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MOTIVATION

One dimensional Dynamical System:

dx Flx) dx (o)

— = X > — = SINn(X

dt dt

X sin(x)
— 27 — 7T T 27T N
@ STABLE Fixed Points
@ Fixed Points (x = 0) F’(X*)

@ UNSTABLE Fixed Points

@gomezgardenes
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MOTIVATION

One dimensional Dynamical System on the circle:

o F(0) A (0)
— = » — = sIin
dt dt

0

@ STABLE Fixed Points

Fixed Points (6 = 0
® ( ) @ UNSTABLE Fixed Points
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MOTIVATION
One dimensional Dynamical System on the circle:
o _ Ao
P (0) P sin(0)
| 6.’A

@ STABLE Fixed Points

Fixed Points (6 = 0
® ( ) @ UNSTABLE Fixed Points
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Index: From 2 to N coupled phase oscillators

® NONUNIFORM OSCILLATORS

©® SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

SYNCHRONIZATION OF AN ENTIRE POPULATION:
THE KURAMOTO MODEL
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Index: From 2 to N coupled phase oscillators

@ NONUNIFORM OSCILLATORS

SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

SYNCHRONIZATION OF AN ENTIRE POPULATION:
THE KURAMOTO MODEL
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NONUNIFORM OSCILLATORS
UNIFORM Oscillation:

do
— = F(6) - — =
dt dt

@ STABLE Fixed Points

Fixed Points (g —
® (©=0) Y @ UNSTABLE Fixed Points

@gomezgardenes
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NONUNIFORM OSCILLATORS
UNIFORM Oscillation:

do do

— = F(0) > — =

dt dt

0 > NO Fixed Points!
> Periodic Oscillations
w with:
—7 7T r_ %

0 W

@ STABLE Fixed Points

Fixed Points (g —
® (©=0) Y @ UNSTABLE Fixed Points

@gomezgardenes
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

do do ,
— = F(H) > E = w—a Sln(é’)

9 > NO Fixed Points!

> Periodic Oscillations
with:

@ STABLE Fixed Points
@ UNSTABLE Fixed Points

@ Fixed Points () = ()

@gomezgardenes
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

Y — Fo o in(0)
— = » — = @—asin
dt dt

9 > NO Fixed Points!

> Periodic Oscillations
with:

@ STABLE Fixed Points

Fixed Points (g —
® (©=0) Y @ UNSTABLE Fixed Points

@gomezgardenes
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

do do ,
— = F(H) > E = w—a Sln(é’)

> NO Fixed Points!

> Periodic Oscillations
with:

@ STABLE Fixed Points
@ UNSTABLE Fixed Points

@ Fixed Points () = ()
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

do do ,
— = F(H) > E = w—a Sln(é’)

> Periodic Oscillations
with:

Saddle node bifurcation with a¢. = @

@ STABLE Fixed Points
@ UNSTABLE Fixed Points

@ Fixed Points () = ()

@gomezgardenes
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

do F(6) do n(0)
— = » — = w-—asin
dt dt
Saddle node bifurcation with a. = @
slow 6=%/2
fast
(@) a<w (b) a =w ©) a>uw

@gomezgardenes
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

0 _ o 40 -
— = » — =w—asin
dr it ‘

slow

Saddle node bifurcation with a. = »

T 27 dl_ 27 de ast
T = dt = —df = - @ a<w ) a—w
0 o do o @W—asind

27 1.

\/0)2 —a’ 08 -

06 -

Qa) = \/a)2 —a? (2(a) I

@® 04 -

As a tends to a, = w: i

02 -

Q(a) = \V2w(a, — a)'? |
0 02 04 06 0.8 1 1.2

@gomezgardenes
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NONUNIFORM OSCILLATORS
NONUNIFORM Oscillation:

0 _ o 40 -
— = » — = w—asin
dr it ‘

slow

Saddle node bifurcation with a. = »

As a tends to a, = w:

Q(a) —» \2w(a, — a)'”?

