INTRODUCTION TO SYNCHRONIZATION PHENOMENA AND THE KURAMOTO MODEL

Institute for Biocomputation & Physics of Complex Systems (BIFI)

JESÚS GÓMEZ-GARDEÑES, UNIV. OF ZARAGOZA

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE JESÚS GÓMEZ-GARDEÑES, UNIV. OF ZARAGOZA

- MS and Phd in Physics @ University of Zaragoza 2006
- Postdoc @ Scuola Superiore di Catania & URV 2007-2008
- Lecturer at U. Rey Juan Carlos in Madrid 2009-2010
- Ramón y Caja Fellow @ University of Zaragoza 2011-2015
- Full Professor @ University of Zaragoza since 2023

Universidad Zaragoza

Institute for Biocomputation & Physics of Complex Systems (BIFI)

PERMANENT:

Luis Mario Floría

David Soriano-Paños

Alessio Cardillo

Pablo Valgañón

Francisco Bauza

Ам Іар

Sergio Faci

Santiago Lamata

Hugo Pérez

Universidad Zaragoza

Institute for Biocomputation & Physics of Complex Systems (BIFI)

JESÚS GÓMEZ-GARDEÑES, UNIV. OF ZARAGOZA

Culture transmission and spread of infrormation

Cooperation and evolutionary dynamics

Congestion in Communication systems

Epidemic dynamics in large populations

Synchronization of interacting dynamical systems

EMERGENCE OF COLLECTIVE PHENOMENA IN LARGE ENSEMBLES OF INTERACTING UNITS

Universidad Zaragoza

Institute for Biocomputation & Physics of Complex Systems (BIFI)

JESÚS GÓMEZ-GARDEÑES, UNIV. OF ZARAGOZA

Culture transmission and spread of infrormation

Cooperation and evolutionary dynamics

Congestion in Communication systems

Epidemic dynamics in large populations

Synchronization of interacting dynamical systems

EMERGENCE OF COLLECTIVE PHENOMENA IN LARGE ENSEMBLES OF INTERACTING UNITS

Universidad Zaragoza

Institute for Biocomputation & Physics of Complex Systems (BIFI)

JESÚS GÓMEZ-GARDEÑES, UNIV. OF ZARAGOZA

INTRODUCTION TO SYNCHRONIZATION Phenomena and the kuramoto model

LECTURE 1: INTRODUCTION TO SYNCHRONIZATION & THE KURAMOTO MODEL

Universidad Zaragoza

Institute for Biocomputation & Physics of Complex Systems (BIFI)

JESÚS GÓMEZ-GARDEÑES, UNIV. OF ZARAGOZA

MOTIVATION

One dimensional Dynamical System:

MOTIVATION

One dimensional Dynamical System on the circle:

MOTIVATION

One dimensional Dynamical System on the circle:

Index: From 2 to N coupled phase oscillators

NONUNIFORM OSCILLATORS

• SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

• SYNCHRONIZATION OF AN ENTIRE POPULATION: THE KURAMOTO MODEL

Index: From 2 to N coupled phase oscillators

NONUNIFORM OSCILLATORS

• SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

• SYNCHRONIZATION OF AN ENTIRE POPULATION: THE KURAMOTO MODEL

UNIFORM Oscillation:

UNIFORM Oscillation:

- NO Fixed Points!
- **Periodic Oscillations** with:

$$T = \frac{2\pi}{\omega}$$

NONUNIFORM Oscillation:

NONUNIFORM Oscillation:

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\theta)$$

Saddle node bifurcation with $a_c = \omega$

Index: From 2 to N coupled phase oscillators

NONUNIFORM OSCILLATORS

• SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

• SYNCHRONIZATION OF AN ENTIRE POPULATION: THE KURAMOTO MODEL

SYNC WITH EXTERNAL STIMULUS

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega + a\sin(\Theta - \theta)$$

The firefly attempts to synchronize with the overall rhythm

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega + a\sin(\Theta - \theta)$$

• Assumption: The bulk remains unaltered by the effect of our firefly, so that it oscillates periodically as: $\dot{\Theta}=\Omega$

• Lets consider:
$$\phi = \Theta - \theta$$

$$\frac{d\phi}{dt} = \frac{d\Theta}{dt} - \frac{d\theta}{dt} = \Omega - \omega - a\sin(\phi)$$

• Adimensionalization: $\tau = at \& \tilde{\omega} = \frac{\Omega - \omega}{1 - \omega}$

$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi)$$

@gomezgardenes

SYNC WITH EXTERNAL STIMULUS

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$
$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi) \quad \text{with} \quad \tilde{\omega} = \frac{\Omega - \omega}{a}$$

SYNC WITH EXTERNAL STIMULUS

- Firefly synchronized with the population $\tilde{\omega} = 0$.
- What happens when $\tilde{\omega}$ increases?
- What does it mean that $\tilde{\omega}$ increases?

