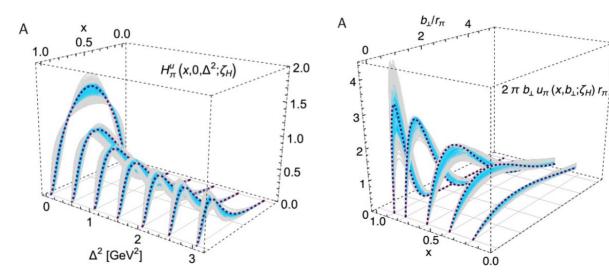
# From 1D distributions to GPDs

# Khépani Raya Montaño





**POETIC 2023** 

May 2-6, 2023. Sao Paulo (Brasil)

## **QCD: Basic Facts**

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

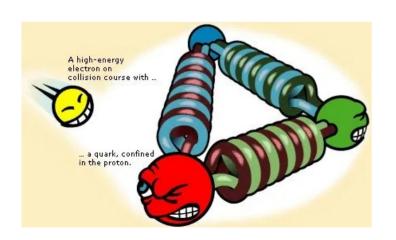


$$\mathcal{L}_{\text{QCD}} = \sum_{j=u,d,s,...} \bar{q}_{j} [\gamma_{\mu} D_{\mu} + m_{j}] q_{j} + \frac{1}{4} G^{a}_{\mu\nu} G^{a}_{\mu\nu},$$

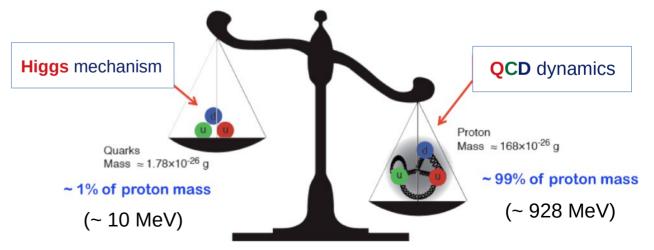
$$D_{\mu} = \partial_{\mu} + i g \frac{1}{2} \lambda^{a} A^{a}_{\mu},$$

$$G^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} + \partial_{\nu} A^{a}_{\mu} - g f^{abc} A^{b}_{\mu} A^{c}_{\nu},$$

- Quarks and gluons not isolated in nature.
- → Formation of colorless bound states: "Hadrons"
- 1-fm scale size of hadrons?



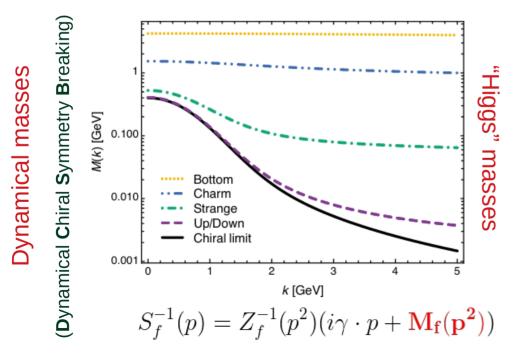
 Emergence of hadron masses (EHM) from QCD dynamics



### **QCD: Basic Facts**

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

#### Can we trace them down to fundamental d.o.f?

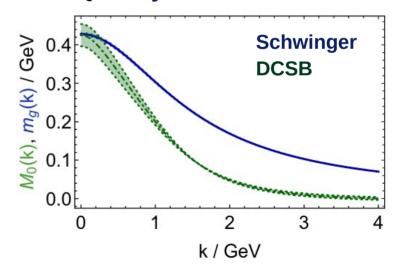


$$\mathcal{L}_{\text{QCD}} = \sum_{j=u,d,s,...} \bar{q}_{j} [\gamma_{\mu} D_{\mu} + m_{j}] q_{j} + \frac{1}{4} G^{a}_{\mu\nu} G^{a}_{\mu\nu},$$

$$D_{\mu} = \partial_{\mu} + i g \frac{1}{2} \lambda^{a} A^{a}_{\mu},$$

$$G^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} + \partial_{\nu} A^{a}_{\mu} - \underline{g} f^{abc} A^{b}_{\mu} A^{c}_{\nu},$$

 Emergence of hadron masses (EHM) from QCD dynamics

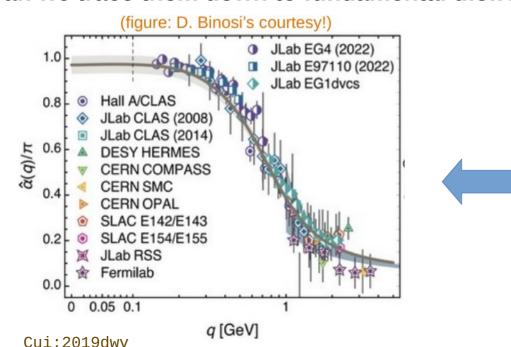


Gluon and quark running masses

# **QCD: Basic Facts**

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

#### Can we trace them down to fundamental d.o.f?

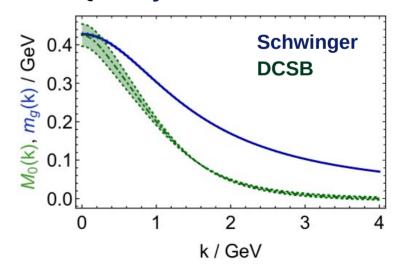


$$\mathcal{L}_{\text{QCD}} = \sum_{j=u,d,s,...} \bar{q}_{j} [\gamma_{\mu} D_{\mu} + m_{j}] q_{j} + \frac{1}{4} G^{a}_{\mu\nu} G^{a}_{\mu\nu},$$

$$D_{\mu} = \partial_{\mu} + i g \frac{1}{2} \lambda^{a} A^{a}_{\mu},$$

$$G^{a}_{\mu\nu} = \partial_{\mu} A^{a}_{\nu} + \partial_{\nu} A^{a}_{\mu} - \underline{g} f^{abc} A^{b}_{\mu} A^{c}_{\nu},$$

 Emergence of hadron masses (EHM) from QCD dynamics

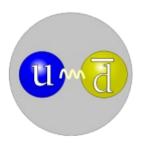


Gluon and quark running masses

### **Pion Structure**

#### **Pion**

• "Two" quark bound-state

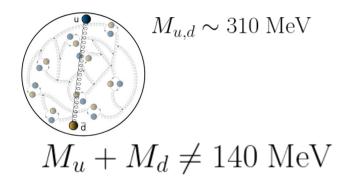


- Archetype of nuclear exchange forces
  - Our favorite mediator
- The **lightest** hadron in nature

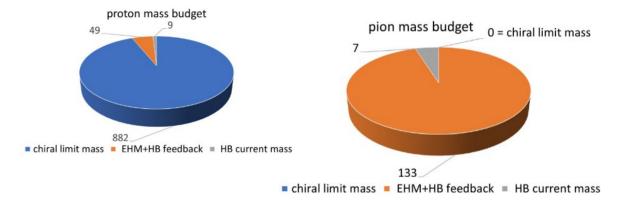
### **Pion Structure**

#### **Pion**

"Two" quark bound-state



Unlike the proton, pion is massless in the absence of Higgs mass generation

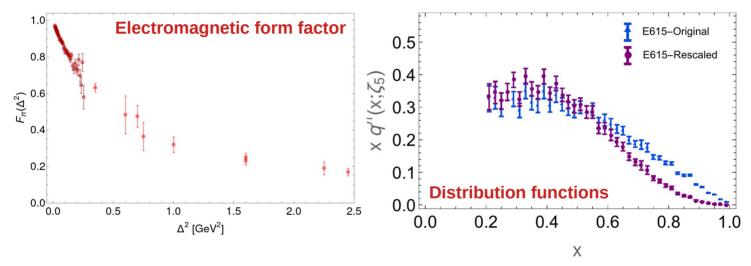


- Archetype of nuclear exchange forces
  - Our favorite mediator
- The lightest hadron in nature

- → Both a quark-antiquark bound-state and a Golstone Boson
  - → Its mere existence is connected with mass generation in the SM

### **Pion Structure**

The experimental access to the pion structure is via electromagnetic probes, yielding e.g.:



Generalized parton distributions (GPDs) encode them both (and many more):

$$F_{\pi}(\Delta^2) = \int H_{\pi}^u(x,\xi,-\Delta^2;\zeta), \ u^{\pi}(x;\zeta) = H_{\pi}^u(x,0,0;\zeta)$$

But the experimental access and theoretical derivation is far more complicated.

# **Pion GPD**

#### > Question:

From 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

### **Pion GPD**

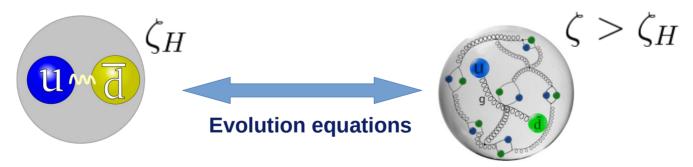
#### Question:

From 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

Partial Answer:

Yes, we can. Under two premises:

→ There exists at least one effective charge such that, when used to integrate the leading-order perturbative DGLAP equations, an evolution scheme for parton DFs is defined that is all-order exact.



Thus, we can plainly connect the **parton** and **quasiparticle** picture in a well determined manner.

### **Pion GPD**

#### Question:

From 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

Partial Answer:

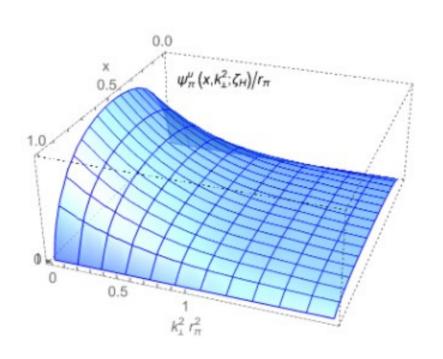
Yes, we can. Under two premises:

- → There exists at least one effective charge such that, when used to integrate the leading-order perturbative DGLAP equations, an evolution scheme for parton DFs is defined that is **all-order** exact.
- → A **factorised** representation of the pion light-front wave function (**LFWF**), from which the (DGLAP) **GPD** is derived, at the hadronic scale, is a sensible approximation.

