) ,

〈O(~x′)〉′φ(0) = µ∆
(

〈O(~x′µ)〉φ(0) − (2∆− d) logµ2φ̃(2∆−d)(~x
′µ)

)

,

consistent with φ(0) a source for an operator of dimension ∆,

and φ̃(2∆−d) giving the conformal anomaly.

•We already saw that φ(2∆−d) was a deformation of the VEV of

the theory, and the above RG flow is also consistent with that.
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Holographic RG flow

•Motion in radial coordinate of the sugra solution, starting and

ending at solutions with AdS symmetry ↔ RG flow between fixed

points of the field theory.

•RG flow initiated by relevant deformation of CFT: must deform

basis theory by some operator.

•Example: N = 1 susy deformation of N = 4 SYM. The

superpotential of N = 4 SYM,

W = Tr (Φ3[Φ1,Φ2]) ,

is deformed by a supersymmetric mass deformation

δW =
m

2
Tr (Φ2

3) ,

•Obs: Superpotential is in superspace: Superfields Φ(x, θ),
where θ is a fermionic (anticommuting) variable. For a 4d chiral

superfield,

Φ(x, θ) = Φ(y, θ) = φ(y) +
√
2θψ(y) + θθF(y) , yµ = xµ+ iθσµθ̄
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•In 4d, ∃ 2 anomaly coefficients characterizing fixed points,

central charges c and a. gµν ↔ Tµν, Aµ ↔ Jµ. Consider Jµ
the R-current (SU(4) = SO(6) global symmetry, acting on the

fermions).

•Then, anomaly in VEV of Tµµ (classically = 0 by conformal

invariance) and VEV of ∂µJµ,

〈Tµµ〉gµν,Aµ =
c

16π2
C2
µνρσ − a

16π2
R̃µνρσR̃

µνρσ +
c

6π2
F2
µν

〈∂µ
√
gJµ〉gµν,A+µ = −a− c

24π2
RµνρσR̃

µνρσ +
5a− 3c

9π2
FµνF̃

µν.

where F̃µν = 1
2ǫ
µνρσFρσ, R̃µνρσ = 1

2ǫ
µνλτRλτρσ, and Cµνρσ is the

(conformal invariant) Weyl tensor,

Cµνρσ = Rµνρσ−
2

d− 2
(gµ[ρRσ]ν−gν[ρRσ]µ)+

2

(d− 1)(d− 2)
Rgµ[ρgσ]ν.

In 4d we have the topological density E4 and the conformally

invariant I4,

R̃µνρσR̃
µνρσ = RµνρσR

µνρσ − 4RµνR
µν +R2 = E4

CµνρσC
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

R2

3
= I4
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•Central charge c counts perturbative massless degrees of free-

dom in CFT, up to normalization. Here, normalization chosen

such that c = 1
4(N

2
c − 1) for N = 4 SYM.

•Anomaly contributions in 〈∂µJµ〉: a − c from ∂µJµ − Tµν − Tµν
triangle, prop. to

∑

χR(χ), and 5a−3c from ∂µJµ−Jµ−Jµ, prop.
to

∑

χR(χ)3:

a) b)
a) Anomalous diagram contributing to a−c b) Anomalous diagram contribut-
ing to 5a− 3c.

•For N = 1 RG flow on N = 4 SYM, UV:
∑

χR(χ) = 0,
∑

χR(χ)3,

IR:
∑

χR(χ) = 0,
∑

χR(χ)3 = 3
4(N

2
c − 1), so

aUV − cUV = 0; 5aUV − 3cUV ∝ 8

9
(N2

c − 1) ,

aIR − cIR = 0; 5aIR − 3cIR ∝ 3

4
(N2

c − 1) ⇒
aIR

aUV
=

cIR

cUV
=

27

32
.
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•c-theorem: (2d:Zamolodchikov) For an RG flow between 2 fixed

points, ∃ monotonically decreasing function along RG flow, with

value cUV in the UV and cIR in the IR, called c-function. In 2d,

c appears in the trace anomaly (in conformal invariance),

〈Tµµ〉 = − c

12
R.

•In 4d, similar statement (Komargodski and Schwimmer, after con-

jecture by Cardy): a-theorem: for the a charge. Will be proven

constructively via AdS/CFT.

•Cardy’s statement applies in general dimension (thus including

the c-theorem and the a-theorem) to the coefficient of Ed =

R̃µνρσR̃µνρσ, in

〈Tµµ〉 = −2(−)d/2AEd+ ...

•Central charges in N = 4 SYM: from holographic Weyl anomaly.
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•Holographic Weyl anomaly and central charge: The vari-

ation of the on-shell sugra action under a Weyl transformation

δg(0) = 2σg(0); δǫ = 2δσǫ gives the one-point function of Tµµ

(〈Tµν〉 = limǫ→0
1
ǫ∆T

1√−γ
δSsub
δgµν , for ∆T = d). But

Sreg = (16πG
(d+1)
N )−1

∫

ddx
√

g(0)[...+ (− log ǫ)s(d)] + Sfinite ,

and the finite part is cancelled by the counterterm, so we obtain

δSfinite = −
∫

ddx
√

g(0)δσA ...⇒ A =
1

16πG
(d+1)
N

(−2s(d)).

•A holographic calculation leads to a = c, so

A = − a

16π2
(E4 + I4) ,

and (GN,5 = G
(10)
N /R5Ω5, and Ω5 = π3 )

a = c =
π2R3

l3P,5
=

πR3

8G
(5)
N

.
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•Holographic RG flow and c-function: kink ansatz. Holo-

graphic RG flow ansatz must be kink-type:

ds2 = e2A(r)(−dt2 + d~x2d−1) + dr2 = e2A(r)ηµνdx
µdxν + dr2 ,

and φi = φi(r). AdS: A(r) = r/R, φi = 0. Thus, at endpoints:

A1(r) ≃ r/R1(UV ), A2(r) ≃ r/R2(IR), φi ≃ 0, with R2 < R1.

•Consider perfect fluid Tµν = diag(ρ, p1, ..., pd−1), satisfying weak-

est energy condition (satisfied by all QFTs), ρ + pi ≥ 0, then

Einstein equations for the above ansatz, with

Rµν = e2A(r)[A′′ + d(A′)2]ηµν; Rrr = −d[A′′ + (A′)2] ,

one finds the condition A′′ ≤ 0. This means that we have the

monotonically non-increasing function

C(r) = a(r) =
a0

(A′)d−1
.
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•With the proper normalization, we find the c-function (or a-
function) in d dimensions, which gives c and a at the endpoints

(fixed points),

C(r) = a(r) =
πd/2

Γ(d/2)(l
(d+1)
P A′(r))d−1

.

•Note this also gives the value of the holographic central charge

in d dimensions!

•Supersymmetric flow For the N = 1 mass def. of N = 4 SYM,

in N = 8 sugra: interpolate between the N = 8 susy AdS5 and

another N = 2 AdS5 (1/4 susy). Thus susy kink ⇒ δSUSYψ = 0.

•Supergravity scalar potential V in terms of superpotential W is

V =
9

8

∑

j

∣

∣

∣

∣

∣

∂W

∂φj

∣

∣

∣

∣

∣

2

− 3l2P |W |2.

•Then from gravitino variation δψaµ = 0 and spin 1/2 variation

δχabc = 0, we find

A′ = −l2PW ;
dφi
dr

=
3

2
l2P
∂W

∂φi
,
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•so the c-function or a-function in this case is

C(r) = a(r) =
π2

(l
(5)
P )9W3

,

•For the flow of interest, we indeed find a(0)/a(∞) = 27/32!

•Extension and application: radial time evolution (holo-
graphic cosmology). Consider the Domain Wall/Cosmology
correspondence = double Wick rotation redefining radial r as
time t, with background taken together as (note: z is not the
previous one!! )

ds2 = ηdz2 + a2(z)d~x2 , Φ = ϕ(z)

where η = ±1, solutions to the action (κ2 = 8πGN)

S =
η

2κ2

∫

d4x
√

|g|
[

−R+ (∂Φ)2 +2κ2V (Φ)
]

•Cosmologies are solutions to the equations

ȧ

a
= −1

2
W , ϕ̇ =W,ϕ , 2ηκ2V = (W,ϕ)

2 − 3

2
W2 ,

where W is a ”fake superpotential” (V (W ) the same as in susy).
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•Asympt. AdS: a(z) ∼ ez, ϕ ∼ 0 at z → ∞. Formalism in-

cludes also sympt. power law (non-conformal AdS/CFT), a(z) ∼
(z/z0)

n, ϕ ∼
√
2n log(z/z0), z0 = n− 1. These domain walls be-

come cosmologies for η = −1.
•Asympt. AdS in Fefferman-Graham coords. vs. ADM parametriza-

tion:

ds2 =
1

z2

[

dz2 +
(

g(0)ij + ...+ zdg(d)ij + ...
)]

ds2 = gµνdx
µdxν = γ̂ijdx̂

idx̂j +2N idx̂idr+
(

N2 +NiN
i
)

dr2

match in the gauge N = 1, Ni = 0, for z = e−r, so γ̂ij = gij =
1
z2
(g(0)ij(~x) + ...) = e−2r(g(0)ij(~x) + ...).

•The usual canonical momenta in ADM formalism (with action

− 1
2κ2

∫

dd+1x
√
γ̂N(R̂+ K̂ − K̂µνK̂µν − 2κ2Lm)),

πµν ≡ δL

δ̇̂γµν
= − 1

2κ2

(

K̂γ̂µν − K̂µν
)

, πI ≡ δL

δΦ̇I

become equal to the momenta obtained from the variation of

the on-shell action with respect to the boundary variables,

πµν(r1, ~x) =
δSon−shell

δγ̂µν(r1, ~x)
, πI(r1, ~x) =

δSon−shell

δΦI
, r1 → ∞.
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•But since

〈Tij(~x)〉 =
1

√

g(0)(~x)

δSon−shell(g(0), ...)

δgij
(0)

(~x)
, 〈OI〉 =

δSon−shell

δΦI
,

we obtain

〈Tij(~x)〉 =

(

− 2
√
g
πij

)

(d)

= − 1

8πGN

(

K̂ij − K̂γ̂ij
)

(d)
≃ − d

16πGN
g(d)ij(~x)

〈O(~x)〉 =
1√
γ̂
πI(∆I)

,

where the subscript means keep the part with the correspond-
ing engineering dimension (or dilatation eigenvalue), d for T or
∆ for O; or the given term in the near boundary expansion in
z (terms of less dimension are divergent, and are removed by
renormalization). (δr ≃ δD, and δDπ(n)ij = −nπ(n)ij).
•Then, according to the general theory, 2-point function from
1-point function with nonzero source,

〈Tij(x)Tkl(y)〉 =
1

√
g(0)ij

δ

δg(0)kl(y)
〈Tij(x)〉 =

1
√
g(0)ij

δ

δg(0)kl(y)

(

− 2
√
g
πij(x)

)

(d)

.

•The r.h.s. can be calculated in gravity, and is related to the

2-point functions of gauge invariant fluctuation modes γij and

ζ, linear combinations of the hij and φ fluctuation modes of the

cosmology.
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Lecture 6

Finite temperature and N = 4 SYM plasma
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•Finite temperature in field theory: QM transition amplitude

〈q′, t′|q, t〉 = 〈q′|e−iĤ(t′−t)|q〉 =
∑

n
ψn(q

′)ψ∗
n(q)e

−iEn(t′−t) ,

with t→ −itE, t′ − t → −iβ, iS → −SE, gives

〈q′, β|q,0〉 =
∑

n
ψn(q

′)ψ∗
n(q)e

−βEn.

•In the case q′ = q and integrating over q, we get
∫

dq〈q, β|q,0〉 =
∫

dq
∑

n
|ψn(q)|2e−βEn = Tr{e−βĤ} = Z[β].

•But the transition amplitude is a path integral,

〈q′, t′|q, t〉 =
∫

Dq(t)eiS[q(t)] ,

so Wick rotating it to periodic euclidean time, we obtain

ZE[β] =
∫

φ(~x,tE+β)=φ(~x,tE)
Dφe−SE[φ] = Tr(e−βĤ)
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•Euclidean (Wick-rotated) Schwarzschild black hole

ds2 = +

(

1− 2MGN
r

)

dτ2 +
dr2

1− 2MGN
r

+ r2dΩ2
2

•Does not make sense for r < 2MGN (unlike Minkowski signa-

ture) since signature of space changes! But near r = 2MGN ,

r − 2MGN = r̃ = ρ2 ⇒

ds2 ≃ 8MGN

[

dρ2 +
ρ2dτ2

(4MGN)2

]

+ (2MGN)2dΩ2
2

•This is of the type of a cone, ds2 = dρ2+ρ2dθ2 in general, and

only if θ ∼ θ+2π is a plane.

A flat cone is obtained by cutting out an angle from flat space, so that

θ ∈ [0,2π −∆] and identifying the cut.
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•To avoid conical singularity at r − 2MGN = ρ2 = 0, we need

τ/(4MGN) to have period 2π, so ∃ temperature

TBH =
1

βτ
=

1

8πMGN

•But Schwarzschild black hole is thermodynamically unstable,

since the specific heat

C =
∂M

∂T
= − 1

8πT2GN
< 0

•So we can’t interpret the black hole as putting the QFT at

finite temperature. In AdS space however, this can be done, as

we will see.
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•Spin structure in black hole background. At r → ∞, the

Euclidean BH solution is

ds2 ≃ dτ2 + d~x2 ,

where τ ∼ τ +8πMGN , so R3 × S1
τ : KK vacuum.

•Expand in Fourier modes. But fermions can acquire a phase eiα

around a circle, here S1
τ at infinity,

ψ → eiαψ ,

known as spin structures. α = 0, π always OK, others depending

on L.
•At horizon r = 2MGN , metric is ≃ R2 × S2, where Ω2 is the

sphere at ∞. But R2 × S2 is simply connected, i.e., ∄ nontrivial

cycles: any loop can be smoothly shrunk to 0. Thus no non-

trivial fermion phases possible around any loop, so ∃ unique spin

sctructure!

•But what is it at infinity? τ → τ+β at infinity is θ → θ+2π near

horizon, i.e., rotation in 2d plane, under which a fermion gets

a minus sign. Thus unique spin structure is antiperiodic around

circle at infinity.
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•KK masses and susy breaking: If fermions are antiperiodic

at infinity, they must depend on the Euclidean time θ, ψ = ψ(θ).

Then at infinity

∂/ψ = 0 ⇒ ∂/2ψ = ✷4dψ = 0.

•But under dimensional reduction ✷4d = ✷3d+ ∂2/∂θ2, so

0 = ✷4dψ =

(

✷3d +
∂2

∂θ2

)

ψ = (✷3d −m2)ψ ,

so fermions become massive in the presence of the black hole
(from the p.o.v. of the reduced 3d theory).
•Bosons can be periodic at infinity in θ ∼ θ+ 2π, so, e.g. for a
scalar under KK reduction

0 = ✷4dφ =

(

✷3d +
∂2

∂θ2

)

φ= ✷3dφ ,

so they remain massless.

•But for susy we need mscalar = mfermion, so susy is broken by

the black hole.

•In fact, one can prove that finite temperature always breaks

susy in QFT (regardless of the existence of AdS/CFT). So we

have a way of breaking the unrealistic N = 4 susy by finite

T !
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The AdS black hole and Witten’s finite temperature

prescription Witten, 1998

•Witten: to put AdS/CFT at finite T , put a black hole in AdS5.
Black hole in global AdSn+1:

ds2 = −
(

r2

R2
+1− wnM

rn−2

)

dt2 +
dr2

r2

R2 +1− wnM
rn−2

+ r2dΩ2
n−1 .

