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One dimensional Dynamical System:

dx
dt

= F(x)
dx
dt

= sin(x)

·x

x

STABLE Fixed Points

UNSTABLE Fixed Points{

π 2π−π−2π

Fixed Points ( ·x = 0)
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One dimensional Dynamical System on the circle:

dθ
dt

= F(θ)
dθ
dt

= sin(θ)

STABLE Fixed Points

UNSTABLE Fixed Points{

·θ

θπ−π

Fixed Points ( ·θ = 0)
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One dimensional Dynamical System on the circle:

dθ
dt

= F(θ)
dθ
dt

= sin(θ)

STABLE Fixed Points

UNSTABLE Fixed Points{

·θ

θπ−π

Fixed Points ( ·θ = 0)
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  must be a -periodic 
function of : 


F(θ) 2π
θ

F(θ ± n2π) = F(θ)
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SYNCHRONIZATION OF AN ENTIRE POPULATION: 


THE KURAMOTO MODEL
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UNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

STABLE Fixed Points

UNSTABLE Fixed Points{Fixed Points ( ·θ = 0)

·θ

θ
π−π
ω
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UNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

STABLE Fixed Points

UNSTABLE Fixed Points{Fixed Points ( ·θ = 0)

·θ

θ
π−π
ω

‣ NO Fixed Points!


‣ Periodic Oscillations 
with:  

T =
2π
ω
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NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

STABLE Fixed Points

UNSTABLE Fixed Points{Fixed Points ( ·θ = 0)

·θ

θ
π−π
ω

‣ NO Fixed Points!


‣ Periodic Oscillations 
with:  

T =
2π
ω

a

−a sin(θ)

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 

NONUNIFORM OSCILLATORS



@gomezgardenes

NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

STABLE Fixed Points

UNSTABLE Fixed Points{Fixed Points ( ·θ = 0)

·θ

θ
π−π
ω

‣ NO Fixed Points!


‣ Periodic Oscillations 
with:  

T =
2π
ω

a

−a sin(θ)

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 

NONUNIFORM OSCILLATORS



@gomezgardenes

NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

STABLE Fixed Points

UNSTABLE Fixed Points{Fixed Points ( ·θ = 0)

·θ

θ
π−π
ω

‣ NO Fixed Points!


‣ Periodic Oscillations 
with:  

T =
2π
ω

−a sin(θ)

a
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NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

STABLE Fixed Points

UNSTABLE Fixed Points{Fixed Points ( ·θ = 0)

·θ

θ
π−π
ω

‣ NO Fixed Points!


‣ Periodic Oscillations 
with:  

T =
2π
ω

−a sin(θ)

a

Saddle node bifurcation with ac = ω
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994.3 NONUNIFORM OSCILLATOR

altogether: a half-stable !xed point has been born in a saddle-node bifurcation at 
R � Q  /  2 (Figure 4.3.2b). Finally, when a �X, the half-stable !xed point splits into a 
stable and unstable !xed point (Figure 4.3.2c). All trajectories are attracted to the 
stable !xed point as t l d.

θ

θπ 2

slow passage
through here
(bottleneck)

(a) a< =ω (b) a ω (c) a>ω

.

Figure 4.3.2

The same information can be shown by plotting the vector !elds on the circle 
(Figure 4.3.3).

slow

fast

πθ 2=

(a) a< =ω (b) a ω (c) a > ω

Figure 4.3.3

EXAMPLE 4.3.1:

Use linear stability analysis to classify the !xed points of (1) for a � X.
Solution: The !xed points R * satisfy

sin *θ ω� a ,                       cos * ( )θ ω=± −1 2a .

Their linear stability is determined by

′ =− = −f a a a( *) cos * ( ) .θ θ ωB 1 2

Strogatz-CROPPED2.pdf   113 5/23/2014   8:40:08 AM
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NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω

Saddle node bifurcation with ac = ω

−a sin(θ)
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NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω−a sin(θ)

Saddle node bifurcation with ac = ω
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Their linear stability is determined by

′ =− = −f a a a( *) cos * ( ) .θ θ ωB 1 2
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T = ∫
T

0
dt = ∫

2π

0

dt
dθ

dθ = ∫
2π

0

dθ
ω − a sin θ

=
2π

ω2 − a2

Ω(a)
ω

a/ac

Ω(a) = ω2 − a2

Ω(a) → 2ω(ac − a)1/2

As  tends to : a ac = ω
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NONUNIFORM Oscillation:

dθ
dt

= F(θ)
dθ
dt

= ω−a sin(θ)

Saddle node bifurcation with ac = ω
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Ω(a)
ω

a/ac

Ω(a) → 2ω(ac − a)1/2

As  tends to : a ac = ω

·θ

θ
π−π
ω

1014.3 NONUNIFORM OSCILLATOR

which shows that T  blows up like ( ac � a )–1  /  2, where ac � X. Now let’s explain the 
origin of this square-root scaling law.