Overlap: 
$$H^u_\pi(x,\xi,-\Delta^2;\zeta_H) = \int rac{d^2k_\perp}{16\pi^3} \psi^{u*}_\pi(x_-,k^2_{\perp-};\zeta_H) \psi^u_\pi(x_+,k^2_{\perp+};\zeta_H)$$

Factorization: 
$$\psi^u_\pi(x,k_\perp^2;\zeta_H) = \tilde{\psi}^u_\pi(k_\perp^2)[u^\pi(x;\zeta_H)]^{1/2}$$

Raya:2021zrz Raya:2022eqa

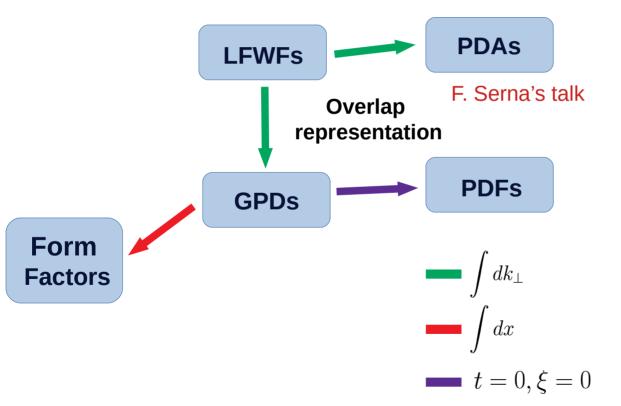


$$\psi^u_{\mathsf{P}}(x,k_\perp^2;\zeta)$$



"One ring to rule them all"

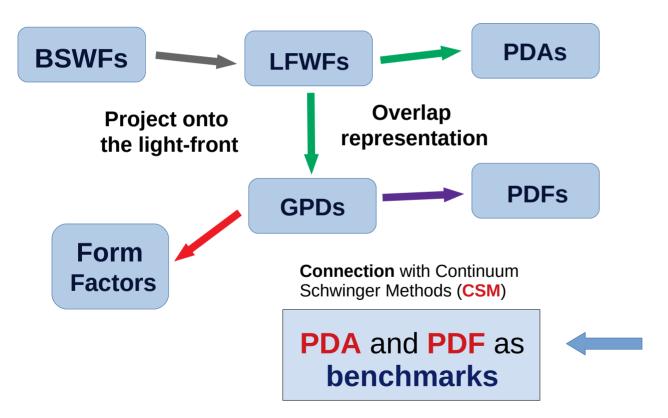
Goal: get a broad picture of the pion and Kaon structure.



#### The idea:

Compute *everything* from the **LFWF**.

Goal: get a broad picture of the pion and Kaon structure.



#### The idea:

Compute *everything* from the **LFWF.** 

#### The inputs:

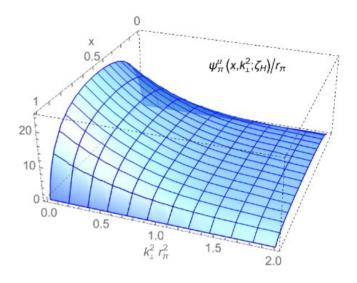
**Solutions** from quark **DSE** and meson **BSE**.

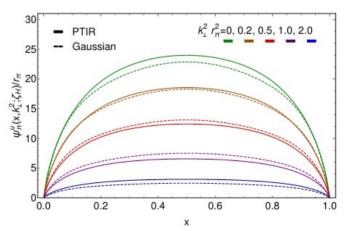
#### The alternative inputs:

**Construct BSWF** from realistic DSE **predictions**.

A. Bashir's talk

# **About PTIRs** and LFWFs





# **LFWF: PTIR approach**

A perturbation theory integral representation for the BSWF:

(Kaon as example) The distribution the BSWF. 
$$n_K \chi_K(k_-^K, P_K) = \mathcal{M}(k, P) \int_{-1}^1 dw \, \rho_K(w) \mathcal{D}(k, P)$$

#### 1: Matrix structure (leading BSA):

$$\mathcal{M}(k; P_K) = -\gamma_5 [\gamma \cdot P_K M_u + \gamma \cdot k(M_u - M_s) + \sigma_{\mu\nu} k_\mu P_{K\nu}] ,$$

2: Spectral weight: Tightly connected with the meson properties.

**3: Denominators:** 
$$\mathcal{D}(k; P_K) = \Delta(k^2, M_u^2) \Delta((k - P_K)^2, M_s^2) \hat{\Delta}(k_{\omega-1}^2, \Lambda_K^2)$$
, where:  $\Delta(s, t) = [s + t]^{-1}$ ,  $\hat{\Delta}(s, t) = t\Delta(s, t)$ .

Raya:2021zrz Raya:2022ega

# **LFWF: PTIR approach**

Recall the expression for the LFWF:

$$\psi_{\rm M}^{q}\left(x,k_{\perp}^{2}\right) = {\rm tr} \int_{dk_{\parallel}} \delta_{n}^{x}(k_{\rm M}) \gamma_{5} \gamma \cdot n \, \chi_{\rm M}(k_{-},P) \qquad \langle x \rangle_{\rm M}^{q} := \int_{0}^{1} dx \, x^{m} \psi_{\rm M}^{q}(x,k_{\perp}^{2})$$

Algebraic manipulations yield:

$$\Rightarrow \psi_{\mathrm{M}}^{q}(x, k_{\perp}) \sim \int dw \; \rho_{\mathrm{M}}(w) \cdots$$

- Compactness of this result is a merit of the AM.
- > Thus,  $\rho_{M}(w)$  determines the profiles of, e.g. PDA and PDF: (it also works the **other way around**)

$$f_{\rm M}\phi_{\rm M}^q(x;\zeta_H) = \int \frac{d^2k_{\perp}}{16\pi^3} \psi_{\rm M}^q(x,k_{\perp};\zeta_H) \qquad q_{\rm M}(x;\zeta_H) = \int \frac{d^2k_{\perp}}{16\pi^3} |\psi_{\rm M}^q(x,k_{\perp};\zeta_H)|^2$$

$$q_{\rm M}(x;\zeta_H) = \int \frac{d^2k_{\perp}}{16\pi^3} |\psi_{\rm M}^q(x,k_{\perp};\zeta_H)|^2$$

Raya:2021zrz Raya:2022ega

#### More explicitly:

$$\psi_{\rm M}^q(x, k_\perp^2; \zeta_H) = 12 \left[ M_q(1-x) + M_{\bar{h}} x \right] X_{\rm P}(x; \sigma_\perp^2)$$

$$\sigma_{\perp} = k_{\perp}^2 + \Omega_{\rm P}^2$$

$$X_{\mathcal{M}}(x;\sigma_{\perp}^{2}) = \left[ \int_{-1}^{1-2x} dw \int_{1+\frac{2x}{w-1}}^{1} dv + \int_{1-2x}^{1} dw \int_{\frac{w-1+2x}{w+1}}^{1} dv \right] \frac{\rho_{\mathcal{M}}(w) \Lambda_{\mathcal{M}}^{2}}{n_{\mathcal{M}}}$$

$$\Omega_{\rm M}^2 = v M_q^2 + (1 - v) \Lambda_{\rm P}^2 
+ (M_{\bar{h}}^2 - M_q^2) \left( x - \frac{1}{2} [1 - w] [1 - v] \right) 
+ (x[x - 1] + \frac{1}{4} [1 - v] [1 - w^2]) m_{\rm M}^2$$

#### Model parameters:

| Р     | $m_{P}$ | $M_u$ | $M_h$    | $\Lambda_{P}$ | $b_0^{P}$ | $\omega_0^{P}$ | $v_{P}$ |
|-------|---------|-------|----------|---------------|-----------|----------------|---------|
| $\pi$ | 0.14    | 0.31  | $M_u$    | $M_u$         | 0.275     | 1.23           | 0       |
| K     | 0.49    | 0.31  | $1.2M_u$ | $3M_s$        | 0.1       | 0.625          | 0.41    |

$$+(x[x-1] + \frac{1}{4}[1-v][1-w^2]) \frac{m_{\rm M}^2}{m_{\rm M}^2} \left[ p_{\rm P}(\omega) = \frac{1+\omega v_{\rm P}}{2a_{\rm P}b_0^{\rm P}} \left[ {\rm sech}^2 \left( \frac{\omega - \omega_0^{\rm P}}{2b_0^{\rm P}} \right) + {\rm sech}^2 \left( \frac{\omega + \omega_0^{\rm P}}{2b_0^{\rm P}} \right) \right] \right]$$

### **LFWF: Factorized case**

In the chiral limit, the PTIR reduces to:

$$\psi_{\rm M}^q(x, k_\perp^2; \zeta_H) \sim \tilde{f}(k_\perp) \phi_{\rm M}^q(x; \zeta_H) \sim f(k_\perp) [q_{\rm M}(x; \zeta_H)]^{1/2}$$

"Factorized model"

 $[\phi_{\mathrm{M}}^{q}(x;\zeta_{H})]^{2} \sim q_{\mathrm{M}}(x;\zeta_{H})$ 

Sensible assumption as long as:

$$m_{
m M}^2 pprox 0 \qquad M_{ar h}^2 - M_q^2 pprox 0 \qquad \zeta_{
m H}$$
 (meson mass) (h-antiquark, q-quark masses)

 Produces <u>identical</u> results as PTIR model for pion

$$\psi_{\mathrm{M}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = \left[q^{\mathrm{M}}(x;\zeta_{H})\right]^{1/2} \left[4\sqrt{3}\pi \frac{M_{q}^{3}}{\left(k_{\perp}^{2}+M_{q}^{2}\right)^{2}}\right] \qquad \text{Single parameter!} \qquad M_{q} \sim r_{\mathrm{M}}^{-1} \qquad \text{(charge radius)}$$

No need to determine the spectral weight!

### LFWF: Factorized case

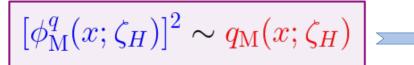
In the chiral limit, the PTIR reduces to:

$$\psi_{\rm M}^q(x, k_\perp^2; \zeta_H) \sim \tilde{f}(k_\perp) \phi_{\rm M}^q(x; \zeta_H) \sim f(k_\perp) [q_{\rm M}(x; \zeta_H)]^{1/2}$$

"Factorized model"

 $m_{\rm M}^2 \approx 0$   $M_{\bar{h}}^2 - M_a^2 \approx 0$ 

(flavor asymmetry)



→ Produces identical results

Sensible assumption as long as:

(meson mass)

Therefore:

AtifSultan: 2018end

# LFWF: PTIR approach II

A perturbation theory integral representation for the BSWF:

1: Matrix structure (leading BSA):  $\mathcal{M}_{q,\bar{h}}(k,P) \equiv -\gamma_5 \left[ M_q \gamma \cdot P + \gamma \cdot k (M_{\bar{h}} - M_q) \right]$ 

2: Profile function:  $\tilde{\rho}_{\rm M}^{\,\nu}(w) \equiv \rho_{\rm M}(w) \Lambda_w^{2\nu}$ .  $+\sigma_{\mu\nu} k_\mu P_\nu - i \left(k\cdot p + M_q M_{\bar{h}}\right)$ 

3: Denominators:  $\mathcal{D}_{q,\bar{h}}^{\,\nu}(k,P)\!\equiv\!\Delta\left(k^2,M_q^2\right)\Delta\left(k_{w-1}^2,\Lambda_w^2\right)^{\nu}\Delta\left(p^2,M_{\bar{h}}^2\right)$  .