•At M = 0, we obtain AdS5 in global coord. (wn =
8πG

(n+1)
N

(n−2)Ωn−1
.)

•Follow Schw. case, first: (outer) horizon r+ is largest sol. of

r2

R2
+1− wnM

rn−2
= 0.

•Euclidean sol. near outer horizon (δr = r − r+) is

ds2 ≃
(

2r+

R2
+

(n− 2)wnM

rn−1
+

)

δr dt2 +
(dδr)2

δr
(

2r+
R2 + (n−2)wnM

rn−1
+

) + r2+dΩ
2
2.

•Metric is free of conical singularities if the period in t is

β =
4π

2r+
R2 + (n−2)wnM

rn−1
+

=
4π

nr+
R2 + (n−2)

r+

.
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Then the temperature of the AdS5 black hole is

T =
nr2+ + (n− 2)R2

4πR2r+

•From T = T(r+) and r+ = r+(M), we get T = T(M). From

d/dM on the horizon eq., we find

dr+
dM





nrn−1
+

R2
+ (n− 2)rn−3

+



 = wn ,

so dr+/dM > 0. Therefore the min. of T(M) is when dT/dr+ =

0, giving

r+ = R

√

n− 2

n
⇒ Tmin =

nr+
2πR

=

√

n(n− 2)

2πR
.

•Low M branch (M < M(Tmin)) has C = ∂M/∂T < 0, so is

thermodynamically unstable (is a small enough perturbation of

the flat space: Schwarzschild; black hole small w.r.t. AdS radius)

•HighM branch (M > M(Tmin)) has C = ∂M/∂T >), so thermod.

stable.
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T(M) for the AdS black hole. The lower M branch is unstable, having

∂M/∂T < 0. The higher M branch has ∂M/∂T > 0, and above T1 it is

stable.

•Need to check also that free energy, FBH < FAdS. Free energy

is def. by Z = e−F , but in gravitational theory

Zgrav = e−S ,
where S=Euclidean gravity action. Then

S(Euclidean action) =
F

T
,

so the comparison we need to do (and can prove) is

FBH − FAdS = T(SBH − SAdS) ⇒ T > T1 ≡ n− 1

2πR
> Tmin.
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•One more problem: Metric at r → ∞ is

ds2 ≃
(

r

R
dt

)2
+

(

R

r
dr

)2

+ r2dΩ2
n−1 ,

and, while the transverse Sn−1 has radius r → ∞, only the

relative distances matter in CFT at infinity, so r scales out, and

boundary is Sn−1 × S1, instead of Rn−1 × S1 (flat space with

periodic Euclidean time). Then we must have

r
r
R

1
T

= R · T → ∞ ⇒ T → ∞ ⇒ M → ∞ ,

and we need to rescale coords. to get finite results. We find
M ∝ rn and r2dt2 must be finite, so

r =

(

wnM

Rn−2

)1/n

ρ; t =

(

wnM

Rn−2

)−1/n

τ ,

and M → ∞. Then (dxi = (wnM/Rn−2)2dΩi)

ds2 =

(

ρ2

R2
− Rn−2

ρn−2

)

dτ2 +
dρ2

ρ2

R2 − Rn−2

ρn−2

+ ρ2
n−1
∑

i=1

dx2i ,
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•The temperature is found from the period of τ , now

β1 =
4πR

n
⇒ T =

R

β1
=

n

4π
.

•For n = 4 dim., the metric becomes

ds2 =
ρ2

R2

[(

1− R4

ρ4

)

dτ2 +R2d~x2
]

+R2 dρ2

ρ2
(

1− R4

ρ4

) ,

and after ρ
R = U

U0
; τ = tU0

R ; ~x = ~yU0
R2, and adding back in

R2dΩ2
5, we find

ds2 =
U2

R2

[

−f(U)dt2 + d~y2
]

+R2 dU2

U2f(U)
+R2dΩ2

5

f(U) ≡ 1− U4
0

U4
.

•This is the nonextremal AdS5×S4 in Poincaré (!) coords. But

that was near-horizon of D3-brane, so this can be obtained also

as near-horizon of near-extremal D3-brane.

122



.

•Moreover, after U/R = R/z and U0/R = R/z0 as usual, we find

finite T version of Poincaré-AdS

ds2 =
R2

z2

[

−f(z)dt2 + d~y2 +
dz2

f(z)

]

+R2dΩ2
5

f(z) = 1− z4

z40
,

with temperature T = 1/(πz0) (consistent with previous, βτ =

πR ⇒ βt = πz0)

•So putting a large M black hole in AdS space ↔ putting the

boundary field theory at finite temperature.

•Interpretation: It takes radiation a finite time to get to ∞ and

back ⇒ radiation of black hole gets back in: stability (unlike flat

space, where the time is infinite, so only BH is at finite T).
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•In AdS-BH, susy is broken. Fermions antiperiodic around Eu-
clidean time (which is an S1), so we KK reduce N = 4 SYM to
3d.
•Fermions are massive, gauge fields are massless (protected by
gauge inv.), but scalars, classically massless, become massive
through a quantum fermion loop. Then we have 3d pure glue
theory (Aaµ)!
•Can we understand mass gap in pure glue theory from
AdS/CFT? → spontaneous appearance of mass for quantum
physical states in QFT → of classical physical states in AdS.
•Scalar field sol. to ✷φ = 0 can be put in factorized form

φ(ρ, ~x, τ) = f(ρ)ei
~k·~x.

•Horizon: bd. cond. that sol. is smooth, df/dρ = 0 (horizon

= like origin of plane in cyl. coords.). At ρ → ∞, impose nor-

malizability (state = physical), so f ∼ 1/ρ4. The 2 conditions

give a quantization condition on parameters, ~k2 = m2 ⇒ discrete

spectrum.

•Effective QM box between rhorizon = rmin and r = ∞ (light

takes a finite time) ⇒ discrete modes mn ↔ masses of nonper-

turbative objects = glueballs in QFT. Simplest model with a

mass gap!
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•Black hole horizon at finite r ⇒ cuts out a small cylinder from

the middle of AdS → like the case of mass gap described before:

* small M: like in flat space

Black hole in Anti de Sitter space:
time

section
event horizon

boundary of space

          

*light takes a finite time between horizon
and boundary: like a perfect oven in a 
reflective box:

black 
hole

boundary
     of spacefuel

radiation

box

oven *M    if T   for large enough M

Black hole can be in equilibrium with Anti de Sitter
fixed temperature inside Anti de Sitter

Black hole in AdS        fixed, finite temperature in flat 4 
dimensional world (Witten, 1998)
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N = 4 SYM plasma from AdS/CFT

•Without dim. red. to 3d, N = 4 SYM at finite T : very different

from QCD. Nevertheless, find that various results in N = 4 SYM

at finite T are similar to QCD at finite T : universality?

•Brookhaven’s RHIC and LHC’s (CERN) ALICE, one obtains

sQGP (strongly-coupled quark-gluon plasma). Even though dy-

namical and spatially bounded, we can use the previous methods

to good approx. But they have also finite density ρ, finite chem.

pot. µ, and magnetic B fields important, so need to describe.

Bulk properties: Entropy of 5d BH: Bekenstein-Hawking:

S =
A

4GN
,

and should equal QFT’s entropy. But area of horizon, A =
R3

z30

∫

dy1dy2dy3 is ∞, Therefore the entropy density is

s =
S

∫

dy1dy2dy3
=

R3

4GN,5z30
.

•But 2κ2N = 16πGN,10 = (2π)7g2sα
′4 and in AdS5 × S5, R4 =

α′2g2YMN = α′2(4πgs)N .
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•Then reducing on an S5 of radius R, with Ω5 = π3 gives

GN,10 =
π4

2N2
R8 ⇒ GN,5 =

GN,10

Ω5R5
=

π

2N2
R3 ⇒ sλ=∞ =

π2

2
N2T3.

•This is entropy density at ∞ coupling. From σ = ∂P/∂T and

ǫ = −P + Ts, we find

Pλ=∞ =
π2

8
N2T4 , ǫλ=∞ =

3π2

8
N2T4 ,

at infinite coupling. But at weak coupling, one free bosonic

d.o.f has s = 2π2T/45, and one free fermionic d.o.f. has 7/8

of that. The for N = 4 SYM (8 bosonic d.o.f and 8 fermionic

d.o.f., all in adjoint of SU(N)), we have

sλ=0 =

(

8+ 8
7

8

)

(N2 − 1)
2π2T3

45
≃ 2π2

3
N2T3 ,

so we obtain the ratios (for pressure, we use the same thermod.

relations)

sλ=∞
sλ=0

=
3

4
,

Pλ=∞
Pλ=0

=
ǫλ=∞
ǫλ=0

=
3

4
.

•”Experimentally” (in lattice QCD), we find 80%, close to the

above 75%.
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•Energy loss: drag on heavy quarks When a fast heavy quark
(would-be ”jet”) passes through sQGP plasma, loses energy at
high rate: ”jet quenching”: observed experimentally at RHIC
and ALICE.
•AdS/CFT: heavy quark is long string stretching between the
boundary at ∞ and interior of AdS. Moving heavy quark on
straight path: string moving at ∞ on straight path. The other
end: asymptotically to the horizon. Force against momentum
loss keeps it at constant velocity.
•Ansatz: Boundary endpoint: z = 0 and y(t, z) = vt + h(z).

Static gauge σ = z, τ = t, so NG action in AdS-BH is:

S = − R2

2πα′

(∫

dt

)∫

dz

z2

√

f(z)− v2 + f(z)2h′2(z)

f(z)
.

•S = S[h′(z)] ⇒ canonical mom. is conserved:

P 1
z =

δS

δh′(z)
=

δS

δy1′(z)
= − R2

2πα′
1

z2
f3/2(z)h′(z)

√

f(z)− v2 + f(z)2h′2(z)
.

•Solve for h′(z). Then denom. and num. =0 at same time, so

h′2(z) =

(

2πα′P 1
z

R2

)2
z4

f(z)2
f(z)− v2

f(z)−
(

2πα′P 1
z

R2

)2

z4
.⇒ P 1

z = ± R2

2πα′z20
γv.
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•Finally, integrating h′(z), we find

h(z) = −vz0
2

[

arctanh

(

z

z0

)

− arctan

(

z

z0

)]

.

A quark being pulled by an external force at the boundary, and a string trailing

behind it, hanging down from the boundary.

•Then momentum loss in the plasma is

dp

dt
= −P1

z = − R2

2πα′z20
γv.

•In N = 4 SYM variables, R2/α′ =
√
λ and T = 1/(πz0), so (p =

Mγv is the heavy quark momentum, ηD is the drag coefficient)

dp

dt
= −π

2

√
λT2γv = − π

2M

√
λT2p ≡ −ηDp .

•Reasonable comparison to QCD, if g2YM → g2QCD(µ).
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•Adding finite chemical potential µ 6= 0. N = 4 SYM charge
= R-charge (for SU(4) = SO(6) global symm.). Gravity side:
sourced by Aaµ.
•Coupling

∫

ddxJµaµ, aµ= boundary value of Aµ. Then charge
density J0 couples to a0. Thus boundary condition for nonzero
charge is A = A0(z)dt+ ... , z → 0

•But source coupling must be qµ, so A0(z = 0) = a0 = µ,
chemical potential of R-charge. So boundary cond. is A → µdt
as z → 0.
•Solution with nonzero gauge field at finite temperature: Reissner-
Nordstrom-AdS. In Poincaré coords. we just change f(z) to
charged expression, and add the gauge field,

ds2 =
R2

z2

(

−f(z)dt2 + d~x2 +
dz2

f(z)

)

f(z) = 1−
(

1+Kz2+µ
2
)

(

z

z+

)d

+Kz2+µ
2

(

z

z+

)2(d−1)

K ≡
(d− 2)κ2N,d+1

(d− 1)g2R2

A0 = µ

[

1−
(

z

z+

)d−2
]

.

•We cannot drop constant part of A0, since we need A = 0 at
horizon z = z+ (nonsingular A at horizon).
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•Temperature of BH solution: like before, resulting in

T =
1

4πz+

(

d−K(d− 2)z2+µ
2
)

.

•Thermodynamic potential at constant µ (as opposed to con-
stant charge density ρ), the grand-canonical potential Ω(µ, V, T) =
U−TS−µN , is found from the same on-shell sugra action (always
the thermod. pot. equals Son−shell),

ZCFT = e−βΩ = Zsugra = e−Ssugra ⇒ Ω = TSsugra.

•One finds
Ω = − Rd−1

2κ2Nz
d
+

(

1+Kz2+µ
2
)

Vd−1.

•The charge density is a one-point function,

ρ = 〈J0〉 = δSsugra

δa0

∣

∣

∣

∣

∣

a0=0

.

•Alternative: keep fixed charge density ρ, so thermod. pot. is
F = Ω + µQ. Thus add a term linear in µ = a0 to Son−shell:
boundary term (hab= boundary metric)

+
1

g2

∫

z→0
ddx

√
−hnaFabAb ,

•So we keep naFab fixed instead of Aa on boundary, hence the
conjugate of a0 = µ, i.e., ρ.
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•Adding magnetic field B 6= 0. Magnetic field in gauge theory
is magnetic field in the bulk: Magnetic field: gauge the U(1) ⊂
SU(4) symm. by coupling the current to a gauge field ∈ Jµaµ
(without kinetic term for aµ: external magnetic field): same as
∫

Jµaµ coupling to bulk.

•AdS5 more complicated (F = Bdx1 ∧ dx2 breaks isotropy), so
show AdS4: generalize previous sol. (for d = 3) to A = A0(z)dt+
B(z)xdy. Then replace f(z) with electric-magnetic duality inv.

f(z) = 1−
[

1+K
(

z2+µ
2 + z4+B

2
)]

(

z

z+

)3

+K
(

z2+µ
2 + z4+B

2
)

(

z

z+

)4

= 1− [1 + h2 + q2]

(

z

z+

)3

+ (h2 + q2)

(

z

z+

)4

,

and add gauge field

A = µ

[

1− z

z+

]

dt+ Bxdy ⇒ F =
1

z2+
√
K

[hdx ∧ dy+ q dt ∧ dz].

•Both ~E and ~B finite at boundary, but ~B=external magnetic
field, and ~E=source for charge density.
•Temperature and thermodynamical pot. (grand-canonical) are

T =
1

4π

[

3−K(z2+µ
2 + z4+B

2)
]

Ω = − R2

2κ2Nz
3
+

[

1+K(z2+µ
2 − 3z4+B

2)
]

V2.
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Lecture 7

Solitons and probes in AdS/CFT
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Instantons vs. D-instantons
•Instantons in G gauge theories: BPST SU(2) instantons , em-
bedded in G. YM action

1

4g2

∫

d4x(F a
µν)

2 =

∫

d4x

[

1

4g2
F a
µν ∗ F aµν +

1

8g2
(F a

µν − ∗F a
µν)

2

]

,

is minimized on self-dual configurations, F aµν = ∗F aµν, which are

real only in Euclidean space: BPS bound. But

n =
g2

16π2

∫

d4xTr [Fµν ∗ Fµν]
is a topological invariant = instanton nr. or Pontryagin index.

[It’s topological since Tr [Fµν ∗Fµν] = 4Tr [F ∧F ] and Tr [F ∧F ] =

dLCS = d
[

AdA+ 2
3A ∧A ∧A

]

].