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$
$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi) \quad \text{with} \quad \tilde{\omega} = \frac{\Omega - \omega}{a}$$

SYNC WITH EXTERNAL STIMULUS

• What does it mean that $\tilde{\omega}$ increases?

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$
$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi) \quad \text{with} \quad \tilde{\omega} = \frac{\Omega - \omega}{a}$$

SYNC WITH EXTERNAL STIMULUS

• What does it mean that $\tilde{\omega}$ increases?

 $-\pi$

()

 \mathbf{O}

Ermentrout & Rinzel, Am. J. Physiol. (1984):

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$
$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi) \quad \text{with} \quad \tilde{\omega} = \frac{\Omega - \omega}{a}$$

SYNC WITH EXTERNAL STIMULUS

w×a

• What does it mean that $\tilde{\omega}$ increases?

$$\tilde{\omega} = \frac{\Omega - \omega}{a}$$
 Fixed!

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$
$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi) \quad \text{with} \quad \tilde{\omega} = \frac{\Omega - \omega}{a}$$

SYNC WITH EXTERNAL STIMULUS

• What does it mean that $\tilde{\omega}$ increases?

$$\tilde{\omega} = \frac{\Omega - \omega}{a}$$
 Fixed!

By varying the coupling of the firefly we can adjust the range of entrainment

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$

$$\frac{d\phi}{d\tau} = \tilde{\omega} - \sin(\phi) \quad \text{with} \quad \tilde{\omega} = \frac{\Omega - \omega}{a}$$
Full Sync
What does it mean that $\tilde{\omega}$
increases?
 $\tilde{\omega} = \frac{\Omega - \omega}{a}$
Fixed!
 $\tilde{\omega} = \frac{\Omega - \omega}{a}$
Fixed!

SYNC WITH EXTERNAL STIMULUS

Saddle node

Ω

 $\boldsymbol{\omega}$

By \ we can adjust the range of entrainment

SYNC WITH EXTERNAL STIMULUS

Ermentrout & Rinzel model (1984):

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$

By varying the coupling of the firefly we can adjust the range of entrainment

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega - a\sin(\Theta - \theta)$$

Oversimplification: We have assumed that the bulk is already synchronized when our little firefly enters into play, but...

How do thousands of fireflies get synchronized?

OPEN PROBLEM:

SYNCHRONIZATION OF POPULATIONS OF COUPLED UNITS

@gomezgardenes

SYNC WITH EXTERNAL STIMULUS

Index: From 2 to N coupled phase oscillators

NONUNIFORM OSCILLATORS

• SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

• SYNCHRONIZATION OF AN ENTIRE POPULATION: THE KURAMOTO MODEL

Synchronization

Eachter

Ermentrout & Rinzel model (1984):

$$\frac{d\theta}{dt} = F(\theta) \longrightarrow \frac{d\theta}{dt} = \omega + a\sin(\Theta - \theta)$$

The firefly attempts to synchronize with the overall rhythm

Two coupled units:

$$\frac{d\theta_1}{dt} = \omega_1 + a\sin(\theta_2 - \theta_1)$$
$$\frac{d\theta_2}{dt} = \omega_2 + b\sin(\theta_1 - \theta_2)$$

Two different fireflies attempt to synchronize their rhythms

SYNCHRONIZATION Two coupled units: θ_1 θ_2 $\frac{d\theta_1}{dt} = \omega_1 + a\sin(\theta_2 - \theta_1)$ a $\frac{d\theta_2}{dt} = \omega_2 + \mathbf{b}\sin(\theta_1 - \theta_2)$ θ_1 $d\theta$ θ_2 $= \omega - a \sin(\theta)$ dt 0 $\phi = \theta_1 - \theta_2$ $\dot{\phi}$

$$\frac{d\phi}{dt} = \dot{\theta}_1 - \dot{\theta}_2 = (\omega_1 - \omega_2) - (a+b)\sin\phi$$