Ghosts and Bottlenecks

The square-root scaling law found above is a very general feature of systems that 
are close to a saddle-node bifurcation. Just after the !xed points collide, there is a 
saddle-node remnant or ghost that leads to slow passage through a bottleneck.

For example, consider �θ ω θ= −a sin  for decreasing values of a, starting with 
a � X. As a decreases, the two !xed points approach each other, collide, and dis-
appear (this sequence was shown earlier in Figure 4.3.3, except now you have to 
read from right to left.) For a slightly less than X, the !xed points near Q / 2 no lon-
ger exist, but they still make themselves felt through a saddle-node ghost 
(Figure 4.3.5).

θ

θ

.

bottleneck
due to ghost

Figure 4.3.5

A graph of R( )t  would have the shape shown in Figure 4.3.6. Notice how the 
trajectory spends practically all its time getting through the bottleneck.

θ T

t

bottleneck

Figure 4.3.6

Now we want to derive a general scaling law for the time required to pass 
through a bottleneck. The only thing that matters is the behavior of �R  in the 
immediate vicinity of the minimum, since the time spent there dominates all other 
time scales in the problem. Generically, �R  looks parabolic near its minimum. Then 
the problem simpli!es tremendously: the dynamics can be reduced to the normal 

Strogatz-CROPPED2.pdf   115 5/23/2014   8:40:08 AM
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@gomezgardenes

dθ
dt

= F(θ)
dθ
dt

= ω+a sin(Θ−θ)

θ Θ
a

The firefly attempts to synchronize with the overall rhythm 

Ermentrout & Rinzel, Am. J. Physiol. (1984):

·Θ = Ω

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
SYNC WITH EXTERNAL STIMULUS
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dθ
dt

= F(θ)
dθ
dt

= ω+a sin(Θ−θ)
θ

dϕ
dt

=
dΘ
dt

−
dθ
dt

dϕ
dτ

= ω̃ − sin(ϕ)

ϕ = Θ − θ‣ Lets consider:

τ = at‣ Adimensionalization: ω̃ =
Ω − ω

a
&

‣ Assumption: The bulk remains unaltered by the effect 
of our firefly, so that it oscillates periodically as: ·Θ = Ω

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
SYNC WITH EXTERNAL STIMULUS

= Ω − ω − a sin(ϕ)

dθ
dt

= ω−a sin(θ)

Ermentrout & Rinzel, Am. J. Physiol. (1984):



@gomezgardenes

dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

dϕ
dτ

= ω̃ − sin(ϕ)

·ϕ

ϕ
π−π

Saddle node 

bifurcation

‣ Firefly synchronized with 
the population .ω̃ = 0

‣ What happens when  
increases?

ω̃

ω̃ =
Ω − ω

a
with

‣ What does it mean that  
increases?

ω̃ Phase Locking

θ
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dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

dϕ
dτ

= ω̃ − sin(ϕ) ω̃ =
Ω − ω

a
with

ω

‣ What does it mean that  
increases?

ω̃

ω + a
ω − a

Ω

·ϕ

ϕ
π−π

ω̃ = 0

θ
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dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

dϕ
dτ

= ω̃ − sin(ϕ) ω̃ =
Ω − ω

a
with

ω

‣ What does it mean that  
increases?

ω̃

ω + a
ω − a

Ω

·ϕ

ϕ
π−π

ω̃ < 1

θ
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Ermentrout & Rinzel, Am. J. Physiol. (1984):
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dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

dϕ
dτ

= ω̃ − sin(ϕ) ω̃ =
Ω − ω

a
with

ω

‣ What does it mean that  
increases?

ω̃

ω + a
ω − a

Ω

·ϕ

ϕ
π−π

ω̃ > 1

ω̃ =
Ω − ω

a
Fixed!

θ
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dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

dϕ
dτ

= ω̃ − sin(ϕ) ω̃ =
Ω − ω

a
with

ω

‣ What does it mean that  
increases?

ω̃

ω̃ =
Ω − ω

a
Fixed!

Ω

·ϕ

ϕ
π−π

ω̃ < 1

By varying the coupling of the firefly 
we can adjust the range of entrainment

ω + a
ω − a

θ
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ω

a

@gomezgardenes

dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

dϕ
dτ

= ω̃ − sin(ϕ) ω̃ =
Ω − ω

a
with

‣ What does it mean that  
increases?