•BPST instanton solution (quantum properties: ’t Hooft) is

Aaµ =
2

g

ηaµν(x− xi)ν

(x− xi)2 + ρ2
,

where ηaij is ’t Hooft symbol, ηaij = ǫaij, ηai4 = δai , η
a
4i = −δai .

Then −1

2
Tr [FµνF

µν] =
48

g2
ρ4

[(x− xi)2 + ρ2]4
⇒ Sinst =

8π2

g2
.

•Euclidean instanton action gives transition probabilities, be-

tween static configurations at x4 = −∞ and x4 = −∞, = configs.

of different winding numbers. Probability ≃ e−Sinst..
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•D-instantons in string theory: D(-1)-branes: Neumann bd. cd.
in all directions. But Dp-brane = source for Ap+1, so D-instanton

= source for IIB axion scalar a. In flat space, eφ = H−1 and

a− a∞ = H−1
−1 − 1 ∝ e−φ − 1/gs.

•D-instantons in AdS5×S5, near the boundary of AdS5 (x0 = 0)
is found to be

eφ = gs +
24π

N2

x40x̃
4
0

[x̃20 + |~x− ~xa|2]4
+ ...

a = a∞ + e−φ − 1

gs
.

•The variation of the on-shell dilaton action gives

δS = − 1

2κ25

∫

d4x
R3

z3
δφ ∂zφ|z=0 .

•For the dilaton profile of the D-instanton, with R3 = κ25N
2/(4π2),

δS

δφ0(~x)
= − 48

4πgs

z̃4

[z̃2 + |~x− ~xa|2]4

=
1

2g2YM
〈Tr [F 2

µν(~x)]〉 ,

so with 4πgs = g2YM , we find the instanton bgr., with ρ= z̃,

− 1

2g2YM
〈Tr [F2

µν(~x)]〉 =
48

g2YM

z̃4

[z̃2 + |~x− ~xa|2]4
.
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Baryons as solitons via AdS/CFT

•Mesons in SU(Nc) gauge theory with fundamental quarks: MIJ =

q̄Ii q
Ji (group inv. δ

j̄
i ). Baryons: with group invariant ǫi1...iN , in

QCD (Nc = 3), ǫijk:

BI1...IN = ǫi1...iNq
I1i1...qINiN ; QCD : BIJK = ǫijkq

IiqJjqKk

•In SU(Nc) gauge theory without quarks (like N = 4 SYM), de-

fine baryon vertex, connection N external (heavy, non-dynamical)

quarks, formally ǫi1..iN above. The baryon vertex has (solitonic)

energy, even in the presence of external quarks only.

•Baryons as solitons in Skyrme model: Low energy QCD: the-

ory of pions ~π (Goldstone bosons for SU(2)A breaking); together

with σ (”Higgs” for breaking), element in SO(4) ≃ SU(2)L ×
SU(2)R global symm. group:

U = exp

[

i

fπ
(σ+ ~π · ~τ)

]

.

•Low energy QCD action in terms of Lµ = U−1∂µU :

L = Lkin + Lint , Lkin =
f2π
4
Tr [LµL

µ] , e.g. of Lint =
ǫ2

4
Tr ([Lµ, Lν]

2)
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•Conserved topological current and charge:

Bµ =
1

24π2
ǫµνρσTr [LνLρLσ] , B =

1

24π2

∫

d3xǫijkTr [LiLjLk].

•For small fields ~π we obtain an explicit map between SU(2) ≃
SO(3) of group (index a) and SO(3) of spatial rotations (index
i), so B counts wrappings of the former on the latter:

B ≃ 1

12π2f3π
ǫijkǫabc∂iπ

a∂jπ
b∂kπ

c + ... ,

•Configuration with B 6= 0 = soliton, identified with baryon:

hedgehog configuration,

U = exp [iF(r)~n · ~τ ] , n ≡ ~r

r

•Baryon as wrapped branes in AdS/CFT: Strings ending on

D-branes with |īj〉 in N ⊗ N̄ . External fundamental quark: long

and massive: one end on a separated D-brane. In AdS/CFT:

one end at infinity, the other in AdS.
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•Baryon vertex: in AdS, place where N fundamental strings end

⇒ must be a D-brane. In fact: D5-brane at a point in AdS5
and wrapping S5. Indeed, it needs exactly N strings to end on

it. But in AdS5,
∫

S5 d5xǫµ1...µ5
F+
µ1...µ5
2π = N , so from WZ term on

D5-brane,

1

2π

∫

S5×R
d6xǫµ1...µ6Aµ1F

+
µ2...µ6

= N
∫

Rτ
dxµAµ ,

N units of Aµ charge on S5, that need to be absorbed by N

strings. Also, vertex energy ∝ 1
gs

∼ N . OK!

Wilson loops in QCD and AdS/CFT

•QCD: dynamical quarks, but we can also consider external (very

heavy) quarks. Yet only in gauge invariant combinations: Nc
quarks + baryon vertex (before), or quark-antiquark (since QCD

is confining). Very heavy quarks ⇒ fixed: define contour. Ob-

servable: qq̄ potential, Vqq̄(L).
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•Define Wilson line = path ordered exponential in a gauge theory,

Φ(y, x;P) = P exp

{

i
∫ y

x
Aµ(ξ)dξ

µ
}

≡ lim
n→∞

∏

n
eiAµ(ξ

µ
n−ξµn−1) .

•Under an (Abelian or non-Abelian) gauge transf. with Ω =

eiχ(x), it transforms as

Φ(y, x;P) → eiχ(y)Φ(y, x;P)e−iχ(x) .

•It provides parallel transport along the curve, since, for a

charged scalar field,

φ(x) → eiχ(x)φ(x) ⇒ eiχ(y) (Φ(y, x;P)φ(x)) .

•For a closed path (y = x) AND taking the trace, the Wilson

loop is gauge invariant and indep. on x, only on the curve C,

W (C) = TrΦ(x, x;C) ,

due to cyclicity under the trace.
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•In Abelian case, for x= y, we can put Φ in explicitly gauge inv.

form,

ΦC = ei
∫

C=∂ΣAµdξ
µ
= ei

∫

Σ Fµνdσ
µν
,

and in the non-Abelian case only W [C] can be put, to first
nontrivial order,

Φ✷µν = eia
2Fµν +O(a4) ⇒W✷µν =

1

N
Tr {Φ✷µν} = 1− a4

2N
Tr {FµνFµν}+O(a6).

•Define the Wilson loop for the calc. of qq̄ potential, a very long

rectangle in the time direction (and short in the spatial one).

a) b)

a)Heavy quark and antiquark staying at a fixed distance L. b)Wilson loop

contour C for the calculation of the quark-antiquark potential.
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•Then from the VEV of the Wilson loop, as T → ∞, extract qq̄
potential, 〈W (C)〉0 ∝ e−Vqq̄(R)T .

•Confining theory: constant force → linear potential,

Vqq̄(R) ∼ σR ,

σ= QCD string tension. QCD string = flux tube of constant

cross section.

Between a quark and an antiquark in QCD, flux lines are confined: they live

in a flux tube.

•For a conformal (scale inv.) theory, like QED, Coulomb poten-

tial, Vqq̄(R) ∼ α

R
,

•Then in a confining theory like QCD, area law,

〈W (C)〉0 ∝ e−σT ·R = e−σA(C) ,

while in a conformal theory like QED, conf. inv. result, e.g.

〈W (C)〉0 ∝ e−α
T
R .
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•Separate one D-brane to obtain U(N) fundamental quarks, with
Chan-Patton state |N +1〉 ⊗ |i〉.
•AdS/CFT: Mass M = r

2πα′ =
U
2π. One end is at infinity (sepa-

rated D-brane), one in AdS (the rest of the D-branes). Infinite
mass: U → ∞. From the point of view of U(N+1) gauge theory,
string is a ”W boson” (vector field made massive by Higgsing to
U(N)× U(1) via (bi-)fundamental scalar).
•For Wilson loop then, put Wilson contour C at infinity (bound-
ary condition). String stretches inside AdS and forms a smooth
surface. Indeed, there is a gravitational potential. Qualitatively,
compare with Newtonian approx. to see that there is a potential
leading to minimum U :

ds2 = α′ U2

R2/α′(−dt
2 + d~x2) + ...↔ ds2 = (1+ 2V )(−dt2 + ...).

So string at U = ∞ drops down to U = U0, where it is held back

by its tension.

One D-brane separated from the rest (N) D-branes acts as a probe on which

the Wilson loop is located.
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a)

b) c)
a) The Wilson loop contour C is located at U = ∞ and the string worldsheet

ends on it and stretches down to U = U0. b) In flat space, the string world-

sheet would form a flat surface ending on C, but in AdS space 5 dimensional

gravity pulls the string inside AdS. c) The free ”W bosons” are strings that

would stretch in all of the AdS space, from U = ∞ to U = 0, straight down,

forming an area proportional to the perimeter of the contour C.
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•But strings situated also on S5, with coordinates θI ↔ XI,
scalars of N = 4 SYM, transf. under SO(6) R-symmetry. Then,
string worldsheet is source for susy generalized Wilson loop,

W [C] =
1

N
Tr P exp

[∮ (

iAµẋ
µ+ θIXI(xµ)

√

ẋ2
)

dτ

]

.

xµ(τ) : loop, θI: on unit S5. We consider only θI=const.: rect-
angular Wilson loop is 1/2 susy. (invariant under susy transf.).
It is always locally susy,

δsusyW [C](x) ∝
(

iδAµẋ
µ + θIδXI(xµ)

√

ẋ2
)

= 0 ,

but globally susy only if variations at each point commute.
•Then the Maldacena prescription in sugra limit (gs → 0, gsN
fixed and large) is derived

〈W [C]〉 = Zstring[C] = e−Sstring[C] ,

but the naive result is infinite, since U goes from ∞ to U0. But:
must subtract the ”free W boson” (no N = 4 SYM interactions)
mass term, from U = ∞ straight down (parallel to C) to U = 0.
Then true prescription is

〈W [C]〉 = e−(Sφ−lφ).
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•Calculating the qq̄ potential. Contour C with q at x = −L/2
and q̄ at x = +L/2, and (since T → ∞) approximate worldsheet

as time-translation inv. Then, using Euclidean AdS5 × S5 with
Euclidean NG string action, and static gauge σ = x, τ = t, then
single variable is U(x), and the action becomes (R̃2 = R2/α′)

Sstring =
1

2π
T

∫

dx

√

(∂xU)2 +
U4

R̃4
.

•Then implicit solution for x = x(y, U0), y = U/U0, and the
corresponding L/2 = x(∞, U0) is

x =
R̃2

U0

∫ U/U0

1

dy

y2
√

y4 − 1
,
L

2
=
R̃2

U0

∫ ∞

1

dy

y2
√

y4 − 1
=
R̃2

U0

√
2π3/2

Γ(1/4)2
.

•Finally we find
TVqq̄(L) = Sφ − lφ= T

2U0

2π

[

∫ ∞

1

dy

(

y2
√

y4 − 1
− 1

)

− 1

]

= −T · 4π2

Γ(1/4)4

√

2g2YMN

L
.

so a nonperturbative result ∝
√

g2YMN .

•Nonsusy (regular) Wilson loop (Alday+Maldacena, 2007): same

prescription, except Neumann bd. cond. on S5, instead of

Dirichlet.
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Brane probes in AdS/CFT: We have seen that some solitonic

branes, like D5 wrapped on S5, correspond to solitons in QFT.

•But a single moving brane can probe the QFT. If motion in

U : can probe different energies (in non-conformal gauge/gravity

duality). Brane excitations (fluctuations): meson spectra: mass-

less scalar = pion, massive vectors: vector mesons, etc.

•Also baryons can be understood, but as solitonic solutions on

the probe brane.

•Then motion in U : (Hamiltonian motion on the) RG flow, for

the various hadrons.
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”Hard-wall” model for QCD and Polchinski-Strassler sce-

nario for scattering

•QCD in the UV: approx. conformal ⇒ gravity dual should be

approx. AdS5 × X5 at large r (fifth dimension). Modified in

some way at small r. Simplest: hard cut-off at r = rmin (space

terminates).
ds2 =

r2

R2
d~x2 +R2dr

2

r2
+R2ds2X

= e−2y/Rd~x2 + dy2 +R2ds2X .

•Momenta pi = −i∂i in QCD are related to 10d momenta p̃i by

p̃µ =
R

r
pµ.

•A characteristic mom. scale in 10d is p̃ ∼ 1/R, so QCD mom.

p ∼ r/R2. But the characteristic QCD momentum scale is ΛQCD,

so

rmin = R2ΛQCD.

•Scattering in this ”hard-wall” model: AdS fields (states): glue-

balls or mesons/baryons, coupling to glueball operators in QFT.
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•Wavefunction for glueball eik·x mapped to gravity state wave-

function in AdS5 ×X5,

Φ = eik·x ×Ψ(ρ, ~ΩX5
).

•Assume gravitational states scatter locally as in flat space,

ansatz for scattering (Polchinski+Strassler, 2001):

AQCD(pi) =

∫

drd5ΩX5

√−gAstring(p̃i)
∏

i

Ψi

(

r, ~ΩX5

)

.

•Define a ”QCD string scale” α̂′ in hard-wall model,

α̂′ = (g2YMN)−1/2Λ−2 , such that

√

α′p̃ =

√

α̂′p
(

rmin

r

)

≤
√

α̂′p.

•Also, since M8
Pl ∼ 1/(g2sα

′4), we define a ”QCD Planck scale”,

M̂Pl = g
−1/4
s α̂′−1/2 = g

−1/2
YM Λ(g2YMN)1/4 = N1/4Λ.
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•Regge behaviour: When s≫ −t > 0, gauge theories expected

to have Regge behaviour,

A(s, t) ≃ β(t)sα(t), α(t) = α0 +
α̂′

2
t.

•But string 2 → 2 flat space amplitude (Virasoro-Shapiro),

Astring = g2sα
′3




∏

x=s,t,u

Γ(−α′x̃/4)
Γ(1+ α′x̃4)



K(

√

α′p̃)

becomes in the Regge limit α′s ≫ 1, α′|t| fixed, of the same

Regge form,

Astring(s, t) ≃ g2sα
′3[polariz.tensors](α′s)α

′t/2+2 Γ(−α′t/4)
Γ(1 + α′t/4)

.

•But, doing the PS integral in the ”hard-wall” of the Regge

limit, the integral is dominated by lowest r = rmin, so by the

integrand there = flat space amplitude. So: QCD has Regge

behaviour:

AQCD(p) ∼ β(t)(α̂′s)2+α̂
′t/2 .
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Gravitational shockwave scattering as a model of QCD

high energy scatterig

•High energy scattering in gravity: particles become grav. shock-

waves of ”parallel plane” (pp) type. In flat space: Aichelburg-

Sexl: ds2 = 2dx+dx− +H(x+, xi)(dx+)2 +
∑

i

dx2i ,

which is an exact solution to Einstein’s equations with a massless

pointlike source, reducing to

R++ = −1

2
∂2i H(x+, xi) = 8πGT++ = pδd−2(xi)δ(x+).

Then the solution is

H(x+, xi) = δ(x+)Φ(xi) , ∂2i Φ(xi) = −16πGN,dpδ
d−2(xi) ,

leading in flat space to

Φ = −4GN,4 ln ρ
2 , (d = 4)

Φ =
16πGN,d

Ωd−3(d− 4)

p

ρd−4
, (d > 4).
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•Note that for pp wave solutions, ∄ α′ corrections: all R2 corr.

vanish on-shell, so: Exact string solutions!