@gomezgardenes
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Index: From 2 to N coupled phase oscillators

NONUNIFORM OSCILLATORS

©® SYNCHRONIZATION WITH AN EXTERNAL STIMULUS

SYNCHRONIZATION OF AN ENTIRE POPULATION:

THE KURAMOTO MODEL
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

do do ,
— = F(0) - = = w+asin(®—-0)

dt

The firefly attempts to synchronize with the overall rhythm

@gomezgardenes
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

9 _ R0 W ot asin©—0)
— = > — = w+asin(®—
dr dr .

* Assumption: The bulk remains unaltered by the effect |
of our firefly, so that it oscillates periodicallyas: (® = QQ

* Lets consider: @ =0 — 0
dp dO do
dt dt dt

= — w — asin(®)
Q—w

> Adimensionalization: T =ar & @ =

@gomezgardenes
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SYNC WITH EXTERNAL STIMULUS

Ermentrout & Rinzel, Am. J. Physiol. (1984):

Y _ o do S
— = » — =w—asin(@-—
dr a

. . Q-w

— =) — Slﬂ(qb) with @ =
dt a

> Firefly synchronized with ¢

the population @ = 0.

> What happens when @ —TT .
Increases?

> What does it mean that @ |
iIncreases? Pﬁ@ddlhmﬁdng;
: hifurcation :

@gomezgardenes
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

a0 F(0) v In(®—0)
_— — > — = () — _—
dt dl‘ d S111
dag B , | o Q—-w
—_— =) — Slﬂ(gb) with @ =
dt a

> What does it mean that @
increases?

@gomezgardenes
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

a0 F(0) v In(®—0)
_— — > — = () — _—
dt dl‘ d S111
dag B , | o Q—-w
—_— =) — Slﬂ(gb) with @ =
dt a

> What does it mean that @
increases?
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

a0 F(0) v In(®—0)
_— — > — = () — _—
dt dl‘ d S111
dag B , | o Q—-w
— =) — Slﬂ(gb) with @ =
dt a

> What does it mean that @
increases?

‘Q — a)‘ Fixed!

@

0 =

@gomezgardenes
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

a0 F(0) v In(®—0)
_— — > — = () — _—
dt dl‘ d S111
dag B , | o Q—-w
— =) — Slﬂ(gb) with @ =
dt a

> What does it mean that @
increases?

‘Q — a)‘ Fixed!

@

By varying the coupling of the firefly
we can adjust the range of entrainment

0 =

@gomezgardenes
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

do do ,
— = F(0) > — = w—asin(®—-0)
dt dt
dag B , | - Q—-w
— =@ —sin(¢) with @ =
dt a
Full Sync
d
> What does it mean that @ e ceecoveeed
increases?
- ‘Q - a)‘ Fixed!
) =

@

By varying the coupling of the firefly
we can adjust the range of entrainment

@gomezgardenes
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. SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel model (1984):

do do ,
— = F(0) > — =w—asim(®-0)

dt dt

By varying the coupling of the firefly we can adjust the range of entrainment

@gomezgardenes
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. . SYNC WITH EXTERNAL STIMULUS
Ermentrout & Rinzel, Am. J. Physiol. (1984):

do do ,
— = F(0) > — =w—asim(®-0)
dt dt

Oversimplification: We have assumed that the
bulk is already synchronized when our little firefly

enters into play, but...

How do thousands of fireflies
get synchronized?

OPEN PROBLEM:

SYNCHRONIZATION OF
POPULATIONS OF COUPLED UNITS

@gomezgardenes
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Index: From 2 to N coupled phase oscillators

SYNCHRONIZATION OF AN ENTIRE POPULATION:
THE KURAMOTO MODEL

@gomezgardenes
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SYNCHRONIZATION
Ermentrout & Rinzel model (1984):

do do ,
— = F(0) > i w ~+a sin(®—0)

The firefly attempts to synchronize with the overall rhythm

@gomezgardenes
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. SYNCHRONIZATION
Two coupled units:

do, ,
— = w; +asin(d, — 0,)
do, .
E — WH b Sln((91 — 92)

Two different fireflies attempt to synchronize their rhythms

@gomezgardenes
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. SYNCHRONIZATION
Two coupled units:

d +asin(@, — 0,)
— =, +asm(6, —

7 1 2 1

do, .
E — WH b Sln((91 — (92)