The crucial difference:

$$\Lambda^2(w) := \Lambda_w^2 = M_q^2 - \frac{1}{4} \left( 1 - w^2 \right) m_{\mathcal{M}}^2 + \frac{1}{2} \left( 1 - w \right) \left( M_{\bar{h}}^2 - M_q^2 \right) .$$

# LFWF: PTIR approach II

- Then a series of algebraic results follows.
  - 1. For the **BSWF**:

$$n_{\rm M}\chi_{\rm M}(k_{-},P) = \mathcal{M}_{q,\bar{h}}(k,P) \int_{0}^{1} d\alpha \mathcal{F}_{\rm M}(\alpha,\sigma^{\nu+2}) , \quad \sigma = (k-\alpha P)^{2} + \Lambda_{1-2\alpha}^{2},$$

$$\mathcal{F}_{\rm M}(\alpha,\sigma^{\nu+2}) = 2^{\nu}(\nu+1) \Big[ \int_{-1}^{1-2\alpha} dw \left( \frac{\alpha}{1-w} \right)^{\nu} + \int_{1-2\alpha}^{1} dw \left( \frac{1-\alpha}{1+w} \right)^{\nu} \Big] \frac{\tilde{\rho}_{\rm M}^{\nu}(w)}{\sigma^{\nu+2}}$$

2. **LFWF** in terms of **PDA/PDF**:

$$f_{\mathcal{M}}\phi_{\mathcal{M}}^{q}(x;\zeta_{H}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}}\psi_{\mathcal{M}}^{q}(x,k_{\perp};\zeta_{H})$$

$$f_{\rm M}\phi_{\rm M}^q(x;\zeta_H) = \int \frac{d^2k_{\perp}}{16\pi^3} \psi_{\rm M}^q(x,k_{\perp};\zeta_H) \qquad \qquad \psi_{\rm M}^q(x,k_{\perp}^2) = 16\pi^2 f_{\rm M} \frac{\nu \Lambda_{1-2x}^{2\nu}}{(k_{\perp}^2 + \Lambda_{1-2x}^2)^{\nu+1}} \phi_{\rm M}^q(x)$$

$$\Lambda_{1-2x}^2 = M_q^2 + x (M_{\bar{h}}^2 - M_q^2) - m_H^2 x (1-x)$$
 Flavor asymmetry Meson mass

Encodes the breaking of factorization.

Completely factorized in the chiral limit.

# Coming back to the point...



Many **distributions** are related via the leadingtwist light-front wave function (**LFWF**), e.g.:

Distribution amplitudes

$$f_{\mathsf{P}}\varphi_{\mathsf{P}}^{u}(x,\zeta_{\mathcal{H}}) = \int \frac{dk_{\perp}^{2}}{16\pi^{3}} \psi_{\mathsf{P}}^{u}\left(x,k_{\perp}^{2};\zeta_{\mathcal{H}}\right)$$

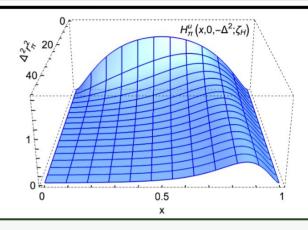
Distribution functions

$$u^{\mathsf{P}}(x;\zeta_{\mathcal{H}}) = \int \frac{d^2k_{\perp}}{16\pi^3} \left| \psi^{u}_{\mathsf{P}}\left(x,k_{\perp}^2;\zeta_{\mathcal{H}}\right) \right|^2$$

In the **DGLAP** kinematic domain, this is also the case of the valence-quark **GPD**:

$$H_{\mathsf{P}}^{u}(x,\xi,t;\zeta_{\mathcal{H}}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi_{\mathsf{P}}^{u*}\left(x_{-},k_{\perp-}^{2};\zeta_{\mathcal{H}}\right) \psi_{\mathsf{P}}^{u}\left(x_{+},k_{\perp+}^{2};\zeta_{\mathcal{H}}\right)$$

$$x_{\mp} = (x \mp \xi)/(1 \mp \xi), t = -\Delta^2$$
  
 $k_{\perp \mp} = k_{\perp} \pm (\Delta_{\perp}/2)(1 - x)/(1 \mp \xi)$ 



- ✓ The overlap approach guarantees the positivity of the GPD.
- It is, in principle, limited to the DGLAP kinematic region.  $|x| \geq |\xi|$
- ✓ Nonetheless, it can be exteded to the ERBL domain.

Chouika:2017rzs Chavez:2021koz

Albino:2022gzs Raya:2021zrz Raya:2022eqa

Many **distributions** are related via the leadingtwist light-front wave function (**LFWF**), e.g.:

Distribution amplitudes

$$f_{\mathsf{P}}\varphi_{\mathsf{P}}^{u}(x,\zeta_{\mathcal{H}}) = \int \frac{dk_{\perp}^{2}}{16\pi^{3}} \psi_{\mathsf{P}}^{u}\left(x,k_{\perp}^{2};\zeta_{\mathcal{H}}\right)$$

Distribution functions

$$u^{\mathsf{P}}(x;\zeta_{\mathcal{H}}) = \int \frac{d^2k_{\perp}}{16\pi^3} \left| \psi^{u}_{\mathsf{P}}\left(x,k_{\perp}^2;\zeta_{\mathcal{H}}\right) \right|^2$$

This connection already suggests that:

$$u^{\mathbf{P}}(x;\zeta_H) \sim [\varphi_{\mathbf{P}}^u(x;\zeta_H)]^2$$

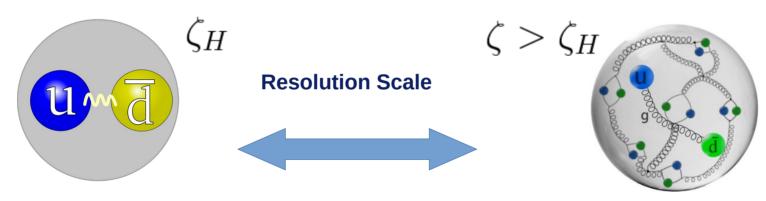
is a fair approximation, implying:

$$\psi_{\mathbf{P}u}^{\uparrow\downarrow}(x,k_{\perp}^2;\zeta_H) = \tilde{\psi}_{\mathbf{P}u}^{\mathbf{u}}(k_{\perp}^2) \left[ u^{\mathbf{P}}(x;\zeta_H) \right]^{1/2}$$

- ightharpoonup In fact, we have learned that x-k crossed terms are weighted by:  $M_{f P}^2,~M_{ar h}^2-M_q^2$ 
  - → So a factorized Ansatz should be sensible for the pion, implying:

$$H_{\mathsf{P}}^{u}(x,\xi,t;\zeta_{\mathcal{H}}) = \Theta(x_{-})\sqrt{u^{\mathsf{P}}(x_{-};\zeta_{H})u^{\mathsf{P}}(x_{+};\zeta_{H})}\Phi_{\mathsf{P}}(z;\zeta_{H}) \qquad z = \frac{(1-x)^{2}}{(1-\xi^{2})^{2}}\Delta_{\perp}^{2}$$

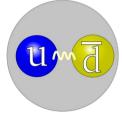
### PARTON DISTRIBUTIONS



• Fully-dressed valence quarks (quasiparticles)

 Unveiling of glue and sea d.o.f (partons)

### Pion PDF: hadronic scale



 Fully-dressed valence quarks (quasiparticles)

$$(M_u = M_d)$$

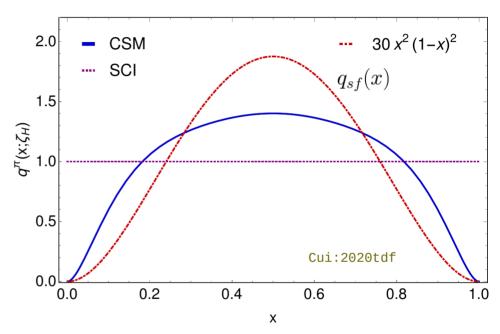
 $\zeta_H$  : hadronic scale

- At this scale, all properties of the hadron are contained within their valence quarks.
  - → Equally massive quarks means a **50-50** share of the total momentum:

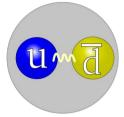
$$< x(\zeta_H) >_q = 0.5$$

→ This implies symmetric distributions:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$



### Pion PDF: hadronic scale



Fully-dressed valence quarks (quasiparticles)

$$(M_u = M_d)$$
  $\zeta_H$ : hadronic scale

> At this scale, **all properties** of the hadron are contained within their valence guarks.

#### "Physical" boundaries:

$$\frac{1}{2^n} \stackrel{(i)}{\leq} \langle x^n \rangle_{u_\pi}^{\zeta_{\mathcal{H}}} \stackrel{(ii)}{\leq} \frac{1}{1+n}$$



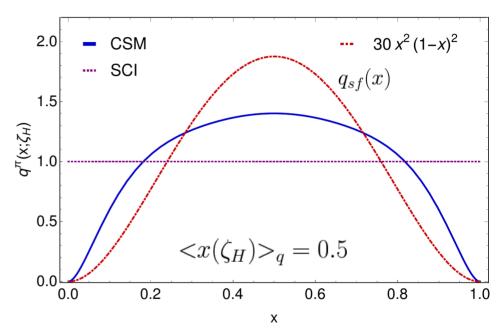
$$q(x; \zeta_H) = \delta(x - 1/2)$$
  $q(x; \zeta_H) = 1$ 

(infinitely heavy valence quarks)

### **Produced by**

$$q(x;\zeta_H)=1$$

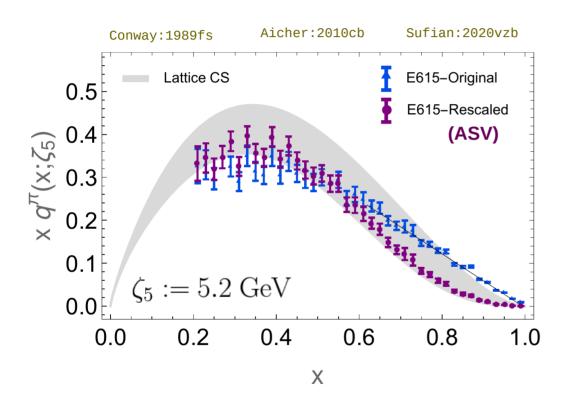
(massless SCI case)

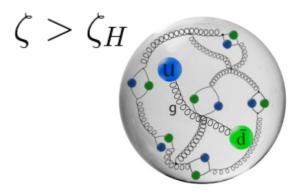




→ This implies symmetric distributions.