•Then for scattering with GNs ∼ 1, but GNs < 1, we have one

particle an A-S wave, the other moving in it. For GNs > 1, both

particles are A-S waves. Before collision,

ds2 = 2dx+dx− + dx2i + (dx+)2Φ1(x
i) + (dx−)2Φ2(x

i).

•Then (Penrose, at b = 0, Eardley+Giddings at 0 < b ≤ bmax),

a ”marginally trapped surface” forms at collision point x+ =
x− = 0 (Schwarzschild BH: rH = 2MGN is a marginally trapped
surface), so (GR theorem): BH must form in the future of the
collision. Then, BH formation in collision, with σBH ≥ πb2max.

•In hard-wall model (cut-off AdS5 × X5: curved space): same
mechanism. Then, use PS formula to related to QCD. But:
need gravity amplitude corresponding to bmax. This is obtained
in the black disk eikonal approx., S = eiδ, with Re[δ(b, s)] = 0,
Im[δ(b, s)] = 0 for b > bmax, Im[δ(b, s)] = ∞ for b ≤ bmax. Then
the amplitude is

1

s
A(s, t) = −i

∫

d2bei~q·
~b(eiδ − 1) = i

∫ bmax(s)

0

b db

∫ 2π

0

dθeiqb cos θ

= 2πi
bmax(s)√

t
J1

(√
tbmax(s)

)

.
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•Energy regime in gravity dual (”hard-wall”) of QCD: ΛQCD <

(α̂s)−1/2 = (g2YMN)1/2ΛQCD < M̂P = N1/4ΛQCD. For
√
s > M̂P ,

in dual we create small black holes. But for E > ER = M8
PR

7 in

gravity dual, so
√
s > ÊR = N2ΛQCD in QCD, BH of size larger

than RAdS.

•Yet ∃ higher energy scale in QCD, depending on the details of

the gravity dual: EF ↔ ÊF , such that BH is effectively on the IR

cut-off rmin itself. Then, in QCD, Froissart unitarity bound,

σtot ≤ C ln2
s

s0
; C ≤ π

m2
π
,

where mπ is lowest energy state in theory.

•Describe this via collision of 2 (A-S-type) gravitational shock-

waves on the IR cut-off = IR brane, in a symmetrical situation

(IR brane position acts as a pion field, see before),

ds2 = e
2|y|
R d~x2 + dy2 +R2ds2X .

152



.

a)

b) c)

a) At small enough energies, the created black hole is small, and fluctuates

(is created at a random point) inside a small region of effective scattering. b)

At large enough energies, the created black hole is so large, that is effectively

fixed (has small fluctuations) and it looks like it sits on the IR brane. c) At

these large energies, the process is effectively classical: two shockwave going

in opposite directions scatter creating a black hole larger than the scattering

region.
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•The shockwave profile is found to be (M1 is the first KK mode
when reducing 5d theory onto IR brane, Rs = GN,4

√
s)

Φ(r, y) =
4GN,d+1p

(2π)
d−4

2

e−
d|y|
2R

r
d−4

2

∫ ∞

0

dq q
d−4

2 J d−4

2

(qr)
Id/2

(

e−
|y|
RRq

)

Id/2−1(Rq)

Φ(r, y = 0) ≃ Rs

√

2πR

r
C1e

−M1r , M1 =
j1,1

R
.

•∃ Exact analysis, but simple arg.: Φ ∼ √
se−M1r, so for 2

A-S waves at impact parameter b, emitted energy ∝ √
se−M1r.

Minimum energy = M̂P , reached at bmax, so

bmax ∼ 1

M1

ln
s

M̂Pl

⇒ σtot = πb2max ∼ π

M2
1

ln2 s

M̂Pl

.

•Description matches 1952 Heisenberg model for nucleon-nucleon
high energy collisions. Φ → pion wavefunction (indeed, IR brane
position = pion field). But, Heisenberg: pion field overlap

∼ e−µπb, so emitted energy ∼ √
se−mπb. bmax: when emitted en-

ergy = average per pion emitted energy 〈E0〉, which is ≃ constant
only for DBI action (action of IR brane), whereas for canonical
scalar with polynomial V , 〈E0〉 ∝

√
s. Then

√
se−mπbmax = 〈E0〉 ⇒ bmax =

1

mπ
ln

√
s

〈E0〉
⇒

σtot = πb2max =
π

m2
π

ln2

√
s

〈E0〉
.
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Scattering of nuclei or heavy ions at high energy in QCD described by the

Heisenberg model.

•Lower bound on entropy formed in collisions:

Aev.hor. ≥ Amarg.trap. ⇒ Semitted = SBH =
Aev.hor.

4GN,5
≥ Amarg.trap.

4GN,5
.

•Gubser et al.: shockwave with T++ = Eδ(x+)δ(z −R)δd−2(xi),

ds2 =
R2

z2

(

2dx+dx− + (dx1)2 + (dx2)2 + dz2
)

+
R

z
Φ(x1, x2, z)δ(x+)(dx+)2 ⇒

Φ(x1, x2, z) =
2GN,5E

R

1+ 8q(1 + q)− 4
√

q(1 + q)(1 + 2q)
√

q(1 + q)
, q ≡ (x1)2 + (x2)2 + (z − R)2

4zR
.

•Treating δgij = R/zΦ(x1, x2, z)δ(x+) as a perturbation,

〈Tij(~x)〉 =
R3

4πGN,5
lim
z→0

1

z4
δgij =

2R4E

π
[

R2 + (x1)2 + (x2)2
]3
δ(x+).
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Lecture 8

The pp wave correspondence and spin

chains
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The Penrose limit and pp waves

•PP waves: Linearized solution is exact! Only nontrivial Ricci
is R++ = −1

2∂
2
i H(x+, xi). For shockwaves, T++ ∝ δ(x+), so

H(x+, xi) = δ(x+)Φ(xi), but here: waves not localized in x+.
•In supergravity: 11d sugra, pp wave solutions with

F4 = dx+ ∧ φ : F(4)+µ1µ2µ3
= φ(3)µ1µ2µ3

dφ = 0 , d ∗ φ= 0 , −∂2i H = |φ|2.
•For H =

∑

ij Aijx
ixj, −2TrA = |φ|2, we have solutions with 1/2

susy, but there is a unique sol. with ALL susy,

H =
∑

i,j

Aijx
ixj = −

∑

i=1,2,3

µ2

9
x2i −

9
∑

i=4

µ2

36
x2i

φ= µdx1 ∧ dx2 ∧ dx3.
•In 10d IIB sugra, pp wave solutions with

F5 = dx+ ∧ (ω+ ∗ω) : F+µ1...µ4
= ωµ1...µ4

; F+µ5...µ8
= ωµ5...µ8

H =
∑

ij

Aijx
ixj; φ = φ0 , dω = 0 , d ∗ ω = 0 , ∂2i H = −|ω|2.

•Again, sols. have 1/2 susy, but ∃! sol. with full susy,

H = −µ
2

64

∑

i

x2i ; ω =
µ

2
dx1 ∧ dx2 ∧ dx3 ∧ dx4.
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•Penrose limit: Penrose theorem: near a null geodesic in any
metric, the spacetime becomes a pp wave. Null geodesic defined
by V = Y i = 0, U = τ , we can always put the metric in form
(Penrose):

ds2 = dV

(

dU + αdV +
∑

i

βidY
i

)

+
∑

ij

CijdY
idY j ,

where U, V are lightcone coords., and take the limit

U = u; V =
v

R2
; Y i =

yi

R
; R → ∞ ,

to obtain a pp wave in u, v, yi, but in Rosen coordinates,

ds2 = 2dudv+ gij(u)dy
idyj , gij(u) = Cij(U = u, V = 0, Y i = 0).

•To go to the standard Brinkmann coordinates form, write
gij(u) = eai (u)e

b
j(u)δab, then

u = x+ , v = x− +
1

2
ėaie

i
bx
axb , yi = eiax

a ,

then obtain Aab = ëaie
i
b. Interpretation of Penrose limit: boost

along direction x, while taking the overall scale of metric to
infinity:

t′ = coshβ t+ sinh β x; x′ = sinh β t+ coshβ x⇒
x′ − t′ = e−β(x− t); x′ + t′ = eβ(x+ t) ,

then scale all coords. by 1/R and identify eβ = R → ∞.
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•Penrose limit of AdS5×S5: boost along an equator of S5 defined

by θ = 0 and stay at center of AdS5 at ρ = 0 (is a null geodesic).

Null geodesic in AdS5 × S5 for the Penrose limit giving the maximally super-
symmetric wave. It is in the center of AdS5, at ρ = 0, and on an equator of
S5, at θ = 0.

ds2 = R2
(

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
3

)

+R2
(

cos2 θ dψ2 + dθ2 + sin2 θ dΩ′
3
2
)

≃ R2
[

−
(

1+ ρ2
)

dτ2 + dρ2 + ρ2dΩ2
3

]

+R2
[

(

1− θ2
)

dψ2 + dθ2 + θ2dΩ′
3
2
]

.

•Then define null coords. x̃± = (τ ± ψ)/
√
2, and rescale to

obtain the pp wave,

x̃+ = x+; x̃− =
x−

R2
; ρ=

r

R
; θ =

y

R
⇒

ds2 = −2dx+dx− − µ2(~r2 + ~y2)(dx+)2 + d~y2 + d~r2.
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Penrose limit of AdS/CFT: large R-charge Berenstein, Malda-

cena, Nastase, 2002

•E = i∂τ in global AdS5, and J = −i∂ψ (for rot. X5 ↔ X6).

•But E ↔ ∆ and J ↔ U(1) ⊂ SU(4) = SO(6) R-charge rotating
X5 ↔ X6.
•Penrose limit

p− = −p+ = i∂x+ = i∂x̃+ =
i√
2
(∂τ + ∂ψ) =

1√
2
(∆− J)

p+ = −p− = i∂x− = i
∂x̃−

R2
=

i√
2R2

(∂τ − ∂ψ) =
∆+ J√

2R2
.

•Rescale p− by µ
√
2 and p+ by 1/µ

√
2:

p−

µ
= ∆− J; 2µpµ =

∆+ J

R2
.

•For string theory on pp wave, p+, p− finite, so as R → ∞, keep

∆−J and (∆+J)/R2 fixed, so ∆ ≃ J ∼ R2 → ∞. Thus Penrose

limit is large R-charge limit in AdS/CFT!

•In N = 4 SYM, R2

α′ =
√
4πgsN =

√

g2YMN , so for gs fixed, we

have J ∼ R2 ∼
√
N , so

J√
N

= fixed and
g2YMN

J2
= fixed.
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String quantization and Hamiltonian on pp wave

•Polyakov action on pp wave (xi = (~r, ~y))

S = − 1

2πα′

∫ l

0

dσ

∫

dτ
1

2

√−γγab
[

−2∂ax
+∂bx

− − µ2x2i ∂ax
+∂bx

+ + ∂ax
i∂bx

i
]

.

•In conf. gauge,
√−γγab = ηab, light-cone gauge x+(σ, τ) = τ

(rescale τ by α′p+), and then l = 2πα′p+,

S = − 1

2πα′

∫

dτ
∫ 2πα′p+

0
dσ

[

1

2
(−(ẋi)2 + (x′i)2) +

µ2

2
x2i

]

.

•The equations of motion and solutions are

(−∂2τ + ∂2σ)x
i − µ2xi = 0.⇒ xi ∝ e−iωnτ+iknσ , ω2

n = k2n + µ2.

•In flat space µ = 0, ωn = kn = n, but now we rescaled by α′p+,

so

ωn =

√

√

√

√µ2 +
n2

(α′p+)2
.
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•Light-cone Hamilltonian Hl.c. = p− has no 0-modes pi (xi mas-

sive), so

H =
∑

n∈Z
Nnωn , Nn =

∑

i

ain
†
ain+

∑

α
bαn

†bαn.

•As for flat space, transl.inv.: P =
∑

n nNn = 0. In N = 4 SYM,

E/µ = ∆− J,2µp+ ≃ 2J/R2, so

(∆− J)n =
ωn

µ
=

√

1+
g2YMNn

2

J2
.

String states from N = 4 SYM; BMN operators

•Vacuum: E = 0, so ∆ − J = 0. Oscillators at gYM = 0:

∆− J = 1. Construct operators out of fields with ∆− J = 1, on

top of operator with ∆− J = 0.

•Field with ∆ = J = 1: Z = Φ5 + iΦ5: unique! (charged under

J). (Z̄ has Delta = −J = 1, so ∆− J = 2).

•Fields with J = 0 and ∆ = 1 (so ∆− J = 1): Φm, m = 1, ...,4

and DµZ = ∂µZ + [Aµ, Z] (bosonic) and χaJ=+1/2 (fermionic, 8

comps.; other 8: χaJ=−1/2).
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•Vacuum, with µp+ = J/R2:

|0, p+〉 = 1√
JNJ/2

Tr [ZJ].

•Oscillators with n = 0 (BPS operators, with ∆ − J indep. of

gYM), obtained by inserting a
†
0,r = Φr = (DµZ,Φm) or b

†
0,b =

χaJ=−1/2 in it, e.g.

a
†
0,rb

†
0,b|0, p

+〉 = 1

NJ/2+1
√
J

J
∑

l=1

Tr [ΦrZlψbJ=1/2Z
J−l] .

•Excited levels (n ≥ 1): add momentum wavefunction e
2πinx
L

around the closed string, so, e.g. a
†
n,4 insertion is

a
†
n,4|0, p+〉 = 1√

J

J
∑

l=1

1√
JNJ/2+1/2

Tr [ZlΦ4ZJ−l]e
2πinl
J .

•But this vanishes by cyclicity. Nonzero: at least two excita-

tions, so that P =
∑

n nNn = 0, e.g.

a
†
n,4a

†
−n,3|0, p+〉 = 1√

J

J
∑

l=1

1

NJ/2+1
Tr [Φ3ZlΦ4ZJ−l]e

2πinl
J .

•These are ”BMN operators”. Study ”dilute gas approx.”: few

”impurities” among Z’s.
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Discretized string action from N = 4 SYM

•Operator-state correspondence in CFT: z
(m)
a1...am ∼ ∂a1...∂amZ on

R4 → KK states on Rt×S3, so constant Z: energy 1 = harmonic

osc. of ω = 1, with cr.op. (b†)ij. Similarly, for Φ, (a†)ij, so

states |a†l 〉 ≡ Tr
[

(b†)la†(b†)J−l
]

|0〉.
•Interacting Hamiltonian

Hint = −g2YMTr
∑

I>J

{

[ΦI ,ΦJ][ΦI ,ΦJ]
}

,

has then term that can act on operators O,

Hint = −g2YMTr
{

[Z,Φm][Z̄,Φm]
} → 2g2YMN [b†, φ][b, φ]; φ =

a+ a†√
2

,

whose action is through Feynman diagrams, as

Feynman diagram for the 2-point function of O(x) at one-loop.
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•’t Hooft limit ⇒ only planar diagrams.

a)

b) c)

d) e)
Planar Feynman diagrams for the 2-point function of O. a) The planar tree

level diagram. b) Planar one-loop Feynman diagram with hopping from l+1

to l. c) Planar one-loop diagram with hopping from l to l+ 1. d) One-loop

planar diagram with gluon exchange e) One-loop planar diagram with scalar

self-energy.
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•After a calculation, find the Hamiltonian (when acting on states

↔ operators)

H =
J
∑

j=1

a
†
jaj + aja

†
j

2
+

λ

(2π)2

J
∑

j=1

(φj − φj+1)
2.