Two coupled units:

$$\frac{d\theta_1}{dt} = \omega_1 + a\sin(\theta_2 - \theta_1)$$

$$\frac{d\sigma_2}{dt} = \omega_2 + b\sin(\theta_1 - \theta_2)$$

 $\phi = \theta_1 - \theta_2$

$$\frac{d\phi}{dt} = \dot{\theta}_1 - \dot{\theta}_2 = (\omega_1 - \omega_2) - (a+b)\sin\phi$$

$$\theta_1$$

$$\dot{\phi} = 0: \sin \phi^* = \frac{\omega_1 - \omega_2}{a + b} \longrightarrow \dot{\theta}_1 = \dot{\theta}_2$$

Two coupled units:

$$\frac{d\theta_1}{dt} = \omega_1 + a\sin(\theta_2 - \theta_1)$$

$$\frac{d\theta_2}{dt} = \omega_2 + b\sin(\theta_1 - \theta_2)$$
$$\phi = \theta_1 - \theta_2$$

$$\frac{d\phi}{dt} = \dot{\theta}_1 - \dot{\theta}_2 = (\omega_1 - \omega_2) - (a+b)\sin\phi$$

$$\sin\phi^* = \frac{\omega_1 - \omega_2}{a + b}$$

If $|\omega_1 - \omega_2|$ starts to increase until $|\omega_1 - \omega_2| = (a+b)$

Two coupled units:

$$\frac{d\theta_1}{dt} = \omega_1 + a\sin(\theta_2 - \theta_1)$$

$$\frac{d\theta_2}{dt} = \omega_2 + b\sin(\theta_1 - \theta_2)$$
$$\phi = \theta_1 - \theta_2$$

$$\frac{d\phi}{dt} = \dot{\theta}_1 - \dot{\theta}_2 = (\omega_1 - \omega_2) - (a+b)\sin\phi$$

$$\sin \phi^* = \frac{\omega_1 - \omega_2}{a + b}$$

If $|\omega_1 - \omega_2|$ starts to increase until $|\omega_1 - \omega_2| = (a+b)$

SADDLE NODE BIFURCATION

Yoshiki Kuramoto (蔵本 由紀) @ Kyoto University

Wait... We were dealing with 1D flows and now we jump to N-dimensional dynamical systems?

SYNCHRONIZATION

SYNCHRONIZATION

Emergence of Synchronization

Yoshiki Kuramoto (蔵本 由紀)

@ Kyoto University

SYNCHRONIZATION

Steven H. Strogatz Center for Applied Mathematics and Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, NY 14853, USA

$$\dot{\theta}_i(t) = \omega_i + Kr(t)\sin(\Psi(t) - \theta_i(t))$$

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled from all the others, although of course they are interacting, but only through the mean-field quantities r and ψ .

0 ω

-1

-2

-3

-4

1

0.5

0

0

-1

-0.5

-0.5

0.5

0

0

-1

-0.5

-0.5

0.5

0

@gomezgardenes

-0.5

0

-0.5

-1

-1

0.5

1

0

-0.5

0

-0.5

-1

-1

$$r^* = \langle e^{\mathbf{i}\theta_j^*} \rangle_{\text{Lock}} + \langle e^{\mathbf{i}\theta_j(t)} \rangle_{\text{Drift}} = \int_{-Kr^*}^{+Kr^*} g(\omega) e^{\mathbf{i}\theta^*(\omega)} d\omega$$

$$r^* = \langle e^{\mathbf{i}\theta_j^*} \rangle_{\text{Lock}} + \langle e^{\mathbf{i}\theta_j(t)} \rangle_{\text{Drift}} = \int_{-Kr^*}^{+Kr^*} g(\omega) e^{\mathbf{i}\theta^*(\omega)} d\omega$$

$$= \int_{-Kr^*}^{+Kr^*} g(\omega) \cos(\theta^*(\omega)) d\omega = Kr^* \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} g(Kr^* \sin \theta^*) \cos^2(\theta^*) d\theta^*$$

SYNCHRONIZATION