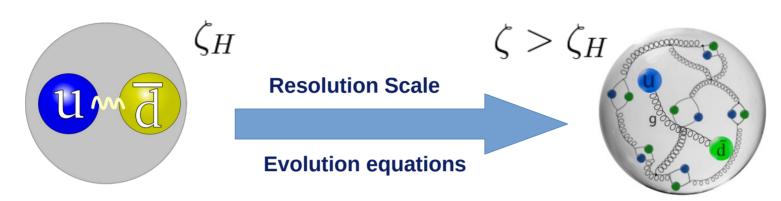
# Pion PDF: experimental scale





- Unveiling of glue and sea d.o.f (partons)
- Experimental data is given here.
- Lattice QCD results are also quoted beyond the hadronic scale.
- The interpretation of parton distributions from cross sections demands special care.

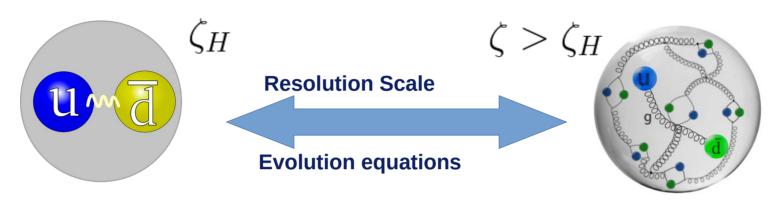
# Pion PDF: energy scales



- Fully-dressed valence quarks (quasiparticles)
- Theoretical calculations are performed at some low energy scale.

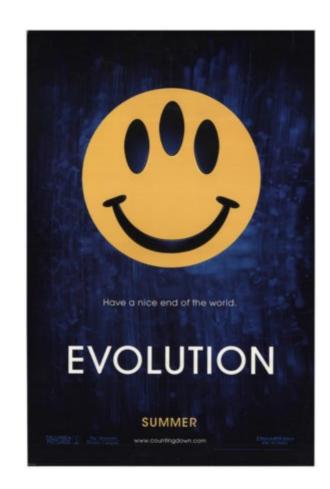
- Unveiling of glue and sea d.o.f (partons)
- Then evolved via DGLAP equations to compare with experiment and lattice.

# Pion PDF: energy scales



- Fully-dressed valence quarks (quasiparticles)
- > Theoretical calculations are performed at some low energy scale.

- Unveiling of glue and sea d.o.f (partons)
- → Then evolved via DGLAP equations to compare with experiment and lattice.
- Following our all orders evolution, we can go either way.
- Besides, the hadronic scale becomes unambigously determined.



**Idea.** Define an **effective** coupling such that:

"All orders evolution"

Starting from fully-dressed quasiparticles, at  $\zeta_H$ 



**Sea** and **Gluon** content unveils, as prescribed by **QCD** 

$$\left\{ \zeta^{2} \frac{d}{d\zeta^{2}} \int_{0}^{1} dy \delta(y - x) - \frac{\alpha(\zeta^{2})}{4\pi} \int_{x}^{1} \frac{dy}{y} \begin{pmatrix} P_{qq}^{NS} \left(\frac{x}{y}\right) & 0 \\ 0 & \mathbf{P}^{S} \left(\frac{\mathbf{x}}{\mathbf{y}}\right) \end{pmatrix} \right\} \begin{pmatrix} H_{\pi}^{NS,+}(y, t; \zeta) \\ \mathbf{H}_{\pi}^{S}(y, t; \zeta) \end{pmatrix} = 0$$



- → Not the LO QCD coupling but an effective one.
- → Making this equation <u>exact</u>.
- → And connecting with the <u>hadron scale</u>.

Raya:2021zrz Cui:2020tdf

#### **Implication 1:**

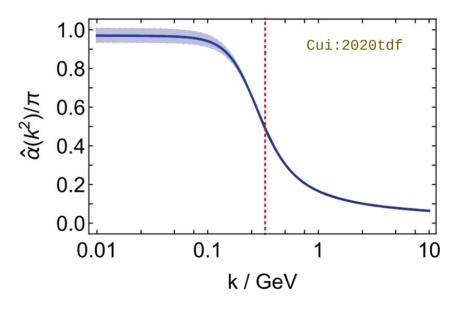
$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q}$$

$$S(\zeta_{0},\zeta_{f}) = \int_{2\ln(\zeta_{0}/\Lambda_{QCD})}^{2\ln(\zeta_{0}/\Lambda_{QCD})} dt \,\alpha(t)$$

**Explicitly** depending on the **effective charge** 

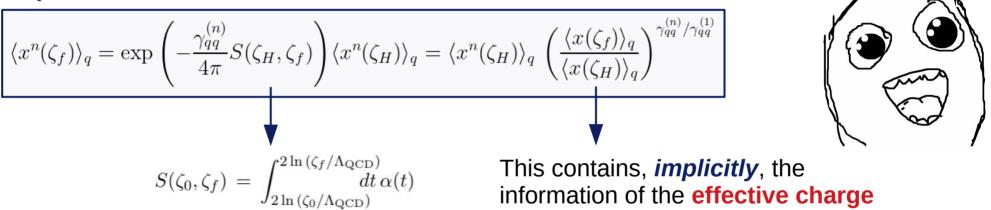
$$\langle x^n(t;\zeta)\rangle\rangle_F = \int_0^1 dx \, x^n \, F(x,t;\zeta)$$
$$\gamma_{AB}^{(n)} = -\int_0^1 dx \, x^n P_{AB}^C(x)$$

• The QCD PI effective charge is our best candidate to accommodate our all orders scheme.



$$\hat{\alpha}(k^2) = \frac{\gamma_m \pi}{\ln\left[\frac{\mathcal{M}^2(k^2)}{\Lambda_{\text{QCD}}^2}\right]} \Longrightarrow \boxed{\zeta_H = 0.331 \text{ GeV}}$$

#### **Implication 1:**



- → No actual need to know it. Assuming its existence is sufficient.
- → Unambiguous definition of the hadron scale:

$$\langle x(\zeta_H)\rangle_q = 0.5 \implies \langle x^n(\zeta_f)\rangle_q = \langle x^n(\zeta_H)\rangle_q \left(\langle 2x(\zeta_f)\rangle_q\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

#### **Implication 1:**

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

Information on the charge is here

- Details of the effective charge are encoded in the ratio of first moments.
- Natural connection with the hadron scale.

#### **Implication 2:**

$$\langle 2x(\zeta_f) \rangle_q = \exp\left(-\frac{8}{9\pi}S(\zeta_H, \zeta_f)\right), \qquad q = u, \bar{d};$$

$$\langle x(\zeta_f) \rangle_{\text{sea}} = \langle x(\zeta_f) \rangle_{\sum_q q + \bar{q}} - (\langle x(\zeta_f) \rangle_u + \langle x(\zeta_f) \rangle_{\bar{d}}),$$

$$= \frac{3}{7} + \frac{4}{7} \langle 2x(\zeta_f) \rangle_u^{7/4} - \langle 2x(\zeta_f) \rangle_u$$

$$\langle x(\zeta_f) \rangle_g = \frac{4}{7} \left(1 - \langle 2x(\zeta_f) \rangle_u^{7/4}\right);$$

 Sea and gluon determined from valencequark moments

#### **Implication 1:**

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

Information on the charge is here

- Can jump from one scale to another (both ways)
- Natural connection with the hadron scale.

#### **Implication 2:**

$$\langle 2x(\zeta_f) \rangle_q = \exp\left(-\frac{8}{9\pi}S(\zeta_H, \zeta_f)\right), \qquad q = u, \bar{d};$$

$$\langle x(\zeta_f) \rangle_{\text{sea}} = \langle x(\zeta_f) \rangle_{\sum_q q + \bar{q}} - (\langle x(\zeta_f) \rangle_u + \langle x(\zeta_f) \rangle_{\bar{d}}),$$

$$= \frac{3}{7} + \frac{4}{7} \langle 2x(\zeta_f) \rangle_u^{7/4} - \langle 2x(\zeta_f) \rangle_u$$

$$\langle x(\zeta_f) \rangle_g = \frac{4}{7} \left(1 - \langle 2x(\zeta_f) \rangle_u^{7/4}\right);$$

- Sea and gluon determined from valencequark moments
- Asymptotic (massless) limits are evident.

## **DGLAP: All orders evolution**

#### **Implication 1:**

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

Information on the charge is here

- Can jump from one scale to another (both ways)
- Natural connection with the hadron scale.

#### **Implication 2:**

$$\langle 2x(\zeta_f) \rangle_q = \exp\left(-\frac{8}{9\pi}S(\zeta_H, \zeta_f)\right), \qquad q = u, \bar{d};$$

$$\langle x(\zeta_f) \rangle_{\text{sea}} = \langle x(\zeta_f) \rangle_{\sum_q q + \bar{q}} - (\langle x(\zeta_f) \rangle_u + \langle x(\zeta_f) \rangle_{\bar{d}}),$$

$$= \frac{3}{7} + \frac{4}{7} \langle 2x(\zeta_f) \rangle_u^{7/4} - \langle 2x(\zeta_f) \rangle_u$$

$$\langle x(\zeta_f) \rangle_g = \frac{4}{7} \left(1 - \langle 2x(\zeta_f) \rangle_u^{7/4}\right);$$

- Sea and gluon determined from valencequark moments
- Asymptotic (massless) limits are evident.
- And, of course, the momentum **sum rule**:

$$\langle 2x(\zeta_f)\rangle_q + \langle x(\zeta_f)\rangle_{\text{sea}} + \langle x(\zeta_f)\rangle_g = 1$$

### **DGLAP: All orders evolution**

#### **Implication 1:**

$$\langle x^n(\zeta_f) \rangle_q = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi} S(\zeta_H, \zeta_f)\right) \langle x^n(\zeta_H) \rangle_q = \langle x^n(\zeta_H) \rangle_q \left(\frac{\langle x(\zeta_f) \rangle_q}{\langle x(\zeta_H) \rangle_q}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

Information on the charge is here

- Can jump from one scale to the another (even downwards)
- Natural connection with the hadron scale.