•Continuum version of Hamiltonian = light-cone string on pp

wave,
H =

∫ L

0
dσ

1

2
[φ̇2 + φ′2 + φ2] , L =

2πJ

µ
√
λ
= 2πα′p+ ,

so as a discrete ”spin chain”

A periodic spin chain of the type that appears in the pp wave string theory.
All spins are up, except one excitation has one spin down.
•But: made up of Cuntz oscillators, or rather, indep. Cuntz
oscillators at each site:

ai|0〉 = 0, aia
†
j = δij,

n
∑

i=1

a†iaj = 1− |0〉〈0| →

[ai, aj] = [a†i , aj] = [a†i , a
†
j] = 0, i 6= j

aia
†
i = 1, a†iai = 1− (|0〉〈0|)i; ai|0〉i = 0.
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•Defining Fourier modes for the Cuntz oscillators,

aj =
1√
J

J
∑

n=1

e
2πijn
J an.

and acting on states in the ”dilute gas approx.”, |ψ{ni}〉 =

|0〉1...|ni1〉...|nik〉...|0〉J , so that the commutators become almost

the usual ones, [an, a
†
m]|ψ{ni}〉 ≃ (δnm + O(1/J))|ψ{ni}〉, we can

further write superpositions of the left- and right-moving modes,

and finally diagonalize by a Bogoliubov transformation,

an =
cn,1 + cn,2√

2
aJ−n =

cn,1 − cn,2√
2

c̃n,1 = ancn1 + bnc
†
n,1 c̃n,2 = ancn1 − bnc

†
n,1 ,

to obtain the eigenfrequencies

ωn =
√

1 + 4|αn| =
√

1 +
g2YMN

π2
sin2

πn

J
,

with the corresponding Fock states

c
†
n,1/2

|0〉 =
a
†
n ± a

†
J−n√
2

|0〉 = 1√
J

J
∑

j=1

e
2πijn
J ± e−

2πijn
J√

2
a
†
j|0〉 ,
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•Fock states mapped to the BMN operators

1√
J

J
∑

l=1

1

N
J
2+1

Tr [Φ1ZlΦ1ZJ−l]
[

cos

(

2πinl

J

)

or i sin

(

2πinl

J

)]

.

•Note that for n ≪ J, both ωn and the states match the string

on pp wave. For n ∼ J, we also have a match, but not to the

pp wave (Penrose limit of AdS5 × S5), but a different limit.

•Note that ωn is valid to all orders in λ (even though the Hamil-

tonian was one-loop, i.e. λ1), though only for few impurities

(M ≪ J). Why? It seems to resum all interactions.

One loop: spin chain interpretation Φm → a†, Z → b†: like a
spin chain of length J, with spins ”up” | ↑〉 for Z and ”down”
| ↓〉 for Φ. Though until now, only ”dilute gas” analysis.
•The interaction Lagrangian (or Hamiltonian, as before)

Lint = 2g2YMTr [Z,Φm][Z̄,Φm] = 2g2YM
(

2Tr [ΦmZΦmZ̄]−Tr [(ZZ̄ + Z̄Z)ΦmΦm]
)

leads, through Feynman diagrams for ”hopping” acting on op-

erators, to 1-loop 2-point function

〈O(x)O∗(0)〉 = N
|x|2J+2

[

1 + g2YMNI(x)

(

e
2πin
J + e−

2πin
J

)]

,
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where

I(x) =
|x|4

(4π2)2

∫

d4y
1

y4(x− y)4
∼ 1

4π2
log(|x|Λ)+ finite.

•Then we can deduce the one-loop ωn as

〈O(x)O∗(0)〉 =
N

|x|2J+2

[

1− 2g2YMN

(

cos

(

2πn

J

)

− 1

)

1

4π2
log(|x|Λ)

]

=
N

|x|2(J+1+(∆−J)[g2N ])

≃ N
|x|2(J+1)

[

1+ 2(∆− J)[g2N ] ln(|x|) + ...
]

⇒

(∆− J)n =

[

1+
g2YMN

2π2
sin2

(

πn

J

)

]

.

•This matches the first order expansion of the exact Cuntz

result.
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Spin chains

•Full spin chain: SO(6), for the 6 scalars ΦI, with operators

O[ψ] = ψI1...ILTr [ΦI1...ΦIL], defined through: the identity oper-

ator, the trace operator K (from contractions of fields of the

same operator) and the permutation operator P (from contrac-

tions of fields of different operators, hopping one site),

K
JlJl+1
IlIl+1

= δIl,Il+1
δJl,Jl+1 , P

Jl,Jl+1
Il,Il+1

= δ
Jl+1
Il

δ
Jl
Il+1

.

•Renormalization of operators, with anomalous dimension ma-

trix Γ, is OA
ren = ZABOB , Γ =

dZ

d ln Λ
· Z−1 ,

and leads to 2-point functions of eigenvectors of Γ as

〈Oren
n (x)Oren

n (y)〉 = 〈Z · OZ · O〉 = const.

|x− y|2(L+γn)
.

•Then for N = 4 SYM at one-loop, one finds the Hamiltonian

Z
...JlJl+1...
...IlIl+1...

= 1l− g2YMN

16π2
ln Λ

(

δIlIl+1
δJlJl+1 +2δ

Jl
Il
δ
Jl+1
Il+1

− 2δ
Jl+1
Il

δ
Jl
Il+1

)

⇒

”H” = Γ =
g2YMN

16π2

L
∑

l=1

(Kl,l+1 +2− 2Pl,l+1).
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SU(2) sector and HXXX from N = 4 SYM

•We can construct a sub-spin chain that is the extension of

the dilute gas approx. one, in an SU(2) sector with 2 scalars,

corresponding to ”spin up” and ”spin down”,

Z = Φ1 + iΦ2; and W = Φ3 + iΦ4 ,

acting on operators (and their generalizations with ”magnon”

momenta)

OJ1,J2
α = Tr [ZJ1W J2] + ...(permutations).

•The interaction Hamiltonian in this subsector is

Hint = −g2YM [Z,W ]Tr [Z̄, W̄ ] ,

so the renormalization factor and the one-loop Hamiltonian are

Z
...JlJl+1...
...IlIl+1...

= 1l +
g2YMN

16π2
ln Λ 2

(

δ
Jl
Il
δ
Jl+1
Il+1

− δ
Jl+1
Il

δ
Jl
Il+1

)

⇒

H
(1)
planar = Γ

(1)
planar =

g2YMN

16π2

L
∑

l+1

2
(

1− Pl,l+1

)

.
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•A more precise concept of Hamiltonian, extendable to higher
loops, is of a dilatation operator D, obtained by attaching Feyn-
man diagrams to operators,

D ◦ OJ1,J2
α (x) =

∑

β

DαβOJ1,J2
β (x) ,

and can be written in terms of adding and removing fields in
the operator, using Žij ≡ d

dZji
, so that

D(0) = Tr
(

ZŽ +WW̌
)

, D(1) = −g
2
YM

8π2
Tr [Z,W ][Ž, W̌ ].

•Then the dilatation operator acts on operators as spin chains as

D(1)
planar =

g2YMN

8π2

L
∑

l+1

(

1ll,l+1 − Pl,l+1

)

,

which is the Heisenberg XXX1/2 Hamiltonian, with J = g2YMN/(16π
2).

Indeed, that is

H = −J
L
∑

j=1

~σj · ~σj+1 = −2J
L
∑

j=1

(Pj,j+1 − 1) ,

where we have used that on the | ↑〉, | ↓〉 basis on the chain, the
permutation operator is Pij =

1
2 + 1

2~σi · ~σj.
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Coordinate Bethe ansatz

•Denote |x1, ..., xM〉 state with spins down at positions x1, ..., xM
along the chain. Then the ”one-magnon” eigenstate of HXXX
and its energy are

|ψ(p1)〉 =
L
∑

x=1

eip1x|x〉 , E(p1) = 8J sin2(p1/2)|ψ(p1).

•The 2-magnon state is

|ψ(p1, p2)〉 =
∑

1≤x1<x2≤L
ψ(x1, x2)|x1, x2〉

ψ(x1, x2) = ei(p1x1+p2x2) + S(p2, p1)e
i(p2x1+p1x2) ,

where E = E(p1) +E(p2) and the 2-body S-matrix is

S(p1, p2) =
φ(p1)− φ(p2) + i

φ(p1)− φ(p2)− i
, φ(p) =

1

2
cot

p

2
≡ u.

•For M magnons, in terms of φ(p) = u = rapidities (for true

magnon momenta, u called Bethe roots), the energy is

E =
M
∑

j=1

8J sin2
pj

2
=

M
∑

j=1

2J
1

u2j +1/4
.
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•For 2 magnons, from periodicity of ψ(x1, x2) we have the Bethe
equations

eip1L = S(p1, p2) =
cot p1/2− cot p2/2+ 2i

cot p1/2− cot p2/2− 2i

eip2L = S(p2, p1) =
cot p2/2− cot p1/2+ 2i

cot p2/2− cot p1/2− 2i
,

so p1 + p2 = 2πn
L , and for real p2 = −p1, p1 = 2πn

L−1. In this case,

the 2-magnon wavefunction is

|ψ(n)〉 ≡ |ψ(p1(n),−p1(n))〉 = Cn

L
∑

l=1

cos

(

πn
2l+ 1

L− 1

)

|x2 + l, x2〉 , Cn = 2e−
iπn

L−1 ,

and this corresponds to a N = 4 SYM operator (eigenstate of

D(1)) that for n≪ L,L → ∞ becomes the BMN operator,

OJ,2
n = Cn

L−1
∑

l=0

cos

[

πn
2l+1

L− 1

]

Tr [WZ lWZJ−l] ⇒

OJ,2
n → Cn

L−1
∑

l=0

cos
2πnl

L
Tr
[

WZ lWZL−l
]

.

•For M ≪ L, n≪ L, we obtain the spectrum of operators by act-

ing with a
†
n = 1√

L

∑L
l=1 e

2πinl
L σ−l , and, for momenta pk ≃ 2πnk/L,

the anomalous dimension in SYM is

γ = ∆− L−M =
λ

16π2

M
∑

k=1

8 sin2 pk

2
≃ λ

8π2

M
∑

k=1

p2k =
λ

2L2

M
∑

k=1

n2
k.
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•For M magnons, the wavefunction is

ψ(x1, ..., xM) =
∑

P∈Perm(M)

exp



i

M
∑

i=1

pP (i)xi +
i

2

∑

i<j

δP (i)P (j)



 , S(pi, pj) ≡ eiδij ,

and the Bethe ansatz equations are (again from periodicity)

eipkL =

M
∏

i 6=k,i=1

S(pk, pi) ⇒
(

uk − i/2

uk + i/2

)L

=

M
∏

j 6=k,j=1

(

uk − uj − i

uk − uj + i

)

, k = 1, ...,M.

•Their solutions are called Bethe roots, and need not be real,

only the energies need be real. Then uk root implies u∗k root.

•Thermodynamic limit In the limit L→ ∞,M → ∞, taking the

log of the BEA, and since pi ∼ 1/L, ui ∼ L, so xI = ui/L finite,

we have
1

xi
+2πni =

2

L

M
∑

k 6=i,k=1

1

xi − xk
.

Then also uk = ui ± i, so uk = Re(u) + ik form Bethe strings,

that curve a bit for M → ∞ as well. They satisfy (and other

equations)

2P
∫

C
dy
ρ(y)

y − x
= −1

x
+2πnC(u); x ∈ C .
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Spin chains and Bethe strings from AdS

•Strings moving in S3 ⊂ S5 defined by XiXi = 1, i = 1, ...,4,
with Z = X1 + iX2, W = X3 + iX4, and then SU(2) element

g =

(

Z W
−W̄ Z̄

)

, and matrix currents

ja = g−1∂ag ⇒ Tr (ja)
2 = −2

4
∑

i=1

(∂aX
i)(∂aX

i) ,

so the string action in conformal gauge, moving in S3 is

S = −
√
λ

4π

∫ 2π

0
dσ
∫

dτ

[

Tr (ja)2

2
+ (∂aX

0)2
]

.

and has as eq. of m. ∂+j− + ∂−j+ = 0. We can then check

that

∂+j− − ∂−j+ + [j+, j−] = 0 , J± =
j±

1∓ x
⇒

∂+J− − ∂−J+ + [J+, J−] = 0 , ∀x.
•That means that Ja is a flat connection, with monodromy

Ω(x) ≡ P exp

[

−
∫ 2π

0

dσJσ

]

= P exp

[∫ 2π

0

dσ
1

2

(

j+

x− 1
+

j−
x+1

)]

.
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•Define then

TrΩ(x) ≡ 2 cos p(x) = eip(x) + e−ip(x) ⇒ p(x) ≃ − πκ

x± 1
+ ... , x→ ∓1

G(x) ≡ p(x) +
πκ

x+1
+

πκ

x− 1
,

G(x+ i0)−G(x− i0) ≡ 2πiρ(x).

•Then ρ(x) satisfies, after rescaling x→ 4πLx/
√
λ,

2P
∫

dy
ρ(y)

x− y
=

x

x2 − λ
16π2L2

∆

L
+2πnk

∫

dxρ(x) =
M

L
+

∆− L

2L
∫

dx
ρ(x)

x
= 2πm

λ

8π2L

∫

dx
ρ(x)

x2
= ∆+ L =

λ

8π2
H(1−loop) ,

which in the thermodynamic limit λ/L2 → 0, ∆−L
L → 0, ∆

L → 1

gives the same equations as for the Bethe strings. Thus each

Bethe strings corresponds to an individual macroscopic string in

AdS.
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Lecture 9

Applications to condensed matter:

AdS/CMT
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•AdS/CMT: phenomenological approach. ”Top-down”: define
some known duality, see if physics matches anything. OR: ”bottom-
up”: construct AdS theory that, given holographic map, would
imply wanted properties for the field theory, and then calculate
other properties.

Gravity dual of Lifshitz points

•CMT: usually nonrelativistic. Construct nonrelativistic gravity
dual. E.G.: ”Lifshitz scaling”:

t→ λzt, ~x→ λ~x.

z=dynamical critical exponent. Model example:

L =

∫

d2x dt
[

(∂tφ)
2 − k(~∇2φ)2

]

.

•Then, phenomenological gravity bgr. for Lifshitz scaling,

ds2d+1 = R2

(

−dt
2

u2z
+
d~x2

u2
+
du2

u2

)

(obs.: geodesically incomplete for z 6= 1 at u = ∞) has scaling
invariance

t → λzt, ~x→ λ~x, u→ λu ,
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with generator (Killing vector)

D = −i(zt∂t+ xi∂i+ u∂u).

•Other generators (Killing vectors)

Mij = −i(xi∂j − xj∂i); Pi = −i∂i; H = −i∂t ,
forming together the Lifshitz algebra,

[D,H] = z∂t = izH

[D,Pi] = ∂i = iPi; [D,Mij] = 0

[Mij, Pk] = δik∂j − δik∂i = i(δikPj − δ
j
kPi)

[Mij,Mkl] = i(δikMjl − δjkMil − δilMjk + δjlMik)

[Pi, Pj] = 0.

•The background is a solution to several relativistic actions,

e.g.,

S =
1

2κ2N

∫

dtdDxdr
√−g

[

R− 2Λ− 1

4
FµνF

µν − 1

2
m2AµA

µ
]

,

or in non-relativistic gravity, e.g. Horava gravity.