ω̃

ω̃ =
Ω − ω

a
Fixed!

By varying the coupling of the firefly 
we can adjust the range of entrainment Ω

Sa
dd

le
 n

od
eSaddle node

θ
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dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

Θ
a

θ

By varying the coupling of the firefly we can adjust the range of entrainment

Ermentrout & Rinzel model (1984):
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dθ
dt

= F(θ)
dθ
dt

= ω−a sin(Θ−θ)

ΘOversimplification: We have assumed that the 
bulk is already synchronized when our little firefly 
enters into play, but…


How do thousands of fireflies 
get synchronized?

 OPEN PROBLEM: 


SYNCHRONIZATION OF 
POPULATIONS OF COUPLED UNITS
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THE KURAMOTO MODEL
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The firefly attempts to synchronize with the overall rhythm 

dθ
dt

= F(θ)
dθ
dt

= ω+a sin(Θ−θ)

θ
a

Ermentrout & Rinzel model (1984):

Θ

SYNCHRONIZATION
SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
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dθ1

dt
= ω1 +a sin(θ2 − θ1)

θ1

Θ

a

Two different fireflies attempt to synchronize their rhythms 

·Θ = Ω

θ2

b

dθ2

dt
= ω2 +b sin(θ1 − θ2)

Two coupled units:
SYNCHRONIZATION

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
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Two coupled units:

Θ·Θ = Ω

θ1 a θ2

b

2778.6 COUPLED OSCILLATORS AND QUASIPERIODICITY

�
�
θ ω θ θ

θ ω θ θ
1 1 1 2 1

2 2 2 1 2

= + −

= + −

K

K

sin( )

sin( ),
 (1)

where R1 , R2 are the phases of the oscillators, X1, X2 � 0 are their natural frequencies, 
and K1, K2 p�0 are coupling constants. Equation (1) has been used to model the 
interaction between human circadian rhythms and the sleep-wake cycle (Strogatz 
1986, 1987).

An intuitive way to think about (1) is to imagine two friends jogging on a cir-
cular track. Here R1 ( t ), R2 ( t ) represent their positions on the track, and X1, X2 are 
proportional to their preferred running speeds. If they were uncoupled, then each 
would run at his or her preferred speed and the faster one would periodically over-
take the slower one (as in Example 4.2.1). But these are friends—they want to run 
around together! So they need to compromise, with each adjusting his or her speed 

as necessary. If their preferred speeds are too different, 
phase-locking will be impossible and they may want to 
!nd new running partners.

Here we consider (1) more abstractly, to illustrate 
some general features of "ows on the torus and also to 
provide an example of a saddle-node bifurcation of 
cycles (Section 8.4). To visualize the "ow, imagine two 
points running around a circle at instantaneous rates 
� �R R1 2,  (Figure 8.6.1). Alternatively, we could imagine a 

single point tracing out a trajectory on a torus with coor-
dinates R1, R2 (Figure 8.6.2). The coordinates are analogous to latitude and 
longitude.

θ

θ

2

coordinate system

1

Figure 8.6.2

But since the curved surface of a torus makes it hard to draw phase portraits, we 
prefer to use an equivalent representation: a square with periodic boundary condi-
tions. Then if a trajectory runs off an edge, it magically reappears on the opposite 
edge, as in some video games (Figure 8.6.3).

θ1

2θ

Figure 8.6.1
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280 BIFURCATIONS REVISITED

� � �φ θ θ
ω ω φ

= −
= − − +

1 2

1 2 1 2( )sin ,K K
 (2)

which is just the nonuniform oscillator studied in Section 4.3. By drawing the stan-
dard picture (Figure 8.6.7), we see that there are two !xed points for (2) if | X1 ��X2 | 
� K1 � K2 and none if |  X1  �� X2 | � Kl � K2. A saddle-node bifurcation occurs when 
| X1  �� X2 | � Kl � K2.

φ

φ

.

Figure 8.6.7

Suppose for now that there are two !xed points, de!ned implicitly by 

sin * .φ
ω ω

=
−
+

1 2

1 2K K

As Figure 8.6.7 shows, all trajectories of (2) asymptotically approach the stable 
!xed point. Therefore, back on the torus, the trajectories of (1) approach a stable 
phase-locked solution in which the oscillators are separated by a constant phase 
difference  G *. The phase-locked solution is periodic; in fact, both oscillators run at 
a constant frequency given by ω θ θ ω φ* sin *= = = +� �

1 2 2 2K . Substituting for 
sinG * yields
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This is called the compromise frequency because it lies between the natural fre-
quencies of the two oscillators (Figure 8.6.8).
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� K1 � K2 and none if |  X1  �� X2 | � Kl � K2. A saddle-node bifurcation occurs when 
| X1  �� X2 | � Kl � K2.