#### **Implication 3:** Recurrence relation

$$\langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} = \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta})^{\gamma_{0}^{2n+1}/\gamma_{0}^{1}}}{2(n+1)} \times \sum_{j=0,1,\dots}^{2n} (-)^{j} \begin{pmatrix} 2(n+1) \\ j \end{pmatrix} \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j}/\gamma_{0}^{1}}.$$

Since isospin symmetry limit implies:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

- Odd moments can be expressed in terms of previous even moments.
- Thus arriving at the recurrence relation on the left.

### **DGLAP: All orders evolution**

#### **Implication 1:**

$$\langle x^{n}(\zeta_{f})\rangle_{q} = \exp\left(-\frac{\gamma_{qq}^{(n)}}{4\pi}S(\zeta_{H},\zeta_{f})\right)\langle x^{n}(\zeta_{H})\rangle_{q} = \langle x^{n}(\zeta_{H})\rangle_{q} \left(\frac{\langle x(\zeta_{f})\rangle_{q}}{\langle x(\zeta_{H})\rangle_{q}}\right)^{\gamma_{qq}^{(n)}/\gamma_{qq}^{(1)}}$$

Information on the charge is here

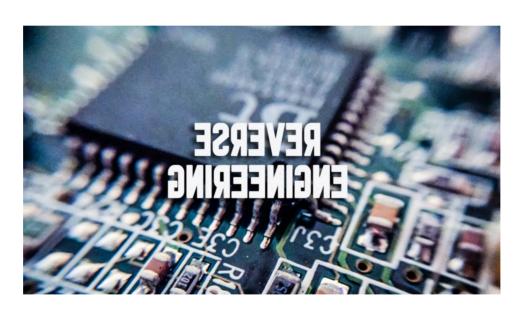
- Can jump from one scale to the another (even downwards)
- Natural connection with the hadron scale.

#### **Implication 3:** Recurrence relation

$$\langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} = \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta})^{\gamma_{0}^{2n+1}/\gamma_{0}^{1}}}{2(n+1)} \times \sum_{j=0,1,\dots}^{2n} (-)^{j} \begin{pmatrix} 2(n+1) \\ j \end{pmatrix} \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j}/\gamma_{0}^{1}}.$$

|   | $\langle x^n \rangle_{u_{\pi}}^{\zeta_5}$ |                     |  |  |  |
|---|-------------------------------------------|---------------------|--|--|--|
| n | Lattice input                             | Recurrence relation |  |  |  |
| 1 | 0.230(3)(7)                               | 0.230               |  |  |  |
| 2 | 0.087(5)(8)                               | 0.087               |  |  |  |
| 3 | 0.041(5)(9)                               | 0.041               |  |  |  |
| 4 | 0.023(5)(6)                               | 0.023               |  |  |  |
| 5 | 0.014(4)(5)                               | 0.015               |  |  |  |
| 6 | 0.009(3)(3)                               | 0.009               |  |  |  |
| 7 |                                           | 0.0078              |  |  |  |

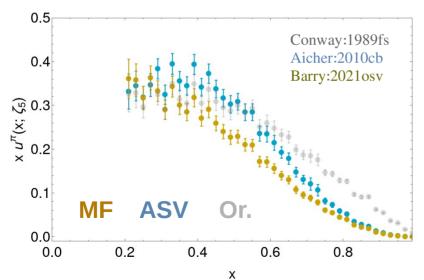
# Reverse engineering the PDF data



## **Pion PDF**

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$u^{\pi}(x; [\alpha_i]; \zeta) = \underset{u}{\textit{n}_u^{\zeta}} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
 Normalization 
$$\{\alpha_i^{\zeta} | i=1,2,3\}$$
 Free parameters



- > Then, we proceed as follows:
  - 1) Determine the best values  $\alpha_i$  via least-squares fit to the data.
  - 2) Generate new values  $\alpha_i$ , distributed randomly around the best fit.
  - 3) Using the latter set, evaluate:

$$\chi^2 = \sum_{l=1}^N \frac{(\mathbf{u}^\pi(x_l; [\alpha_i]; \zeta_5) - u_j)^2}{\delta_l^2}$$
 Data point with error

4) Accept a replica with probability:

$$\mathcal{P} = \frac{P(\chi^2; d)}{P(\chi_0^2; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

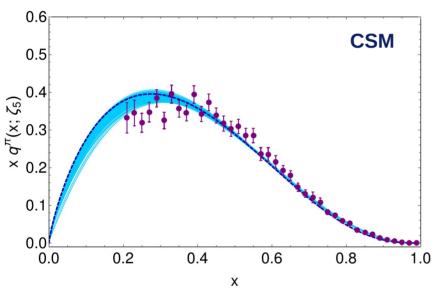
5) Evolve back to  $\zeta_H$ 

Repeat (2-5).

#### **Pion PDF: ASV Data**

Applying this algorithm to the ASV data yields:

(average)

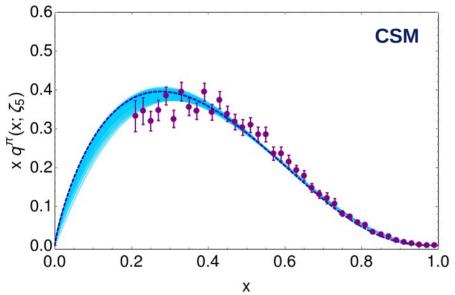


```
Mean values (of moments) and errors  \left\{ \left\{ 0.5, 2.75144 \times 10^{-17} \right\}, \left\{ 0.299833, 0.00647045 \right\}, \left\{ 0.199907, 0.00735448 \right\}, \left\{ 0.142895, 0.0068623 \right\}, \left\{ 0.107274, 0.00608759 \right\}, \left\{ 0.0835168, 0.00532834 \right\}, \left\{ 0.0668711, 0.0046596 \right\}, \left\{ 0.0547511, 0.00409028 \right\}, \left\{ 0.0456496, 0.00361041 \right\}, \left\{ 0.0386394, 0.00320609 \right\} \right\}  Moments from SCI, \zeta_H  \left\{ 0.5, 0.332885, 0.249327, 0.199231, 0.165865, 0.142056, 0.124215, 0.11035, 0.0992657, 0.090203, 0.0826552, 0.0762721, 0.0708035, 0.0660661, 0.0619225 \right\}
```

- ✓ The produced moments are compatible with a symmetric PDF at the hadronic scale.
- ✓ Not at all similar to those from SCI

### **Pion PDF: ASV Data**

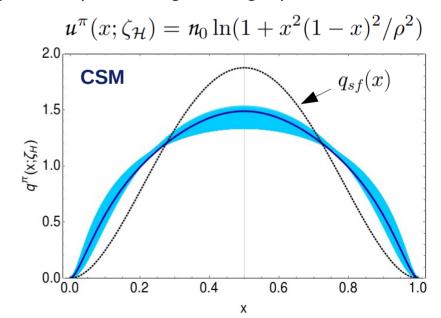
Applying this algorithm to the ASV data yields:



✓ The produced moments are compatible with a symmetric PDF at the hadronic scale.

```
Mean values (of moments) and errors  \left\{ \left\{0.5, 2.75144 \times 10^{-17}\right\}, \left\{0.299833, 0.00647045\right\}, \left\{0.199907, 0.00735448\right\}, \left\{0.142895, 0.0068623\right\}, \left\{0.107274, 0.00608759\right\}, \left\{0.0835168, 0.00532834\right\}, \left\{0.0668711, 0.0046596\right\}, \left\{0.0547511, 0.00409028\right\}, \left\{0.0456496, 0.00361041\right\}, \left\{0.0386394, 0.00320609\right\} \right\}
```

✓ Then, we can reconstruct the moments produced by each replica, using the single-parameter Ansatz:



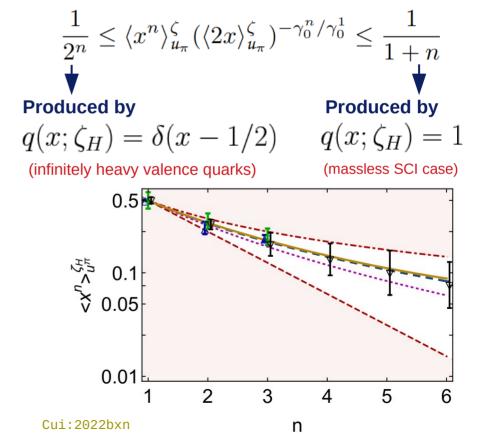
### **Pion PDF: Lattice Data**

- We can follow an analogous procedure to infer, based upon lattice data, how the hadronic scale PDF should look like.
- Let us consider the list of **lattice QCD** moments:

| $\overline{n}$ | [61]            | [62]          | [63]          |
|----------------|-----------------|---------------|---------------|
| 1              | 0.254(03)       | 0.18(3)       | 0.23(3)(7)    |
| 2              | 0.094(12)       | 0.064(10)     | 0.087(05)(08) |
| 3              | 0.057(04)       | 0.030(05)     | 0.041(05)(09) |
| 4              | Joo:2019bzr     |               | 0.023(05)(06) |
| 5              | Sufian:2019bol  |               | 0.014(04)(05) |
| 6              | Alexandrou:2021 | 0.009(03)(03) |               |

Those verify the recurrence relation, thus being compatible with a symmetric PDF at  $\zeta_H$ 

While also falling within the physical bounds.