180



.

Gravity dual to Galilean and Schrödinger symmetries

•Larger algebras: -conformal Galilean algebra: Mij, Pi, H,D, but
also conserved rest mass, or particle number N and Galilean
boosts t → t, xi → xi − vit .

•For z = 2, extra generator C, special conformal generator:
Schrödinger algebra (symmetry of the Schrödinger equation of
a free particle). •AdS/CFT realization (geometrical): d + 2-
dimensional gravity dual (ξ, u extra):

ds2 = R2

(

−dt
2

u2z
+
d~x2

u2
+
du2

u2
+

2dt dξ

u2

)

.

•Not time-reversal invariant (t ↔ −t), nonsingular: conformal
to pp wave:

ds2 =
R2

u2

(

−dt2u2(1−z) +2dt dξ+ d~x2 + du2
)

.

•Invariant under scaling

t′ = λzt, ~x′ = λ~x, u′ = λu, ξ′ = λ2−zξ ,
for generator

D = −i(zt∂t+ xi∂i+ u∂u+ (2− z)ξ∂ξ) .
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•Extra symmetry: Galilean boost Ki,

~x′ = ~x− vt, ξ′ = ξ+
1

2
(2~v · ~x− v2t) , Ki = −i(xi∂ξ − t∂i).

and particle number N = −i∂ξ, so that the (conformal Galilean)

algebra is

[Ki, Pj] = δij∂ξ = iδijN
[D,Ki] = zt∂i − xi∂ξ + (2− z)xi∂ξ − t∂i = (1− z)iKi

[Kk,Mij] = t(δik∂j − δjk∂i) + δjkx
i∂ξ − δikx

j∂ξ = i(δjkKi − δikKj)
[Ki, H] = −∂i = −iPi
[D,N ] = (2− z)∂ξ = (2− z)iN
[Ki, N ] = [H,N ] = [Pi, N ] = [Mij, N ] = 0.

•For z = 2, extra special conformal generator C, for

u→ (1− at)u, xi → (1− at)xi

t→ (1− at)t, ξ → ξ − a

2
(~x2 + u2).

Then the extra commutation relations for C give the Schrödinger

algebra,

[D,C] = −2iC, [H,C] = −iD, [Mij, C] = 0 = [Ki, C].
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•String theory realization of Galilean algebra, by ”null Melvin
twist” on AdS5 × S5 with temperature T ,

ds2 = r2
[

−β
2r2f(r)

k(r)
(dt+ dy)2 − f(r)

k(r)
dt2 +

dy2

k(r)
+ d~x2

]

+
dr2

r2f(r)
+

(dψ+ A)2

k(r)
+ dΣ2

4

f(r) = 1−
r4+
r4

, k(r) = 1+
β2r4+
r2

, T =
r+

πβ
.

•For T = 0, k = f = 1 and KK reducing on ψ and Σ4 gives z = 2

metric (Schrödinger).
Spectral functions

•Retarded Green’s functions for observables OA,OB,

GROAOB(ω, k) = −i
∫

dd−1x dt eiωt−i~k·~xθ(t)〈[OA(t, x),OB(0,0)]〉 ,
describe the time evolution of small pert. about equilibrium, in

linear response theory,

δ〈OA〉(ω, k) = GROAOB(ω, k)δφB(0)(ω, k).

•Retarded (∃θ(t)) ⇒ 2 conditions (close ω contour in complex

upper-half plane):

1) GROAOB(ω, k) is analytic in the complex ω plane for Im(ω) > 0.

2) GROAOB(ω, k) → 0 for |ω| → 0.
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•Conditions imply representation as Γ contour integral (real line,

closed by semicircle at ∞ in upper-half plane) in ζ or z,

GR(z) =
∮

Γ

dζ

2πi

GR

ζ − z
,

giving the Kramers-Kronig relations,

ReGR(ω) = P
∫ +∞

−∞
dω′

π

ImGR(ω′)
ω′ − ω

ImGR(ω) = −P
∫ +∞

−∞
dω′

π

ReGR(ω′)
ω′ − ω

, .

and the ω → 0 limit gives a thermodynamic ”sum rule” (GR

both inside and outside the
∫

),

χ ≡ lim
ω→0+i0

GROAOB(ω, x) =
∫ +∞

−∞
dω′

π

ImGROAOB(ω
′, x)

ω′ ,

while χ is a static thermodynamic susceptibility (like χ = ∂D/∂E),

χAB =
∂〈OA〉
∂φB(0)

.
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•Spectral function for χAB is

χA = −ImGROAOB(ω,
~k) .

•Advanced Green’s function

GAOAOB(t, x) = +iθ(−t)〈[OA(t, x),OB(0,0)]〉 ,

and from it the spectral function ρOAOB(ω,
~k),

ρOAOB
(t, ~x) = 〈[OA(t, ~x),OB(0,0)]〉 = i(GR

OAOB
(t, ~x)−GA

OAOB
(t, ~x)) ⇒

ρOAOB
(ω, k) =

∫

dd−1x dteiωt−i
~k·~x〈[OA(t, x),OB(0,0)]〉 = i(GR −GA)(ω, k) ,

since

GR,A(ω,~k) =

∫

dω′

2π

ρ(ω′, ~k)
ω − ω′ ± iǫ

⇒

ReGR(ω,~k) = ReGA(ω,~k) = P
∫

dω′

2π

ρ(ω′, ~k)
ω − ω′

ImGR(ω,~k) = −ImGA(ω,~k) = −1

2
ρ(ω,~k).
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Transport

•Kubo formula for electric conductivity: In gauge A0 = 0,

electric field source Ej = F0j = −∂tδAj, in momentum space

Ej = −iωδAj(0). Linear response for Jx:

〈Jx〉 = σEx = −iωσδAx(0) ⇒

σ(ω,~k) =
iGRJxJx(ω,

~k)

ω
.

•The (real part of the) DC conductivity is then

σ(0, ~k) = − lim
ω→0

ImGRJxJx(ω,
~k)

ω
.

•Kubo formula for shear viscosity: Shear viscosity, in rela-

tivistic theory → from expansion of Tµν, solving ∇µTµν = 0 as

expansion in derivatives. For dissipative fluid, to first nontrivial

order,
Tµν = ρuµuν + PPµν +Π

µν
(1)

= ρuµuν + P(gµν + uµuν) + 2ησµν − ζθPµν ,
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where Pµν = gµν + uµuν and σµν, θ are from decomposition of

∇νuµ, in the Landau framE π
µν
(1)
uµ = 0,

∇νuµ = −aµuν + σµν + ωµν +
1

d− 1
θPµν

aµ = uν∇νu
µ

θ = ∇µu
µ = Pµν∇µuν

σµν = ∇µuν +∇νuµ − 1

d− 1
θPµν

ωµν = ∇[µuν] +∇u[µaν] ,
•For hxy perturbation on fluid at rest,

Txy = P hxy + η∂thxy +O(h2xy) +O(∂2hxy) ⇒
Txy(ω) = −ηiωhxy +O(h2xy) +O(∂2hxy) ,

(ignoring δ fct. coming from const. term), we get the Kubo

formula for shear viscosity,

η(ω,~k) =
iGRTxyTxy(ω,

~k)

ω
,

or, for the (real part of the) static shear viscosity,

η(0, ~0) = − lim
ω→0

ImGRTxyTxy(ω,
~0)

ω
.
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•AdS/CFT in Minkowski space at finite temperature Son,

Starinets, 2002. If we can write the on-shell sugra action in asypmt.

AdS space as a function of the boundary value φ(0) as the bound-

ary term

Son−shell =

∫

ddk

(2π)d
φ0(−~k)F(~k, z)φ0(~k)

∣

∣

∣

∣

∣

z=zH

z=zB

,

the the prescription for the retarded Green’s function is

GR(~k) = −2F(~k, z)|z=zB.
•Equivalent formulation: Sren. = S[∂µφ] + Sboundary, so

〈O〉 = lim
z→0

(

R

z

)∆ 1
√
γ



−
δS[φ(0)]

δ∂zφ(0)(z)
− δSboundary

δφ(0)(z)



 ,

while we saw

Sboundary =
∆− d

2R

∫

z→0
ddx

√
γφ2

φ(z) =

(

z

R

)d−∆
φ(0) +

(

z

R

)∆
φ(2∆−d) + ... ,
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•Then:

〈O〉 = − lim
z→0

(

R

z

)∆ [

z

R
∂zφ|φ(0)=0 +

∆− d

2R
2φ|φ(0)=0

]

= −2∆− d

R
φ(2∆−d) ⇒

GROAOB =
δ〈OA〉
δφB(0)

∣

∣

∣

∣

∣

∣

δφ(0)=0

= −2∆A − d

R

δφA(2∆−d)
δφB(0)

.

Kubo relations for other transport properties: For µ 6= 0, so

charge density ρ 6= 0, heat and electric currents mix, so
(

〈Jx〉
〈Qx〉

)

=

(

σ αT
αT κ̄T

)(

Ex
−∇xT

T

)

.

•Then similarly, Kubo formulae:

α(ω)T = i
GRQxJx(ω)

ω

κ̄(ω)T = i
GRQxQx(ω)

ω
.
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Viscosity over entropy density from dual black holes: Witten
metric (AdS-BH in Poincaré c.):

ds2 =
r2

R2

(

−
(

1− r40
r4

)

dt2 + d~x23

)

+
R2

r2
dr2

1− r40
r4

,

and change coordinates u = r20/r
2 so that

ds2 =
r20
R2

1

u
(−f(u)dt2 + d~x23) +

R2

4

du2

u2f(u)
; f(u) = 1− u2 ,

giving a perturbation

hxy(~x, u) =
r20
R2u

e−iωt+i~q·~xφq(u) ,

and vary φA(2∆−d) in the exact solution w.r.t. it. But: hard.

Instead, η at horizon ≃ at boundary, so calculate approx. sol. at

horizon,
φ±q = φ0(1− u)±i

ω
4πT ,

and selecting infalling sols. (”−”), we find

GR(ω,~k) = −2F(ω,~k, u)u=1 ⇒

η = − lim
ω→0

ImGR(ω,~0)

ω
=

r30/R
3

16πGN,5
=
π

8
N2T3.
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•Since s = π2/2N2T3, we find (conjectured to be lower bound,

but it is not)

η

s
=

1

4π
.

The holographic superconductor Gubser, 2008; Hartnoll, Herzog,

Horowitz, 2008

•Ingredients: a) AdS4 background: CFT near transition point.
High Tc superconductors (non-Fermi liquids) are 2+1d. b) charge
transport: conserved U(1) Jµ, dual to Aµ. c) Temperature, so
black hole in AdS4. d) symmetry breaking, so 〈O〉 6= 0, for a
complex field charged under U(1). s wave superconductors ⇒
charged scalar ψ.
•Lagrangian for gravity theory (d = 3)

L =
1

2κ2

(

R+
d(d− 1)

R2

)

− 1

4g2
F 2
µν − |(∂µ − iqAµ)ψ|2 −m2ψ2 − V (ψ) ,

for V = 0, m2R2 ≥ − d2

4R2 = −9/4 (BF bound) (scalar stable at

∞).

•We want ψ 6= 0 near BH horizon, for T < Tc, and ψ = 0, T > Tc.
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•Superconducting ansatz:

ds2 = gtt(r)dt
2+grr(r)dr

2+ds22(r) , Aµdx
µ = Φ(r)dt, ψ = ψ(r).

•Then we obtain an effective mass in L,
−|(∂µ−iqAµ)ψ|2−m2|ψ|2 → −grr|∂rψ|2−m2

eff |ψ|2 , m2
eff = m2+gttq2Φ2 ,

but we want Φ = 0 at horizon, yet m2
eff < −9/4 (BF bound), so

unstable at horizon. The scalar operator VEV is

〈O〉 = 2∆− d

R
ψ(2∆−d) ,

so we need a normalizable mode ψ(2∆−d) 6= 0 for T < Tc.
•Two possible backgrounds: AdS-Reissner-Nordstrom (Gubser),

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2,k , f(r) = k − 2M

r
+

Q2

4r2
+

r2

R2

Φ(r) =
Q

r
− Q

rH
, ψ = 0 ,

or neutral AdS-BH (Hartnoll, Herzog, Horowitz), k = 0, so
dΩ2

2,k = dx2 + dy2, and Q = 0, so

f(r) =
r2

R2
− 2M

r
, Φ = ψ = 0.
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•The scalar ψ is a probe in background. Boundary conditions

ψ =
ψ(1)

r
+
ψ(2)

r2
+ ... , Φ = µ− ρ

r
+ ... ,

but both ψ1, ψ2 normalizable. Then, condensates

〈Oi〉 =
√
2ψ(i), i = 1,2.

and numerically, one finds near T ≃ Tc,

〈O1〉 ≃ 9.3Tc(1− T/Tc)
1/2

〈O2〉 ≃ 144T2
c (1− T/Tc)

1/2 , T ≃ 0.118
√
ρ.

•Effective mass at horizon: needs to be smaller than BF

bound at horizon, for instability.

m2
eff = m2 − γ2q2

2R2
< m2 , γ2 =

g22R2

κ2N,4
.

•Horizon: AdS2 × S2, with AdS2 BF bound m2R2
2 = m2R2/6 ≥

−1/4 (stronger than at infinity, where m2R2 ≥ −9/4).
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•Electric conductivity: Perturbation δAx = δAx(r)e−iωt, such

that at boundary,

δAx = δA
(0)
x +

〈Jx〉
r

+ ... ,

where 〈Jx〉 = δA
(1)
x is the normalizable mode. Then

σ(ω) =
〈Jx〉
Ex

= −i 〈Jx〉
ωδAx

= −i δA
(1)
x

ωδA
(0)
x

,

and numerically, one finds a mass gap: σ = 0 for ω < ωg, and

ωg ≈ (q〈O〉) 1
∆ ,

ωg

Tc
≃ 8.4 ,

approx. matching exp. data. for high Tc supercond.

•BUT: weakly coupled supercond. ωg = 2Eg (Eg= energy gap

in charged spectrum), while for high Tc (strongly coupled), Eg 6=
ωg/2. Holographic: true, except for ∆ = 1 or 2, when Eg = ωg/2.

Puzzle!
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Transport properties in strongly coupled systems via
AdS/CFT

•Region (“membrane”) near black hole horizon in gravity dual →
has fluid properties (gravity/fluid correspondence): “membrane
paradigm”.
•Membrane paradigm → calculation: quantities are r-indep. (should
be calculated at ∞, but calculated at horizon). Linear response
to perturbations of background ⇒ transport.
•Calculate electric and heat conductivities (AdS/CFT: either

Kubo formulas, or membrane paradigm: at the horizon)

ji = σijE
j − αij(∇jT)

Qi = Tαij − κ̄ij∇jT , κij = κ̄ij − Tαik(σ
−1)klαlj.

•Also, effect of other parameters on transport (η, ζ for fluid, for
instance). But we have

(

σ α
αT κ̄

)

= Dχs. ,

where D= diffusivity matrix, χs= susceptibility matrix, obtained
from thermod. pot. Ω (and then we can derive D),

χs =





− 1
V

∂2Ω
∂µ2

∣

∣

∣

B,T
− 1
V

∂2Ω
∂T∂µ

∣

∣

∣

B

−T
V

∂2Ω
∂µ∂T

∣

∣

∣

B
−T
V

∂2Ω
∂T 2

∣

∣

B,µ



 ,
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Transport properties of strongly coupled 2+1d CFTs

from properties of 4d AdS-black hole solutions

•Gravity theory in 4d: + scalars (dilaton φ, axions χ1, χ2) +
electromagnetic (Aµ ⇒ Fµν) (e.g.,L. Alejo, P. Goulart, HN, 2019; D.