0y
0, do

¢ =0 -0,

d . . .
7?:91_92=(a)1—a)2)—(a+b)smq§ - >

@gomezgardenes
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. SYNCHRONIZATION
Two coupled units:

ad +asin(6, — 0))
— = a S11 —
At 1 2 1
do, .
? = w, +b sm(@l — (92)
¢ =0, -0, ’
d . . | -
7qtb:91_(92:(col—a)z)—(a+b)smg/) ?
= (0: sIn@p* = . 0,=0,
¢ ? a+b
A(Uz Awl
Compromise Frequency: I I I
Wo L Wy

@gomezgardenes
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. SYNCHRONIZATION
Two coupled units:

iad +asin(6, — 6,)
— = w, +asin(f, —
7 1 ) 1
do, .
Z — WH b Sln((91 — (92)
$=0 -0, z
d . . .
. W) — Wy
SIN P =
» a+b

If |, — w,| starts to increase until |w, — w,|=(a+b)

@gomezgardenes
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. SYNCHRONIZATION
Two coupled units:

iad +asin(6, — 6,)

— = w, +asi(f, —

7 ] ) ]

do, .

Z — WH b Sln((91 — (92)

$=0 -0, z
d . . .
7qtb:(91_(92:(a)l—a)z)—(a+b)s1nq§ - p
. W) — Wy

SIN P =

» a+b

If |, — w,| starts to increase until |w; — w,|=(a+b)

SADDLE NODE BIFURCATION

@gomezgardenes
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SYNCHRONIZATION
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SYNCHRONIZATION

/ i
7

»
\
/ PaN

@gomezgardenes



vagl The Kuramoto model

Bii:

e g / f: Yoshiki Kuramoto (Jj5i4< Hi4l) @ Kyoto University

Wait... We were dealing with 1D flows

and now we jump to N-dimensional
dynamical systems?
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SYNCHRONIZATION

The Kuramoto model

Yoshlkl Kuramoto (ﬂ@%zl: mza)
@ Kyoto University

g(w): Unimodal and symmetric around (@)= 0

Emergence Increasing K
Synchronization

@gomezgardenes




SYNCHRONIZATION
The Kuramoto model

Yoshiki Kuramoto (=4~ H140)
@ Kyoto University

—

Increasing K

~0—
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The Kuramoto model

ei\IJ (¢t) Kuramoto
Order Parameter

0.7 -
0.6 | i
05t |
3 04
> 03 |
0.2 }
Yosh1k1 Kuramoto ()EZVZIK Hﬂﬁa 0 Lot
@ Kyoto University 7 8 4 0 4
K=0.5 K=7
1F e L g 1 1F R m 4
? 4 g TR \! l 3
05 [ # ‘;‘. 0.5 0.5 T K
’I‘.f. .. . . . ° ° il . ™ 1
0 r( .......... ° Hj(t). 0 0 H o o
1 0.. )‘ _1
05 ' s | 05} I 05} |
R @ v a
-1 L (:_} : iy # A -1 L Al b . : . A0 4
1 05 0 05 1 1 05 0 05 1

@gomezgardenes
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6 7 8

K
1(U(t)—0:(t)) — — 1(0; () —0:(t)) : _f. . (0. (1) — .
r(t)e =< j_zle ——> (1) sin(¥(t) — 0(1)) = ;sm(ej (t) — 6;(¢))
. K .
0;(t) = wrkﬁ Z sin(0,(t) — 0;(t)) —— 0;(t) =w;+ Kr(t)sin(V(t) —0;(t))
j=1
K=0.5 K=1.5
1F ‘:_-, S ES =g . il e ;f
0.5 [ & % 05 f \ 2
o | 1
0! ﬁ 0 Q 0 ®
o -3
0.5 ‘ ‘_;__‘w'- 0.5 \ >
1 K QQ.-k*a - -1 b & :i
4 05 0 05 1 41 05 0 05 1

@gomezgardenes

SYNCHRONIZATION

The Kuramoto model

Kuramoto

N

1 : i

- 10, (t) — 1 (%)