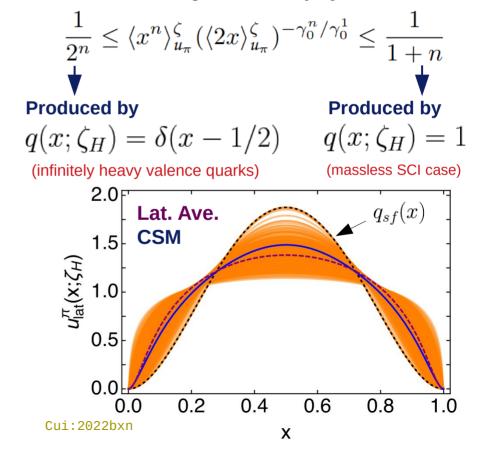
### **Pion PDF: Lattice Data**

- We can follow an analogous procedure to infer, based upon lattice data, how the hadronic scale PDF should look like.
- Let us consider the list of **lattice QCD** moments:

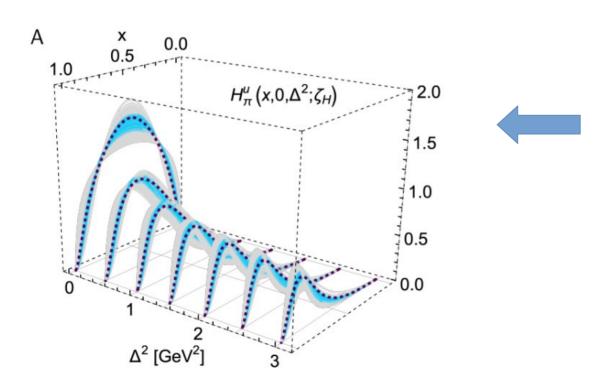
| $\overline{n}$ | [61]            | [62]      | [63]          |
|----------------|-----------------|-----------|---------------|
| 1              | 0.254(03)       | 0.18(3)   | 0.23(3)(7)    |
| 2              | 0.094(12)       | 0.064(10) | 0.087(05)(08) |
| 3              | 0.057(04)       | 0.030(05) | 0.041(05)(09) |
| 4              | Joo:2019bzr     |           | 0.023(05)(06) |
| 5              | Sufian:2019bol  |           | 0.014(04)(05) |
| 6              | Alexandrou:2021 | .mmi      | 0.009(03)(03) |

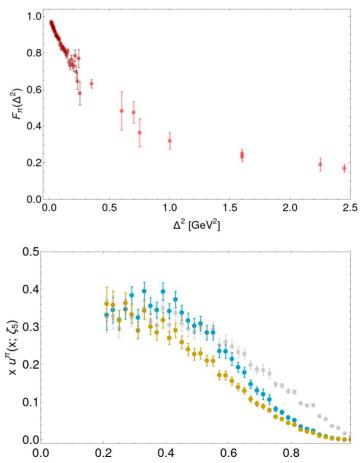
Those verify the recurrence relation, thus being compatible with a symmetric PDF at  $\zeta_H$ 

While also falling within the physical bounds.



# **GPD from PDF and EFF**





X

# **Setting the Stage**

- ightharpoonup Starting with a **factorized LFWF**,  $\psi_{\mathbf{P}u}^{\uparrow\downarrow}(x,k_{\perp}^2;\zeta_H)=\tilde{\psi}_{\mathbf{P}u}^{\mathbf{u}}(k_{\perp}^2)\,[u^{\mathbf{P}}(x;\zeta_H)]^{1/2}$
- The overlap representation for the GPD entails:

$$H_{\mathsf{P}}^{u}(x,\xi,t;\zeta_{\mathcal{H}}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi_{\mathsf{P}}^{u*}\left(x_{-},k_{\perp-}^{2};\zeta_{\mathcal{H}}\right) \psi_{\mathsf{P}}^{u}\left(x_{+},k_{\perp+}^{2};\zeta_{\mathcal{H}}\right)$$

$$=\Theta(x_{-})\sqrt{u^{\mathbf{P}}(x_{-};\zeta_{H})u^{\mathbf{P}}(x_{+};\zeta_{H})}\Phi_{\mathbf{P}}(z;\zeta_{H})$$

**Heaviside Theta** 

ightharpoonup Where  $z=s_{\perp}^{2}=-t(1-x)^{2}/(1-\xi^{2})^{2}$  and:

$$\Phi_{\mathbf{P}}^{u}\left(z;\zeta_{H}\right) = \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} \widetilde{\psi}_{\mathbf{P}}^{u*}\left(\mathbf{k}_{\perp}^{2};\zeta_{H}\right) \widetilde{\psi}_{\mathbf{P}}^{u}\left(\left(\mathbf{k}_{\perp}-\mathbf{s}_{\perp}\right)^{2};\zeta_{H}\right)$$



This one shall be obtained as described previously

This dictates the off-forward behavior of the GPD

... will be driven by the electromagnetic form factor

## **Setting the Stage**

> Recall a GPD arising from a factorised LFWF adopts the form:

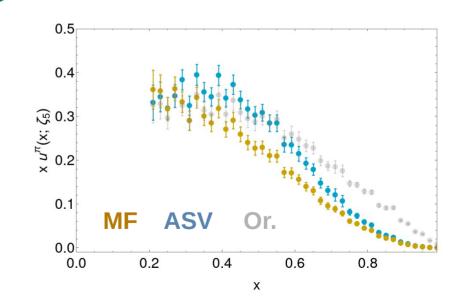
$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})}\Phi^{\pi}(z^{2};\zeta_{H})$$

$$u^{\pi}(x;\zeta_H) = n_0 \ln(1 + x^2(1-x)^2/\rho^2)$$

- The empirical data on **PDF** to contrast with:
  - ASV analysis.
  - MF resummation.
  - Lattice QCD moments.

For references, see:

Cui:2022bxn Cui:2021mom



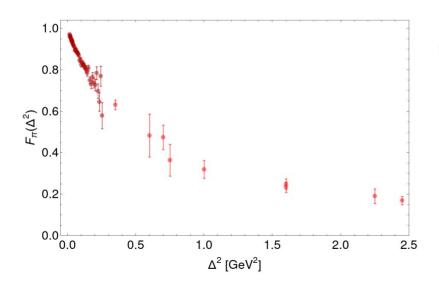
# **Setting the Stage**

$$F_{\pi}(t) = \int_0^1 dx \, u^{\pi}(x; \zeta_H) \Phi_{\pi}(z; \zeta_H)$$

➤ We thus employ a **3-parameter** model for the **GPD**::

$$\{\rho, \beta, \gamma\}$$

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})}\Phi^{\pi}(z^{2};\zeta_{H})$$



$$\lambda = \beta - \frac{r_{\pi}^2}{6\langle x^2 \rangle_{u_{\pi}}^{\zeta_{\mathcal{H}}}} \quad \Phi^{\pi}(y; \zeta_H) = \frac{1 + \lambda y}{1 + \beta y + \gamma^2 y^2}$$

- > The empirical data on EFF:
  - JLab data.
  - Charge radius:  $r_\pi = 0.64(2)\,\mathrm{fm}$  SPM extraction Conservative

Cui:2021aee

"Gaussian" error

• Given  $r_{\pi}$ , low-Q<sup>2</sup> data is redundant.

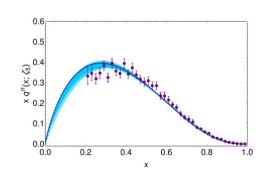
## The Algorithm

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

- 1. For the chosen **PDF data** set, generate a **replica**. The replica would be accepted following the aforementioned *chi-2* criteria.
- 2. After acceptance, **evolve** it to the **hadronic scale** using several Mellin moments. The *de-evolved* PDF shall be reconstructed using the functional form:

$$u^{\pi}(x;\zeta_H) = n_0 \ln(1 + x^2(1-x)^2/\rho^2)$$

3. Store both the value  $\rho_i$  and the probability of acceptance  $P(\rho_i)$ .



## The Algorithm

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

4. Keeping the selected **PDF**, we now constrast **\Phi** with the **EFF** data, via:

$$F_{\pi}(t) = \int_{0}^{1} dx \, u^{\pi}(x; \zeta_{H}) \Phi_{\pi}(z; \zeta_{H}) \qquad \Phi^{\pi}(y; \zeta_{H}) = \frac{1 + \lambda y}{1 + \beta y + \gamma^{2} y^{2}} \quad \lambda = \beta - \frac{r_{\pi}^{2}}{6\langle x^{2} \rangle_{u_{\pi}}^{\zeta_{H}}}$$

$$\Phi^{\pi}(y;\zeta_H) = \frac{1+\lambda y}{1+\beta y + \gamma^2 y^2}$$

$$\lambda = \beta - \frac{r_{\pi}^2}{6\langle x^2 \rangle_{u_{\pi}}^{\zeta_{\mathcal{H}}}}$$

- 5. Employing a *chi-2* criteria, we compute the probability of acceptance  $P(\Phi, \rho)$ .
- 6. The **GPD** is accepted with probability  $P(\Phi, \rho)P(\rho)$ .



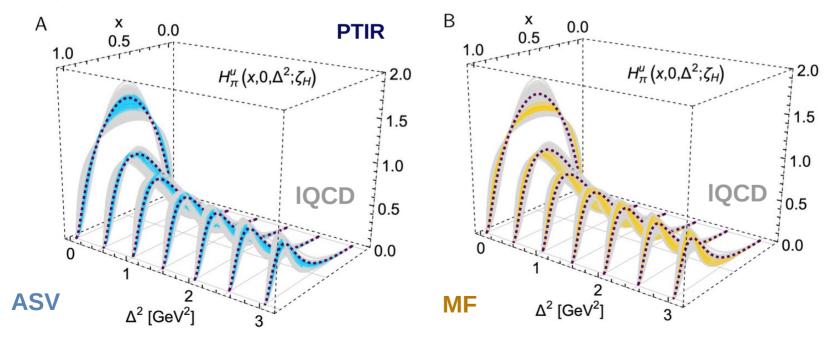
## **Numerical Results**



## **Pion GPD**

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

Applying this procedure, from the pion PDF and EFF empirical data, one gets the GPDs:



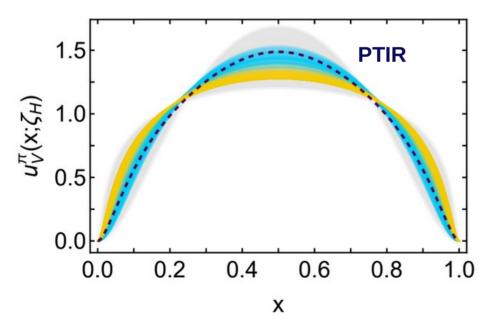
#### CSM:

Raya:2021zrz Raya:2022eqa

## **Pion PDF**

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

> The **PDFs** agree within errors, but...