Melnikov, HN, 2021)

S =

∫

d4x
√−g

[

1

16πGN

(

R− 1

2
[(∂φ)2 +Φ(φ)

(

(∂χ1)
2 + (∂χ2)

2
)

]− V (φ)

)

−Z(φ)
4g24

F 2
µν −W(φ)FµνF̃

µν

]

.

•Background solution: black hole ⇒ has event horizon at r = rH.

χ1 = k1x, χ2 = k2y breaks translational invariant in 2 spatial

directions of field theory.

ds2 = −U(r)(dt+B1y dx)
2 +

dr2

U(r)
+ e2V (r)(dx2 + dy2)

At = a(r) , Ax = −By+ (a(r)− µ)B1y

χ1 = k1x , χ2 = k2y , φ = φ(r)
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•Event horizon: U(rH) = 0, U(r) ≃ (r− rH)U ′(rH), temperature

T =
U ′(rH)

4π .
•4d Ax = −By source gives magnetic field B in 2+1d dimensions.

B1 generates energy magnetization density, ME = − 1
Vol

∂SE
∂B1

∣

∣

∣

B1=0
,

µ=chemical potential.
•Then, add perturbations (−E + ξa(r))t in Ax and −ξtU(r) in

gtx, where Ei = Eδix and 1
T∇iT = ξδix is field perturbation ⇒

generate response, δ fields, in order to satisfy eqs. of motion.
•Membrane paradigm: r-indep. (electric) currents

J x =
Z(φ)

g24

√−gF xr + 4
√−gW(φ)F̃ xr,

J y =
Z(φ)

g24

√−gF yr +4
√−gW(φ)F̃ yr − ξM(r) ,

but at ∞, M(r) = M , and we obtain the usual transport cur-
rents,

J i(r = rH) = J i(r → ∞) = ji(tot) − ξM = ji ,

while at rH easier to calculate. Similar for heat currents.

•Then: Find currents as functions of E, ξ: e.g., jx from δgtx, δAx, δhry,

related from the eqs. of motion to E and ξ =
|~∇T |
T .
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•Then, derive the transport coefficients:

σxx =
e2V k2Φ(2κ24g

4
4ρ

2 + 2κ24B
2Z2 + g24Ze

2V k2Φ)

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2

∣

∣

∣

∣

rH

,

σxy = 4κ24Bρ
κ24g

4
4ρ

2 + κ24B
2Z2 + g24Ze

2V k2Φ

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2
− 4W

∣

∣

∣

∣

rH

,

αxx =
2κ24g

4
4sρe

2V k2Φ

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2

∣

∣

∣

∣

rH

,

αxy = 2κ24sB
2κ24g

4
4ρ

2 + 2κ24B
2Z2 + g24Ze

2V k2Φ

4κ44g
4
4B

2ρ2 + (2κ24B
2Z + g24e

2V k2Φ)2

∣

∣

∣

∣

rH

κ̄xx

T
= (2κ24)s

2
g24
[

(2κ24)B
2Z + g24e

2V k2Φ
]

(2κ24)
2g44ρ

2B2 + ((2κ24)B
2Z + g24e

2V k2Φ)2

κ̄xy

T
= (2κ24)s

2 g24(2κ
2
4)g

2
4ρB

(2κ24)
2g44ρ

2B2 + ((2κ24)B
2Z + g24e

2V k2Φ)2
.

•Here ρ = −Ze2V a′ is field theory charge density (At = a(r) ≃
a′(rH)(r − rH) ∝ ρ).

•Find interesting properties of strongly coupled transport, like

S-duality, part of Sl(2,Z) group.
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•S-duality acting on σ ≡ σxy + iσxx as σ → σ′ = −1
σ, or σ′xx =

σxx
σ2xx+σ

2
xy

= ρxx, σ′xy = − σxy
σ2xx+σ

2
xy

= ρxy.

•At ρ = B = 0, Φ finite, σxx = Z(rH), σxy = −4W (rH) ⇒
transformation on Z,W that leaves gravitational action invariant:

Fµν → Z(φ)F̃µν − W̄ (φ)Fµν ≡ Z(φ)
1

2
ǫµνρσF

ρσ − W(φ)

4

Z(φ) → − Z(φ)

Z(φ)2 + W̄(φ)2
, W̄ (φ) → W̄(φ)

Z(φ)2 + W̄ (φ)2
.

•Transport formulas match 2+1d CMT strongly coupled model

for near-transition supercond.-insulator of Hartnoll, Kovtun, Muller,

Sachdev (2007), for ω → ω+ i
τimp

→ e2V k2

2κ24sT
Φ.

•S-duality extended; also ρ→ B, B → −ρ.
•Translational invariance breaking λ ∝ Φ acts as an RG scale for

an RG flow. σQ =
Z(rH)

g24
is the critical point (UV) conductivity.

•A generalized Wiedemann-Franz law L =
κxy/T
σxy

→ π2

3 c
g24
Z +O(T).

Also Lxx =
κxx/T
σxx

= L if B = 0, Φ 6= 0, but very small.
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•Toy model in 3d: ABJM model: 3d N = 6 susy CS gauge
theory with group SU(N)×SU(N), gauge fields Aµ, Ãµ, 4 complex

bifundamental scalars CI, 4 fermions ψI, I = 1,2,3,4., in the
global R-symmetry group SU(4) = SO(6) (full R-symm. SU(4)×
U(1)), with

S =

∫

d2+1x

[

k

4π
ǫµνρσTr

(

Aµ∂νAρ +
2i

3
AµAνAρ − Âµ∂νÂρ −

2i

3
ÂµÂνÂρ

)

−Tr (DµC
†
ID

µCI)− iTr (ψI†γµDµψI) + V6(C
I) +Tr (CC†ψψ† term)

]

,

and N = 6 enhanced to N = 8 for k = 1 or N = 2. ∃ mass

deformation that preserves N = 6.

•Gravity dual of ABJM: string theory in AdS4×CP3, obtained as

CP3 = S7/Zk for k → ∞.

•S7 defined by constraint
∑4
i=1 |Zi|2 = 1, obtained as a Hopf

fibration with fiber S1, over CP3, S1 fiber: phase Zi → eiαZi, i =

1, ...,4. Action of Zk: Z
i → e

2πin
k , n = 0,1, .., k − 1.

•ABJM at finite temperature: AdS4-BH, ×CP3. Hence toy model

for 3d CFTs.
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Lecture 10

Applications to QCD
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•Two large classes of models: ”top-down” (dualities derived

from decoupled systems of branes) and ”bottom-up” (phenomeno-

logical models: cook up a gravity dual with desired properties).

Top-down models

•Finite temperature (Witten) model: toy model for QCD3
(pure glue)

ds2 =

(

ρ2

R2
− Rn−2

ρn−2

)

dτ2 +
dρ2

ρ2

R2 − Rn−2

ρn−2

+ ρ2
n−1
∑

i=1

dx2i ⇒

ds2 =
r2

R2

[

−dt2
(

1− rn0
rn

)

+ d~y2(n−1)

]

+R2 dr2

r2
(

1− rn0
rn

) ,

for n = 3, and adding S5 metric. It satisfies the minimal ingre-

dients and general features for QCD-like duals.

•Cut-off AdS5: modified ”hard-wall”. Cut-off at rmin =

R2ΛQCD.

•Improvement: cut-off dynamical, as D-brane at rmin. Then,

modes on D-brane: source pion-like operators. Position: model

for the pion, for a precise version of the Froissart bound satura-

tion (with mπ in it).
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•Polchinski-Strassler solution: gravity dual of N = 1∗ SYM
= massive def. of N = 4 SYM. Toy model for N = 1 SYM
and QCD. Brane config.: D3-branes ”polarizing” (”puffing up”,
extra space appears) due to nonzero flux. Mass gap appears

similarly to finite temp. AdS5 × S5.

ds2string = Z−1/2
x d~x23+1 + Z1/2

y (dy2 + y2dΩ2
y + dw2) + Z

1/2
Ω w2dΩ2

w

Zx = Zy = Z0 =
R4

ρ2+ρ
2
−
; ZΩ = Z0

[

ρ2−
ρ2− + ρ2c

]2

ρ± = (y2 + (w ± r0)
2)1/2; R4 = 4πgsN ; ρc =

2gsr0α′

R2
; r0 = πα′mN

e2Φ = g2s
ρ2−

ρ2− + ρ2c
.

•Metric goes over to AdS5×S5 at large ρ= ρ− ≃ ρ+. Near-core

is ρ ∼ r0: typical warp factor Z1/2 finite.

•Klebanov-Strassler solution: N = 1 susy SU(N+M)×SU(N),

wiht two chiral bifundamental A1, A2 in (N + M, N̄) and two

B1, B2 in ((N+M), N). Brane config.: M ”fractional D3-branes”

on a conifold point in the near horizon.
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•Has ”duality cascade”: Apply ”Seiberg duality (strongly c. SU(Nc)
with Nf flavors into weakly c. SU(Nf−Nc) with Nf flavors). Re-

duce thus gauge group, successively: SU(N + M) × SU(N) →
SU(N) × SU(N −M) → ...minimum groups, at different energy
scale ⇒ cascade. Metric:

ds210 = h−1/2(τ)d~x2 + h1/2(τ)ds26

ds26 =
1

2
ǫ4/3K(τ)

[

1

3K3(τ)
(dτ2 + (g5)

2) + cosh2
(τ

2

)

((g3)
2 + (g4)

2)

+ sinh2
(τ

2

)

((g1)
2 + (g2)

2)
]

K(τ) =
(sinh(2τ)− 2τ)1/3

21/3 sinh τ

h(τ) = α
22/3

4

∫ ∞

τ

dx
x coth x− 1

sinh2 x
(sinh(2x)− 2x)1/3 .

. •At large τ , log-corrected AdS5×T1,1, in terms of r ∼ [ǫ2eτ ]1/3,
ds2 = h−1/2(r)d~x2 + h1/2(r)(dr2 + r2ds2T 1,1)

h(r) ∼ (gsM)2 ln(r/rs)

r4

ds2T 11 =
1

9



dψ2 +
∑

i=1,2

cos θidφi





2

+
1

6

∑

i=1,2

(dθ2i + sin2 θidφ
2
i )

=
1

9
(g5)

2 +

4
∑

i=1

(gi)
2 .
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•Dilaton approx. const., φ = φ0. Again, log-corrected AdS5×X5.•Log correction related to renormalization of QFT= running
coupling const.
•In the QFT IR, at small τ , metric terminates smoothly and

warp factor a
1/2
0 remains finite,

ds2 = a
−1/2
0 d~x2 + a

1/2
0

(

dτ2

2
+ dΩ2

3 +
τ2

4
((g1)

2 + (g2)
2)

)

.

•Maldacena-Núñez solution: 4d N = 1 SYM+ massive modes.
Brane config.: type IIB NS5-branes (S-dual to D5-branes) wrapped
on S2. String frame metric and dilaton:

ds210 = ds27,string + α′N
1

4
(w̃a −Aa)2

H = N

[

−1

4

1

6
ǫabc(w̃

a −Aa) ∧ (w̃b − Ab) ∧ (w̃c − Ac) +
1

4
F a ∧ (w̃a −Aa)

]

ds27,string = d~x23+1 + α′N [dρ2 + R2(ρ)dΩ2
2]

A =
1

2

[

σ1a(ρ)dθ+ σ2a(ρ) sin θ dφ+ σ3 cos θ dφ
]

; a(ρ) =
2ρ

sinh 2ρ

R2(ρ) = ρ coth(2ρ)− ρ2

sinh2(2ρ)
− 1

4

e2φ = e2φ0
2R(ρ)

sinh(2ρ)
.
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•10d sol.: uplift sol. of N = 1 7d sugra on S3 transverse to

5-branes. w̃a: left-inv. forms on S3. D5-brane metric is S-dual:

φ→ φD = −φ, gEµν → gEµν, so:

ds2string = eφD

[

dx2(4) + α′N
(

dρ2 +R2(ρ)dΩ2
2 +

1

4

∑

a
(w̃a −Aa)2

)]

e2φD = e2φD,0
sinh(2ρ)

2R(ρ)
.

•QCD string tension Ts = e
φD,0

2πα′ , and M2
glueballs ∼ M2

KK ∼ 1
R2
2

∼
1
Nα′, so decoupling of KK states would mean Ts ≪ M2

KK →
eφD,0N ≪ 1.
•BUT: sugra approx. → curvature small in string units → eφD,0N ≫
1: opposite. So can’t decouple KK modes.
•UV of QFT: ρ→ ∞,

R2 ≃ ρ; a ≃ 2ρe−2ρ; φ ≃ φ0 − ρ+
log ρ

4
⇒

ds2 = d~x23+1 + α′N

[

dρ2 + ρdΩ2
2 +

1

4
(w̃a −Aa)2

]

= d~x23+1 + α′N

[

dz2

z2
+ (− log z)dΩ2

2 +
1

4
(w̃a −Aa)2

]

.
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•But dilaton nontrivial, so is actually equiv. to log-corrected
AdS5 ×X5:

S =
1

2κ2N

∫

d5x
√−g5

(∫

X5

√
gX5

)

gµνe−2φ[Rµν − ∂µX∂νX + ...] ,

ds2 = e2A(ρ)d~x23+1 + dρ2 + ds2X5
= e2A(z)d~x23+1 +

dz2

z2
+ ds2X5

⇒

S =
1

2κ2N

∫

d4x dρ

(∫

X5

√
gX5

)

e2(A−φ)δµν[Rµν − ∂µX∂νX + ...] ,

so the condition for log-corr. AdS5 ×X5 is in fact

φ− φ0 − A
ρ→∞→ −ρ(+ log corrections) = + log z(+ corrections) ,

and is satisfied (A = 0, φ = φ0 − ρ+ ... = φ0 + log z + ...). So

UV: OK.

•IR of QFT: at ρ → 0, the effective warp factor e2(A−φ) is con-

stant,

R2 = ρ2 +O(ρ4); a = 1+O(ρ2); φ = φ0 +O(ρ2) .
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•Maldacena-Năstase solution: analog of Maldacena-Núñez for
3d: 3d N = 1 SYM, with a Chern-Simons coupling, coupled to
other massive modes. Brane config.: NS5-branes wrapped on
S3. CS level k: gravity dual k = N/2. Index comp.: ∃ unique
vacuum, confining. Solution:

ds210 = ds27,string + α′N
1

4
(w̃a −Aa)2

H = N

[

−1

4

1

6
ǫabc(w̃

a − Aa) ∧ (w̃b −Ab) ∧ (w̃c −Ac) +
1

4
F a ∧ (w̃a − Aa)

]

+ h

ds27,string = d~x22+1 + α′N [dρ2 +R2(ρ)dΩ2
3]

A =
w(ρ) + 1

2
waL

h = N [w3(ρ)− 3w(ρ) + 2]
1

16

1

6
ǫabcw

a ∧ wb ∧ wc ,

wa are left-inv. forms on S3 for dΩ2
3, w̃

a are same for transverse
S̃3 and w(ρ), R(ρ)mφ(ρ) are found numerically.