φ

φ

.

Figure 8.6.7

Suppose for now that there are two !xed points, de!ned implicitly by 

sin * .φ
ω ω

=
−
+

1 2

1 2K K

As Figure 8.6.7 shows, all trajectories of (2) asymptotically approach the stable 
!xed point. Therefore, back on the torus, the trajectories of (1) approach a stable 
phase-locked solution in which the oscillators are separated by a constant phase 
difference  G *. The phase-locked solution is periodic; in fact, both oscillators run at 
a constant frequency given by ω θ θ ω φ* sin *= = = +� �

1 2 2 2K . Substituting for 
sinG * yields

X
X X

* .=
+
+

K K
K K

1 2 2 1

1 2

This is called the compromise frequency because it lies between the natural fre-
quencies of the two oscillators (Figure 8.6.8).

ω

ω

ω

ωω

∆ ∆2

2 *

1

1

Figure 8.6.8

Strogatz-CROPPED2.pdf   294 5/23/2014   8:40:13 AM

dϕ
dt

= ·θ1 − ·θ2 = (ω1 − ω2) − (a + b)sin ϕ

ϕ = θ1 − θ2

sin ϕ* =
ω1 − ω2

a + b
·θ1 = ·θ2 = ω* =

aω2 + bω1

a + b

280 BIFURCATIONS REVISITED

� � �φ θ θ
ω ω φ

= −
= − − +

1 2

1 2 1 2( )sin ,K K
 (2)

which is just the nonuniform oscillator studied in Section 4.3. By drawing the stan-
dard picture (Figure 8.6.7), we see that there are two !xed points for (2) if | X1 ��X2 | 
� K1 � K2 and none if |  X1  �� X2 | � Kl � K2. A saddle-node bifurcation occurs when 
| X1  �� X2 | � Kl � K2.

φ

φ

.

Figure 8.6.7

Suppose for now that there are two !xed points, de!ned implicitly by 

sin * .φ
ω ω

=
−
+

1 2

1 2K K

As Figure 8.6.7 shows, all trajectories of (2) asymptotically approach the stable 
!xed point. Therefore, back on the torus, the trajectories of (1) approach a stable 
phase-locked solution in which the oscillators are separated by a constant phase 
difference  G *. The phase-locked solution is periodic; in fact, both oscillators run at 
a constant frequency given by ω θ θ ω φ* sin *= = = +� �

1 2 2 2K . Substituting for 
sinG * yields

X
X X

* .=
+
+

K K
K K

1 2 2 1

1 2

This is called the compromise frequency because it lies between the natural fre-
quencies of the two oscillators (Figure 8.6.8).

ω

ω

ω

ωω

∆ ∆2

2 *

1

1

Figure 8.6.8

Strogatz-CROPPED2.pdf   294 5/23/2014   8:40:13 AM

Compromise Frequency:

dθ1

dt
= ω1 +a sin(θ2 − θ1)

dθ2

dt
= ω2 +b sin(θ1 − θ2)

SYNCHRONIZATION
SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 

·ϕ = 0 :



@gomezgardenes

Two coupled units:

Θ·Θ = Ω

θ1 a θ2

b

dϕ
dt

= ·θ1 − ·θ2 = (ω1 − ω2) − (a + b)sin ϕ

ϕ = θ1 − θ2

sin ϕ* =
ω1 − ω2

a + b

2818.7 POINCARÉ MAPS

The compromise is not generally halfway; instead the frequencies are shifted by an 
amount proportional to the coupling strengths, as shown by the identity
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Now we’re ready to plot the phase portrait on the torus (Figure 8.6.9). The sta-
ble and unstable locked solutions appear as diagonal lines of slope 1, since 
� �θ θ ω1 2� � *.
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If we pull the natural frequencies apart, say by detuning one of the oscillators, then 
the locked solutions approach each other and coalesce when | X1 � X2 | � K1 � K2. 
Thus the locked solution is destroyed in a saddle-node bifurcation of cycles 
(Section 8.4). After the bifurcation, the "ow is like that in the uncoupled case studied 
earlier: we have either quasiperiodic or rational "ow, depending on the parameters. 
The only difference is that now the trajectories on the square are curvy, not straight.

8.7 Poincaré Maps

In Section 8.5 we used a Poincaré map to prove the existence of a periodic orbit 
for the driven pendulum and Josephson junction. Now we discuss Poincaré maps 
more generally.