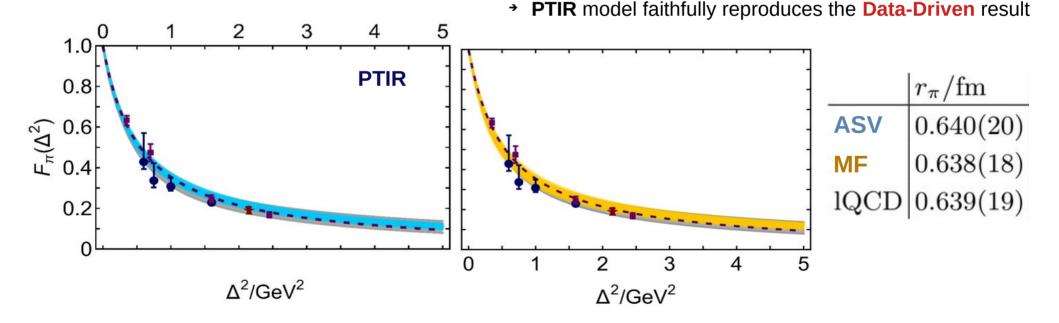
• Lattice QCD cannot distinguish between ASV, MF or the *parton-like* profiles.

| n             |     | [61]                                  | [62]                  |                                         | [63]          |
|---------------|-----|---------------------------------------|-----------------------|-----------------------------------------|---------------|
| 1             |     | 0.254(03)                             | 0.18                  | 8(3)                                    | 0.23(3)(7)    |
| 2             |     | 0.094(12)                             | 0.0                   | 64(10)                                  | 0.087(05)(08) |
| 3             |     | 0.057(04)                             | 0.0                   | 30(05)                                  | 0.041(05)(09) |
| 4             | 0.5 |                                       |                       |                                         | 0.023(05)(06) |
| 5             | 0.4 | , , I I                               |                       |                                         | 0.014(04)(05) |
| 6             |     |                                       | ĪīI.                  |                                         | 0.009(03)(03) |
| (x; $\zeta_5$ | 0.2 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ┦┇┦┰┇<br>╊┰┰╻╻╇╇┦┰    |                                         |               |
| ×             | 0.2 |                                       | 77.44.14.1<br>77.44.4 | Ψ.<br>Φ.Φ                               |               |
|               | 0.1 |                                       |                       |                                         |               |
|               | 0.0 |                                       |                       | *************************************** |               |
|               | 0.0 | 0.2 0.4                               | 0.6                   | 0.8                                     |               |

## **Pion EFF**

$$H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$

> For the **EFF**, we essentially arrive at the same output.

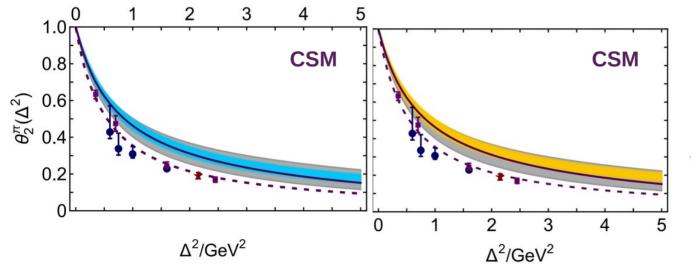


## **Mass Distribution**

> The first Mellin moment of the GPD yields the **gravitational form factors**:

$$\int_{-1}^{1} dx \, 2H_{\pi}^{u}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta_{2}^{\pi}(\Delta^{2}) - \xi^{2}\theta_{1}^{\pi}(\Delta^{2})$$

 $heta_1$  currently escapes our approach, but  $heta_2$  is within reach:  $heta_2^\pi(\Delta^2)=\int_0^1 dx\ 2x H_\pi(x,\xi=0,-\Delta^2)$ 



 $\theta_2$  is associated with the mass distribution.

We found the mass radii:

$$r_{\pi}^{\theta_2}$$
 | 0.518(16) | 0.498(14) | 0.512(21)

Producing: 
$$r_\pi^{\theta_2}/r_\pi = 0.79(3)$$
 mass/charge ratio

## About Radii

$$H_{\rm P}^{u}(x,\xi,t;\zeta_{H}) = \theta(x_{-}) \left[ u^{\rm P}(x_{-};\zeta_{H}) u^{\rm P}(x_{+};\zeta_{H}) \right]^{1/2} \Phi_{\rm P}(z;\zeta_{H})$$

In the **factorized** models:

$$\frac{\partial^{n}}{\partial^{n}z} \Phi^{u}_{\mathsf{P}}(z;\zeta_{\mathcal{H}})\Big|_{z=0} = \frac{1}{\langle x^{2n} \rangle_{\bar{h}}^{\zeta_{\mathcal{H}}}} \frac{d^{n}F^{u}_{\mathsf{P}}(\Delta^{2})}{d(\Delta^{2})^{n}}\Big|_{\Delta^{2}=0} \qquad \frac{\partial}{\partial z} \Phi^{u}_{\mathsf{P}}(z;\zeta_{\mathcal{H}})\Big|_{z=0} = -\frac{r_{\mathsf{P}}^{2}}{4\chi_{\mathsf{P}}^{2}(\zeta_{\mathcal{H}})},$$

$$\frac{\partial}{\partial z} \Phi^{\bar{h}}_{\mathsf{P}}(z;\zeta_{\mathcal{H}})\Big|_{z=0} = (1 - d_{\mathsf{P}}) \frac{\partial}{\partial z} \Phi^{u}_{\mathsf{P}}(z;\zeta_{\mathcal{H}})\Big|_{z=0}$$

$$\mathsf{PDF} \text{ moments} \qquad \mathsf{Derivatives of } \mathsf{EFF}$$

• Therefore, the mass radius:

$$r_{P_{u}}^{\theta_{2}2} = \frac{3r_{P}^{2}}{2\chi_{P}^{2}} \langle x^{2}(1-x) \rangle_{P_{\bar{h}}},$$

$$r_{P_{\bar{h}}}^{\theta_{2}2} = \frac{3r_{P}^{2}}{2\chi_{P}^{2}} (1 - d_{P}) \langle x^{2}(1-x) \rangle_{P_{u}}$$



$$\left(\frac{r_{\pi}^{\theta_2}}{r_{\pi}^{E}}\right)^2 = \frac{\langle x^2(1-x)\rangle_{\zeta_H}^q}{\langle x^2\rangle_{\zeta_H}^q} \approx \left(\frac{4}{5}\right)^2$$



Asymmetry term = 0 for pion

**Determined** from **PDF** moments!

### **IPS GPDs**

**Impact parameter** space **GPDs** are defined as:

$$u^{\pi}(x, b_{\perp}^{2}; \zeta_{\mathcal{H}}) = \int_{0}^{\infty} \frac{d\Delta}{2\pi} \Delta J_{0}(|b_{\perp}|\Delta) H_{\pi}^{u}(x, 0, -\Delta^{2}; \zeta_{\mathcal{H}}) \qquad u^{\pi}(x, b_{\perp}^{2}; \zeta_{H}) = \frac{u^{\pi}(x; \zeta_{H})}{(1 - x)^{2}} \Psi^{\pi}\left(\frac{|b_{\perp}|}{1 - x}; \zeta_{H}\right)$$

Such that, in factorized models:

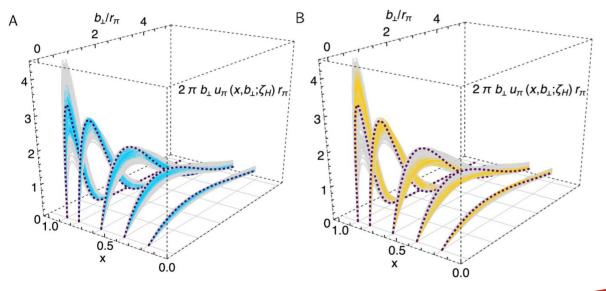
$$u^{\pi}(x, b_{\perp}^{2}; \zeta_{H}) = \frac{u^{\pi}(x; \zeta_{H})}{(1-x)^{2}} \Psi^{\pi}\left(\frac{|b_{\perp}|}{1-x}; \zeta_{H}\right)$$

The location and values of the maxima:

|         | x       | $b_{\perp}/r_{\pi}$ | $i_\pi$                            |
|---------|---------|---------------------|------------------------------------|
| CSM[57] | 0.88    | 0.13                | 3.29                               |
| ASV     | 0.89(2) | 0.10(2)             | 3.21(30)                           |
| MF      | 0.95(1) | 0.05(1)             | 4.58(50)                           |
| lQCD    | 0.91(6) | 0.08(5)             | 3.21(30)<br>4.58(50)<br>4.04(1.67) |

→ Furthermore:

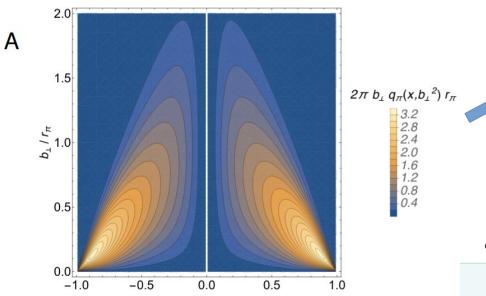
$$\langle b_{\perp}^2(\zeta_{\mathcal{H}})\rangle_u^{\pi} = \frac{2}{3}r_{\pi}^2 = \langle b_{\perp}^2(\zeta_{\mathcal{H}})\rangle_{\bar{d}}^{\pi}$$



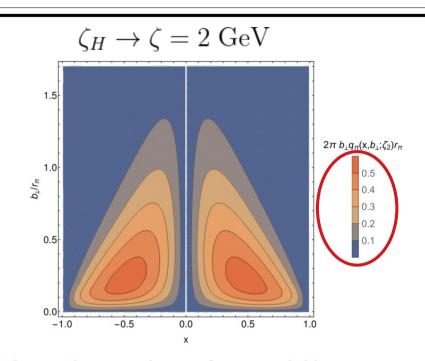
Algebraic result!