N Z eV =r(t)e Order Parameter
j=1
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SYNCHRONIZATION

From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators

Steven H. Strogatz

Center for Applied Mathematics and Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell Unive
Ithaca, NY 14853, USA

rSity,

e ——— S

oteady State

Qi =0 w; = Kr*sin(6;)

K=0.5
1F e B O

7 4 TR
0.5 | &7 "%-
0 p .
05 ' Vi

0 @
-1 L 4 .j‘! # .
41 -05 0 05 1

@gomezgardenes

0;(t) = w; + Kr(t) sin((t) — 0;(t))

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quantities r and .

lw;|< Kr*  Locked
>
jw;|> Kr* Drifting
K=1.5 K=3.5 K=7
M — — e - P———
0.5 f 0.5 / \ 0.5 \.! 2
0 ' 0 0 0 ®
05 05 \. | 05| % -
N E
-1 . . SR = R I ]
1 05 0 05 1 -1 -05 0 05 1 1 056 0 05 1
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SYNCHRONIZATION
1
1 N .
_ E olf; (t) — T(t)elfy’(t) Kuramoto
N Order Parameter
. j=1
5 6 7 8
K
g 0 (ol +Kr* .
10* 10, (t 10~
rt = <e J >Lock - <€ L >Drift — / g(w)e (w)dw
' —Kr*
oteady State wi|< Kr*  TLocked
w; = Kr*sin(6;) >
jw;|> Kr* Drifting
K=0.5 K=3.5
1 ~e B I;gj;.. 1 F ‘ﬂ%_. J/”—“”",\ s 4
0.5 | ' ?*‘__- 1 05 / \ | 2
- f ® . 1
0 ! v Hooo 1 : (1) ®
059, /- | s \ .
* o ;
-1 L @.g *, , -1 L . _i

-1 =085 0 05 1
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SYNCHRONIZATION

N
i E eié’j (1) — T(t)el)lf(t) Kuramoto
N Order Parameter
. j=1
5 6 7 8
K
» o +Kr® :
10* 10 (¢ 10*
= (6% Y poa + (%) puige = / g(w)el?” @ du
, —Kr*
+Kr” +Kr® P
— / g(w) cos(0™ (w))dw + i/ g(w) = dw
—Kr* —Kr*
K=0.5 K=1.5 =7
- - : 1 - — — 4
1 LI' @ B IQ‘ & N
05 & 2
4 % 1
0! -? -
05 |8, 2
Y 3
-1 L Q.-L* - -1 k - .- 1 4
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
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SYNCHRONIZATION

N
i Z eiej (t) — T(t)el)lf(t) Kuramoto
N “4 Order Parameter
5 6 7 8 j:1
K
3 %k 3 N +KT* . b S
rt = <€wj >Lock + <e1?'- >Drift = / g(w)ew () dw
: —K?”'*
+Kr” +3
— / g(w) cos(0*(w))dw = Kr* / g(Kr* sin 6*) cos*(0*)do*
—Kr* —5
K=0.5 K=3.5
1F P o — ©0g 4
P : .
LY 2
1
0! 0 @
1 k Qg.g L* , . :i
-1 05 0 0
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N
i E eiej (t) — T(t)el)lf(t) Kuramoto
N Order Parameter
. j=1
5 6 7 8
| +5 Nttt SbEciichion ?
1y* = M/ g(Kr* sin %) cos”(0*)do* N
_ = —
2 -
AMK.r—07":
—I_% 2 [ N* 2% 70
— ch(())/ cos™(07)d0" = K .g(0) =
_% 2
K=0.5 K=1.5 K=3.5
i~ 1 e ] [ o %ee 4
05 | & % 05! 105 { 2
~ @ 1
. ! ; 0K ¢ 0 0 W
N A
-0.5 ‘ j:_n’f_ 05 | Ij -0.5 \ )
N | ‘
-1 & §.gp(_ﬁ‘,{’ 4 =1k 4L ®ey i

-1 =085 0 05 1 <1 <05 @ 058 1 -1 05 O
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SYNCHRONIZATION

Sync on networks
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