•QFT UV: large ρ:

R2(ρ) ∼ 2ρ; w(ρ) ∼ 1

4ρ
; φ = −ρ+ 3

8
log ρ ,

so log-corrected AdS4 ×X6, since

φ− φ0 − A→ −ρ+ log corrections .
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•IR of QFT: ρ→ 0,

R2(ρ) = ρ2 +O(ρ4); w(ρ) = 1+O(ρ2); φ = φ0 +O(ρ2) ,

so has finite warp factor, e2(A−φ) = e−2φ0+....

•Dynamical susy breaking: Put small nr. n branes (n ≪ N/2) on

noncontractible S3, so dual QFT has k = N/2+n: susy unbroken

if n > 0 (branes), but broken if n < 0 (antibranes).

•Sakai-Sugimoto model: has quarks (fermions in the funda-

mental) in the probe approx. (so, no back-reaction). Quarks:

either fixed D-branes (e.g., branes at orientifold point for N = 2

AdS/CFT), or probe D-branes: here.

•Nc Wick-rotated D4-branes at finite temperature, for gravity

dual similar to Witten model,

ds2 =

(

U

R

)3/2

(f(U)dτ2 + d~x2(4)) +

(

R

U

)3/2
(

dU2

f(U)
+ U2dΩ2

4

)

eφ = gs

(

U

R

)3/4

; F4 =
2πNc

V4
ǫ4; f(U) = 1− U3

KK

U3
.

209



.

•In this background, Nf D8-brane probes, with transverse coord.

U , dep. on worldvol. coord. τ , U = U(τ). Probe interpreted as

D8− D̄8 = susy breaking, joined in bulk.

The Sakai-Sugimoto model has a probe D8-brane in the gravity dual, starting

from infinity and returning to it. At infinity, it looks like a D8-brane/anti-D8-

brane pair (parallel branes of opposite orientation).

•Solution for U(τ) to equations of motion:

τ(U) = U4
0f(U0)

1/2
∫ U

U0

dU

(UR)
3/2f(U)

√

U8f(U)− U8
0f(U0)

.

•Modes on D8 couple to mesonic ops. (pion-like), charged

under global symm.
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•Background related to Witten model for QCD4: D4-branes at

finite T , (some transf. and) compactify on periodic Euclidean

time. Metric at large U (UV of QFT): in terms of ρ =
√
U :

ds2 ∼ ρ

[

ρ2(f(ρ)dτ2 + d~x2) +
dρ2

f(ρ)ρ2
+ dΩ2

4

]

.

•Is conformal factor × AdS6 × S4: OK for compactif. to 4d

theory.. Cut-off at finite U = UKK in IR of QFT. Obs.: τ is

compact, and also τ = τ(U), so D8-brane probes 4d theory.

•Mass spectra in gravity duals from field eigenmodes. For

a field in AdS space, dual tower of glueball states: tower of

discrete modes.

•E.G. Scalar dilaton (massles) Φ dual to Tr [FµνFµν], glueball

0++, and its excited states.

•Field theory mass: from x space or p space 2-point functions

of the operator,

〈O(x)O(y)〉 ∝ e−m1|x−y|(+#e−m2|x−y| + ...).

〈O(p)O(−p)〉 ∼
∑

j

Aj

p2 +m2
j

.
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•In AdS, spectrum of ~k2 = −m2 for solutions of the free eq. of

m. for Φ.

•Infinite discrete spectrum (with no accumulation points) if light

takes finite time from boundary to boundary (horizon).

•For an AdSn+1×Sm space, made non-extremal by a blackening

function, we have a finite bd. to bd. time,

ds2 = uα
[(

1− umT
um

)

dτ2 − dt2 + d~x2n−2

]

+
du2

u2
(

1− umT
um

) + dΩ2
m.

•Defining time of flight variable x by dx = dρ
√

gρρ/gtt, massless

KG eq. ✷Ψ = 0 becomes 1d QM problem for E ≡ m2 = −k2 (k

is 4d momentum),
[

− d2

dx2
+ (V (x)−E)

]

Ψ̃(x) = 0.

•So xmax finite means V (x) has finite support, so En ≡ m2
n

discrete, infinite in nr., with no accumulation points, as for 1d

QM box.
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•But this is not the only way to obtain mass gap! NS5-branes

in flat space have

ds210,string = d~x25+1 + dρ2 + dΩ2
3, φ = −ρ.

•But ✷ contains the Einstein metric. So repeating procedure

for gEµν, one finds V (x) = 1, with x ranging from 0 to ∞. So

continuous spectrum above a mass gap, though not discrete.

•For Witten’s QCD3 model, one finds x between 0 and xmax = C,

and V (0) → −∞ (V (x) ≃ −1/(4x2)), V (C) → +∞ (V (x) ≃
15/(4(x− C)2)). Then one finds m2R2 = 6n(n+1), so at large

n, En = m2
nR

2 ∝ n2, like for particle in a box.

•For Polchinski-Strassler, one finds a finite time of flight at in-

finity, and near the core, one finds a near-shell approx., with a

5-brane throat, so strictly speaking one cannot regulate the di-

vergence.

•For Klebanov-Strassler, again finite time of flight at infinity, but

smooth cut-off at small r (like the plane in spherical coords.),

so time of flight is regulated, and spectrum of scalar is discrete.
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•For Maldacena-Núnez, V (ρ) = 4/3 + ... in the IR and V (ρ) ≃
1 + 1/(2ρ) in the UV, whereas for Maldacena-Nastase, V (ρ) ≃
4/(4ρ2) in the IR and V (ρ) ≃ 1 + 3/(4ρ) in the UV. So contin-

uum of states at high energies above a mass gap, though there

could be discrete states as well (if there is an energy well at

intermediate energies). Modification of the flat space 5-brane

spectrum.

•Mass spectra in gravity dual from mode expansion on

probe branes Sakai-Sugimoto model: Find worldvolume action

for AM ,M = 0,1, ...,4, for the D8-brane KK reduced on S4. Use

coordinates (y, z) where the D8-brane is flat, situated at y = 0

(extends in z):

(y, z) = (

√

U3 − 1 cos τ,

√

U3 − 1 sin τ) .
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•The DBI+CS action for AM = (Aµ(xν, z), Az(xν, z) is

S =
λNc

216π3

∫

d4x dzTr

[

1

2
K−1/3F2

µν +KF2
µz

]

+

+
Nc

24π2

∫

M4×R
ω5,CS(A) , K(z) ≡ 1 + z2 .

•Expand in complete and orthonormal sets {an(z)}n≥1 and {φn(z)}n≥0

(such that −K1/3∂z(K∂zan) = µ2nan),

Aµ(x
ν, z) =

∞
∑

n=1

A(n)
µ (xν)an(z)

Az(x
ν, z) = ϕ(0)(xν)φ0(z) +

∞
∑

n=1

ϕ(n)(xν)φn(z) ,

and obtain the kinetic terms

SDBI
D8 =

∫

d4xTr

[

(∂µϕ
(0))2 +

∞
∑

n=1

(

1

2
(∂µA

(n)
ν − ∂νA

(n)
µ )2 + µ2

n(A
(n)
µ − µ−1

n ∂µϕ
(n))2

)

]

+int ,

allowing us to identify ϕ(0) with the pion, and A
(n)
µ become

massive by eating ϕ(n): vector mesons.
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Phenomenological (bottom-up) gauge/gravity duality:
AdS/QCD

•Extended ”hard-wall” model. Extend hard-wall of Polchinski-
Strassler. Ehrlich, Katz, Son, Stephanov, 2005. Add gauge fields
AaLµ, A

a
Rµ coupling to currents of S(Nf)L×SU(Nf)R flavor symm.,

q̄Lγ
µT aqL and q̄Rγ

µRaqR, and bifundamental tachyonic scalar Xαβ

of m2R2 = −3 > −4 (BF bound) coupling to chiral order param-
eter OX = q̄αRq

β
L. Action:

S =

∫

d5x
√−gTr

[

−|DµX|2 +3|X|2 − 1

4g25
(F2
Lµν + F2

Rµν)

]

,

where DµX = ∂µ−iALµX+iXARµ, Fµν = ∂µAν−∂νAµ−i[Aµ, Aν].
•Boundary conditions: in the IR: (FL)zµ = (FR)zµ = 0; in the
radial gauge Az = 0 becomes Neumann: ∂zAL,Rµ = 0; also for

X (Neumann or Dirichlet). In the UV (z = 0): AaL,Rµ → aaL,Rµ
(sources for JaL,Rµ), and also (OX has ∆ = 3 in d = 4):

X → zd−∆(X0 + z2∆−dX(2∆−d)) = zX0 + z3X(2) =
1

2
Mz+

1

2
Σz3 ,

where X0= source for OX= Mαβ/2 (quark mass matrix) and
X(2) = Σαβ/2 gives VEV of OX, Σαβ = 〈q̄αRq

β
L〉.
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•If M = mq 1l and Σ = σ 1l, 4 parameters: mq, σ, zm, g5 and 3
fields: ALµ, ARµ, X. Can introduce vector Vµ = (ALµ + ARµ)/2
and axial vector Aµ = (ALµ − ARµ)/2 coupling to q̄γµT aq and
q̄γ5γµT aq.
•IR+UV conditions imply quantized solutions (discrete spec-
trum).
•In gauge Vz(~x, z) = 0, in Fourier modes for ~x (Q2 = −~q2), we
have, from the eqs. of m.,

Vµ(~q, z) = V (~q, z)V0µ(~q); V (~q, z = ǫ) = 1 ⇒ V (Q, z) = 1+
Q2z2

4
ln(Q2z2) + ...

•2-point function for currents:

〈Jaµ(x)Jbν(0)〉 =
δ2Ssugra

δV a
0µ(x)δV

b
0ν(0)

= − 1

2g25

δ2

δV a
0µ(x)δV

b
0ν(0)

∫

z=ǫ

d4x

(

1

z
V a
µ ∂zV

µa

)

⇒
∫

d4xei~q·~x〈Jaµ(x)Jbν(0)〉 = δab(qµqν − ~q2gµν)ΠV (Q
2)

ΠV (Q
2) = − 1

g25Q
2

∂zV (~q, z)

z

∣

∣

∣

∣

z=ǫ

= − 1

2g25
lnQ2.

•Compare with perturbative result:

ΠV (Q
2) = − Nc

24π2
lnQ2 ⇒ g25 =

12π2

Nc
.
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•Decay constants into vector meson ρn and pol.vector ǫn, defined

by:

〈0|Jaµ|ρbn〉 = Fnδ
abǫµ ,

which implies

δaaǫµǫ
µ
∑

n

F 2
n

m2
n(~q

2 −m2
n + iǫ)

=
∑

n

〈0|Jaµ(q)|ρbn〉
1

m2
n(~q

2 −m2
n + iǫ)

〈ρbn|Jaµ(−q)|0〉

=
1

~q2
〈0|Jaµ(q)Jaµ(−q)|0〉 = −3δaaΠv(q

2) ,

to be matched against (ψn(z) are quantized (discrete) sols. for
vector meson states)

G(~q; z, z′) =
∑

n

ψn(z)ψn(z′)

~q2 −m2
n + iǫ

,⇒ ΠV (~q
2) = − 1

g25

∑

n

|ψ′(ǫ)/ǫ|2
(~q2 −m2

n + iǫ)m2
n

,

leading to

F2
n =

1

g25
[ψ′(ǫ)/ǫ]2 → 1

g25
[ψ′′
n(0)]

2.

•Other masses, couplings, decay constants can be calculated:

fix parameters, then predict others.
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•Soft-wall model for QCD. Modify background to have good

QCD properties for the spectrum. In particular, m2
n ∝ n (for

hard-wall, m2
n ∝ n2 at large n) and for high spin S ≫ 1, m2

n ∝ S.

More precisely,

m2
n ∼ σn; m2

S ∼ σS.

•Ansatz

ds2 = gMNdx
MdxN = e2A(z)(ηµνdx

µdxν+dz2) = e2A(u)ηµνdx
µdxν+du2.

•As before, relevant combination is Φ(z) − A(z), so we want

boundary conditions:

UV (z → 0) : Φ(z)−A(z) ∼ log z , IR (z → ∞) : Φ(z)−A(z) ∼ z2.

•Simplest solution:

Φ(z)− A(z) = z2 + log z.

•Action (has dilaton Φ extra):

S =
∫

d5x
√−ge−Φ(z)Tr

[

−|DµX|2 +3|X|2 − 1

4g25
(F2
Lµν + F2

Rµν)

]

.
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•Boundary conditions appear because: Schrödinger eq. with

potential V (z), for B(z) = Φ(z)−A(z),

−ψ′′
n+ V (z)ψn = m2

nψn , V (z) =
1

4
(B′)2 − 1

2
B′′.

Then V (z) ∝ z2 at large z for En = m2
n ∝ n, implying B(z) ∝ z2;

also B = z2/z2m+ log z gives

m2
nz

2
m = En = 4(n+1) ⇒ Vn(z) = eB(z)/2ψn(z) = z2

√

2n!

(n+1)!
L1
n(z

2).

•Decay constants become

F2
n =

1

g25
[V ′′
n (0)]

2 =
8(n+1)

g25
.

•To fix Φ and A, not just Φ − A, need higher spin (S > 2),
φM1...MS

, totally symmetric, with gauge invariance δφM1..MS
=

D(M1
ξM2...MS)

, and same equations of motion, just with B =

Φ − (2S − 1)A. Then again V (z) ∝ z2 at large z, but indep. of
S, so

Φ ≃ z2

zm
, z → ∞ , A ∝ − log z , z → 0. If Φ =

z2

z2m
, A = − log z ⇒

V (z) =
z2

z4m
+

2(S − 1)

z2m
+
S2 − 1/4

z2
, En ≡ m2

n,Sz
2
m = 4(n+ S).
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•Improved holographic QCD: engineer a scalar potential in

the gravity dual to holographically give wanted running coupling

constant.

•BUT: λ(µ) not known, so we need an ansatz: from integrating

2-loop beta function,

µ
dλ

dµ
= − dλ

d log z
= β(λ) = −b0λ2 + b1λ

3 + b2λ
4 + ...⇒

1

λ
≡ αs = L− b1

b0
logL+

b21
b20

logL

L
+O

(

1

L2

)

, L ≡ −b0 log(zΛ).

•Gravity dual (see previous) A(z) ≃ − log z, z = 1/E, so du =

eA(z)dz gives u ≃ logz, du = −d logE.

•Write potential for λ = NeΦ, and expand

V (λ) =
∞
∑

n=0

Vnλ
n = V0 +

V1
L

+
V2
L2

+
b1
b0
V1

logL

L2
+O

(

1

L3

)

.

•Vi from Einstein equation for action (coming from sugra plus

Nf effective D4−D̄4 pairs= Dp−D̄p wrapped on compact space),

S =M3
Pl,5N

2
c

∫

d5x
√−g

[

R− 4

3

(∂µλ)2

λ2
− V (λ)

]

.
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•From the equations of motion written in terms of λ, and then
in L, their compatibility requires that

V1 =
8

9
b0V0; V2 =

23b20 − 36b1

34
V0 ⇒ V = V0

(

1+
8

9
b0λ+

23b20 − 36b1

34
λ2
)

+O(λ3),

ds2 =



1+
8

32 log(zΛ)
+

4
(

26+ 9b1
b20
− 18b1

b20
log(b0 log

1
zΛ
)
)

34 log2(zΛ)

+O
(

log2 log(zΛ)

log3(zΛ)

)]

R2

z2
(dz2 + d~x2).

•Obs.: we matched the UV asymptotics, but the IR one (most

interested in) needs large λ beta function, for which we have an

ansatz: extra layer of phenomenology.

222