## **Evolved IPS-GPD: Pion Case**

$$u^{\mathsf{P}}(x, b_{\perp}^{2}; \zeta_{\mathcal{H}}) = \int_{0}^{\infty} \frac{d\Delta}{2\pi} \Delta J_{0}(b_{\perp}\Delta) H_{\mathsf{P}}^{u}(x, 0, -\Delta^{2}; \zeta_{\mathcal{H}})$$



 Likelihood of finding a parton with LF momentum x at transverse position b



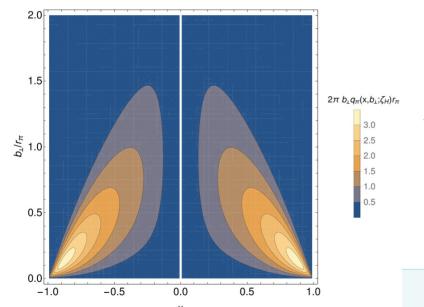
Peaks broaden and maximum drifts:

 $\max: 3.29 \to 0.55$ 

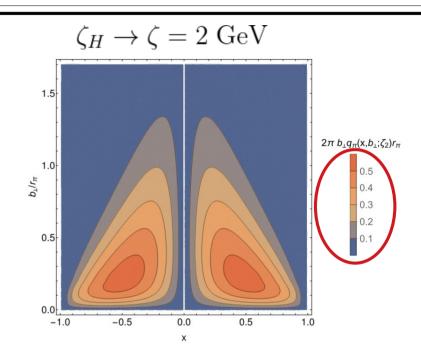
$$(|x|, b) = (0.88, 0.13) \rightarrow (0.47, 0.23)$$

## **Evolved IPS-GPD: Pion Case**

$$u^{\mathsf{P}}(x,b_{\perp}^{2};\zeta_{\mathcal{H}}) = \int_{0}^{\infty} \frac{d\Delta}{2\pi} \Delta J_{0}(b_{\perp}\Delta) H_{\mathsf{P}}^{u}(x,0,-\Delta^{2};\zeta_{\mathcal{H}})$$



 Likelihood of finding a parton with LF momentum x at transverse position b



Peaks broaden and maximum drifts:

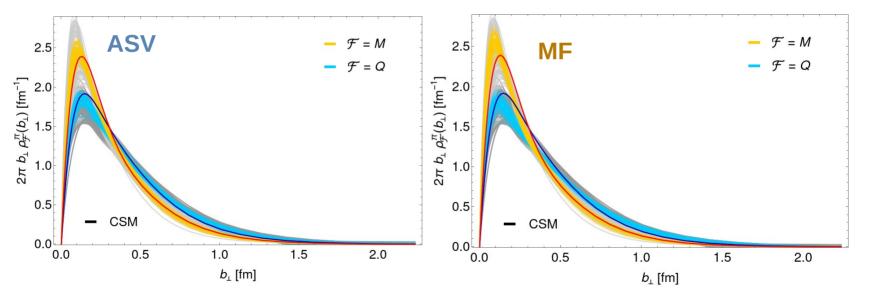
$$\max: 3.29 \to 0.55$$

$$(|x|, b) = (0.88, 0.13) \rightarrow (0.47, 0.23)$$

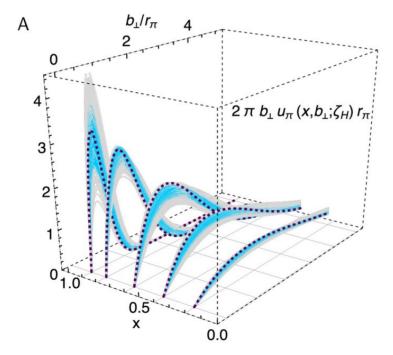
## **Distributions: Mass & Charge**

Density distributions are obtained by integrating the IPS-GPD.

$$\rho_{\{F,\theta_2\}}^{\pi}(|b_{\perp}|) = \int_{-1}^{1} dx \, \{1,2x\} u^{\pi}(x,b_{\perp}^2;\zeta_{\mathcal{H}}) \\ = \int_{0}^{\infty} \frac{d\Delta}{2\pi} \Delta J_{0}(|b_{\perp}|\Delta) \{F_{\pi}(\Delta^2),\theta_2(\Delta^2)\}$$



The narrower curves correspond to the mass distribution, demonstrating that:
Charge effects span over a larger domain than mass effects.



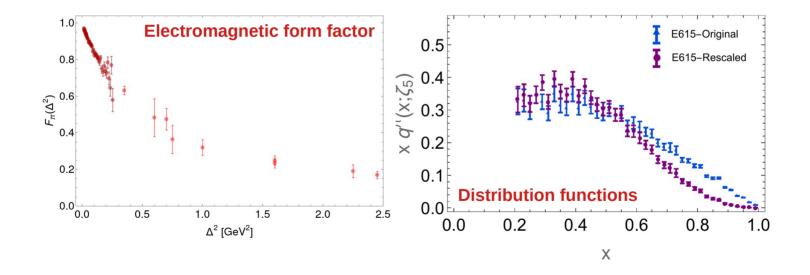


#### Question:

From the empirical knowledge of 1-dimensional distributions (EFF and PDF), can we obtain the 3-

dimensional GPD?

$$u^{\pi}(x;\zeta_{e/l}), F_{\pi}(\Delta^2) \longrightarrow H_{\pi}(x,\xi,-\Delta^2;\zeta)$$
 ??



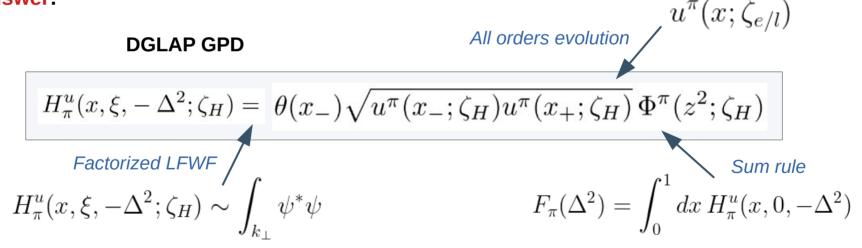
Question:

From the empirical knowledge of 1-dimensional distributions (EFF and PDF), can we obtain the 3-

dimensional GPD?

$$u^{\pi}(x;\zeta_{e/l}), F_{\pi}(\Delta^2) \longrightarrow H_{\pi}(x,\xi,-\Delta^2;\zeta)$$
 ???

Partial Answer:



#### Question:

From the empirical knowledge of 1-dimensional distributions (EFF and PDF), can we obtain the 3-dimensional GPD?

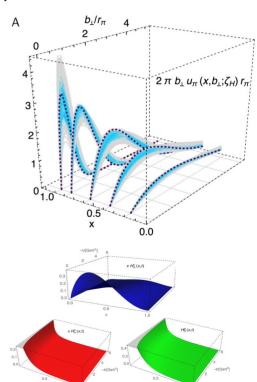
#### Answer:

Yes, but so far we are limited to the **DGLAP** region.

#### → Nevertheles...

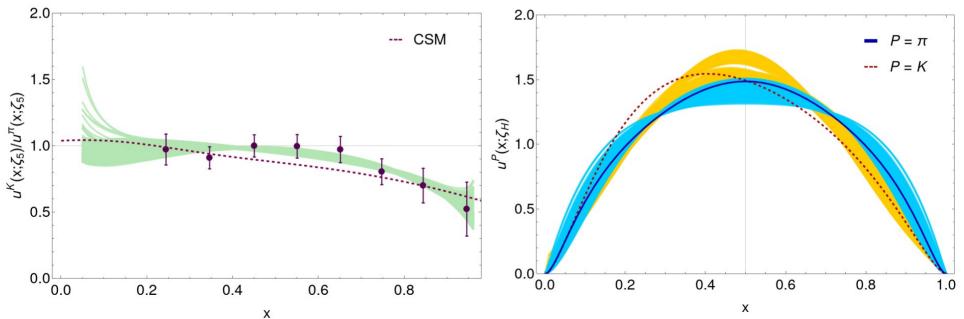
- Charge, Mass and Spatial distributions are already within the reach of <u>DGLAP</u> domain.
- In this domain, we can also evolve the **GPDs** to disentangle **valence**, **glue** and sea **content**.
- Sophisticated covariant extensions to the ERBL domain are known.

(notably, the preliminary CSM computation of the GFFs, shows agreement with the Data-Driven result)



Even though analogous empirical information on the kaon is scarce, we can perform an **analogous exploration** of the **kaon**.







- With the EFF determined from experimental data, and further validated by a completely independent observable (the PDF), we can safely rely on the produced ensamble to derive other quantities.
- Such is the case of the pion-box contribution to the muon's anomalous magnetic moment:

$$lpha_{\mu}^{\mathbf{P}-box} = rac{lpha_{em}^3}{432\pi^2} \int_{\Omega} \sum_{i}^{12} T_i(Q_1, Q_2, au) \bar{\Pi}_i^{\mathbf{P}-box}(Q_1, Q_2, au),$$

$$\bar{\Pi}_i^{{\bf P}-box}(Q_1^2,Q_2^2,Q_3^2) = F_{\bf P}(Q_1^2)F_{\bf P}(Q_2^2)F_{\bf P}(Q_3^2) \ \, \times {\bf I}_i$$

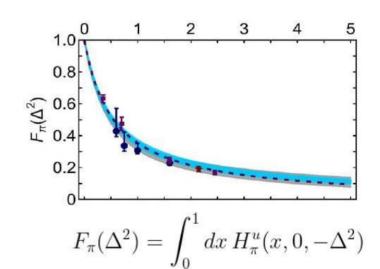
An exploratory calculation yields: (with P. Roig)

$$a_{\mu}^{\pi-\text{box}} = -(15.1)_{-0.3}^{+0.5} \times 10^{-11}$$

In fair agreement with modern estimates.

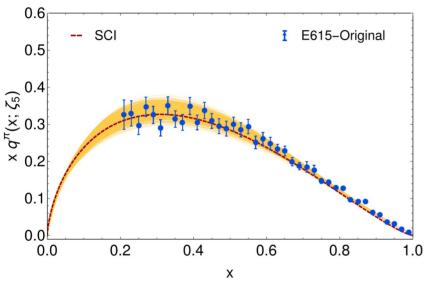
Eichmann:2019bqf Miramontes:2021exi

$$H^{u}_{\pi}(x,\xi,-\Delta^{2};\zeta_{H}) = \theta(x_{-})\sqrt{u^{\pi}(x_{-};\zeta_{H})u^{\pi}(x_{+};\zeta_{H})} \Phi^{\pi}(z^{2};\zeta_{H})$$



## **Pion PDF: Original Data**

Applying this algorithm to the original data yields:



```
Mean values (of moments) and errors, \varsigma_H (average) \{\{0.5, 2.52187 \times 10^{-17}\}, \{0.331527, 0.00803273\}, \{0.247615, 0.0110893\}, \{0.19784, 0.0121977\}, \{0.165066, 0.0124911\}, \{0.141928, 0.0124198\}, \{0.124755, 0.0121811\}, \{0.111521, 0.0118683\}, \{0.101021, 0.0115275\}, \{0.0924926, 0.0111824\}, \{0.085431, 0.010845\}, \{0.0794897, 0.0105214\}, \{0.0744232, 0.0102142\}, \{0.0700521, 0.00992435\}, \{0.0662432, 0.00965182\}] Moments from SCI, \varsigma_H (SCI)
```

- ✓ The produced moments are compatible with a symmetric PDF at the hadronic scale.
- But also exhibit agreement with the SCI results.

$$q_{\rm SCI}(x;\zeta_H)\approx 1$$

#### Thus, given the expectation

0.0992657, 0.090203, 0.0826552, 0.0762721, 0.0708035, 0.0660661, 0.0619225}

$$u^{\pi}(x;\zeta) \stackrel{x \simeq 1}{\sim} (1-x)^{\beta=2+\gamma(\zeta)}$$

(average)

We shall **discard** this for the upcoming construction of the valence quark GPD