Poincaré maps are useful for studying 
swirling "ows, such as the "ow near a peri-
odic orbit (or as we’ll see later, the "ow in 
some chaotic systems). Consider an 
n-dimensional system �x f x� ( ) . Let S be an 
n � 1 dimensional surface of section 
(Figure 8.7.1). S is required to be transverse 
to the "ow, i.e., all trajectories starting on S 
"ow through it, not parallel to it.
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The Kuramoto model

Yoshiki Kuramoto (蔵本 由紀) @ Kyoto University

Wait… We were dealing with 1D flows 
and now we jump to N-dimensional 
dynamical systems?
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The Kuramoto model

: Unimodal and symmetric around ⟨ω⟩= 0
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Fig. 1. Geometric interpretation of the order parameter (3.2). The phases θ j are plotted on the unit circle. Their centroid is given by the complex
number r eiψ , shown as an arrow.

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the whole population. It
corresponds to the centroid of the phases. The radius r(t) measures the phase coherence, and ψ(t) is the average
phase (Fig. 1).
For instance, if all the oscillators move in a single tight clump, we have r≈ 1 and the population acts like a giant

oscillator. On the other hand, if the oscillators are scattered around the circle, then r≈ 0; the individual oscillations
add incoherently and no macroscopic rhythm is produced.
Kuramoto noticed that the governing equation

θ̇i = ωi + K

N

N∑

j=1
sin(θj − θi )

can be rewritten neatly in terms of the order parameter, as follows. Multiply both sides of the order parameter
equation by e−iθi to obtain

r ei(ψ−θi ) = 1
N

N∑

j=1
ei(θj −θi ).

Equating imaginary parts yields

r sin(ψ − θi ) = 1
N

N∑

j=1
sin(θj − θi ).

Thus (3.1) becomes

θ̇i = ωi + Kr sin(ψ − θi ), i = 1, . . . , N. (3.3)

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quantities r and ψ .
Specifically, the phase θ i is pulled toward themean phaseψ , rather than toward the phase of any individual oscillator.
Moreover, the effective strength of the coupling is proportional to the coherence r. This proportionality sets up a
positive feedback loop between coupling and coherence: as the population becomes more coherent, r grows and so
the effective coupling Kr increases, which tends to recruit even more oscillators into the synchronized pack. If the
coherence is further increased by the new recruits, the process will continue; otherwise, it becomes self-limiting.
Winfree [10] was the first to discover this mechanism underlying spontaneous synchronization, but it stands out
especially clearly in the Kuramoto model.
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From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators

Steven H. Strogatz
Center for Applied Mathematics and Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University,

Ithaca, NY 14853, USA

Abstract

The Kuramoto model describes a large population of coupled limit-cycle oscillators whose natural frequencies are drawn
from some prescribed distribution. If the coupling strength exceeds a certain threshold, the system exhibits a phase transition:
some of the oscillators spontaneously synchronize, while others remain incoherent. The mathematical analysis of this bifur-
cation has proved both problematic and fascinating. We review 25 years of research on the Kuramoto model, highlighting
the false turns as well as the successes, but mainly following the trail leading from Kuramoto’s work to Crawford’s recent
contributions. It is a lovely winding road, with excursions through mathematical biology, statistical physics, kinetic theory,
bifurcation theory, and plasma physics. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Kuramoto model; Coupled oscillators; Kinetic theory; Plasma physics

1. Introduction

In the 1990s, Crawford wrote a series of papers about the Kuramoto model of coupled oscillators [1–3]. At first
glance, the papers look technical, maybe even a bit intimidating.
For instance, take a look at “Amplitude expansions for instabilities in populations of globally coupled oscillators”,

his first paper on the subject [1]. Here, Crawford racks up 200 numbered equations as he calmly plows through a
center manifold calculation for a nonlinear partial integro-differential equation.
Technical, yes, but a technical tour de force. Beneath the surface, there is a lot at stake. In his modest, methodical

way, Crawford illuminated some problems that had appeared murky for about two decades.
My goal here is to set Crawford’s work in context and to give a sense of what he accomplished. The larger setting

is the story of the Kuramoto model [4–9]. It is an ongoing tale full of twists and turns, starting with Kuramoto’s
ingenious analysis in 1975 (which raised more questions than it answered) and culminating with Crawford’s in-
sights. Along the way, I will point out some problems that remain unsolved to this day, and tell a few stories
about the various people who have worked on the Kuramoto model, including how Crawford himself got hooked
on it.

E-mail address: shs7@cornell.edu (S.H. Strogatz)

0167-2789/00/$ – see front matter © 2000 Elsevier Science B.V. All rights reserved.
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