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Fig. 1. Geometric interpretation of the order parameter (3.2). The phases θ j are plotted on the unit circle. Their centroid is given by the complex
number r eiψ , shown as an arrow.

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the whole population. It
corresponds to the centroid of the phases. The radius r(t) measures the phase coherence, and ψ(t) is the average
phase (Fig. 1).

For instance, if all the oscillators move in a single tight clump, we have r≈ 1 and the population acts like a giant
oscillator. On the other hand, if the oscillators are scattered around the circle, then r≈ 0; the individual oscillations
add incoherently and no macroscopic rhythm is produced.

Kuramoto noticed that the governing equation

θ̇i = ωi + K

N

N∑

j=1
sin(θj − θi )

can be rewritten neatly in terms of the order parameter, as follows. Multiply both sides of the order parameter
equation by e−iθi to obtain

r ei(ψ−θi ) = 1
N

N∑

j=1
ei(θj −θi ).

Equating imaginary parts yields

r sin(ψ − θi ) = 1
N

N∑

j=1
sin(θj − θi ).

Thus (3.1) becomes

θ̇i = ωi + Kr sin(ψ − θi ), i = 1, . . . , N. (3.3)

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quantities r and ψ .
Specifically, the phase θ i is pulled toward the mean phaseψ , rather than toward the phase of any individual oscillator.
Moreover, the effective strength of the coupling is proportional to the coherence r. This proportionality sets up a
positive feedback loop between coupling and coherence: as the population becomes more coherent, r grows and so
the effective coupling Kr increases, which tends to recruit even more oscillators into the synchronized pack. If the
coherence is further increased by the new recruits, the process will continue; otherwise, it becomes self-limiting.
Winfree [10] was the first to discover this mechanism underlying spontaneous synchronization, but it stands out
especially clearly in the Kuramoto model.
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From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators

Steven H. Strogatz
Center for Applied Mathematics and Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University,
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Abstract

The Kuramoto model describes a large population of coupled limit-cycle oscillators whose natural frequencies are drawn
from some prescribed distribution. If the coupling strength exceeds a certain threshold, the system exhibits a phase transition:
some of the oscillators spontaneously synchronize, while others remain incoherent. The mathematical analysis of this bifur-
cation has proved both problematic and fascinating. We review 25 years of research on the Kuramoto model, highlighting
the false turns as well as the successes, but mainly following the trail leading from Kuramoto’s work to Crawford’s recent
contributions. It is a lovely winding road, with excursions through mathematical biology, statistical physics, kinetic theory,
bifurcation theory, and plasma physics. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the 1990s, Crawford wrote a series of papers about the Kuramoto model of coupled oscillators [1–3]. At first
glance, the papers look technical, maybe even a bit intimidating.

For instance, take a look at “Amplitude expansions for instabilities in populations of globally coupled oscillators”,
his first paper on the subject [1]. Here, Crawford racks up 200 numbered equations as he calmly plows through a
center manifold calculation for a nonlinear partial integro-differential equation.

Technical, yes, but a technical tour de force. Beneath the surface, there is a lot at stake. In his modest, methodical
way, Crawford illuminated some problems that had appeared murky for about two decades.

My goal here is to set Crawford’s work in context and to give a sense of what he accomplished. The larger setting
is the story of the Kuramoto model [4–9]. It is an ongoing tale full of twists and turns, starting with Kuramoto’s
ingenious analysis in 1975 (which raised more questions than it answered) and culminating with Crawford’s in-
sights. Along the way, I will point out some problems that remain unsolved to this day, and tell a few stories
about the various people who have worked on the Kuramoto model, including how Crawford himself got hooked
on it.

E-mail address: shs7@cornell.edu (S.H. Strogatz)
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Adjacency Matrix

A =

0 A12 A13 . . . . A1N

A21 0 A23 . . . . . A2N. . . .. . . .. . . .
AN1 AN2 . . . AN(N−1) 0

Undirected networks Aij = Aji

Aij ∈ {1,0}Non-weighted networks
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KM in Complex Networks
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The more heterogeneous the degree distribution  of 
the SF graph, the lower the synchronization threshold

P(k) ∼ k−γ
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Main Question:

What is the influence of network structure ( ) in the 
synchronization transition?

A
λc r(λ)A → &

·θi(t) = ωi + λ
N

∑
j=1

Aij sin (θj(t) − θi(t))

r(t)eiΨ(t) =
1
N

N

∑
j=1

eiθj(t)

CRITICAL COUPLING
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Main Question:

What is the influence of network structure ( ) in the 
synchronization transition?

A

λc r(λ)A → &

Main difficulty:  we lose the MF behavior of the model equations

·θi(t) = ωi + λ
N

∑
j=1

Aij sin (θj(t) − θi(t))

ρω,k(θ, t)Approaches:

Time-average Theory (TAT)

Continuum limit approach {
<latexit sha1_base64="NPgpjRaLte2mi8hgVjnypJaKnT8=">AAAB43icbZDLTgJBEEVr8IX4Ql266UhMXJEZNdEl0Y1LNPJIgJCepgY69DzSXWNCJnyBroy684/8Af/GBmeh4F2drns7qVt+oqQh1/1yCiura+sbxc3S1vbO7l55/6Bp4lQLbIhYxbrtc4NKRtggSQrbiUYe+gpb/vhm5rceURsZRw80SbAX8mEkAyk42dF9N+uXK27VnYstg5dDBXLV++XP7iAWaYgRCcWN6XhuQr2Ma5JC4bTUTQ0mXIz5EDsWIx6i6WXzTafsJIg1oxGy+ft3NuOhMZPQt5mQ08gserPhf14npeCql8koSQkjYSPWC1LFKGazwmwgNQpSEwtcaGm3ZGLENRdkz1Ky9b3FssvQPKt651Xv7qJSu84PUYQjOIZT8OASanALdWiAgACe4Q3eHXSenBfn9SdacPI/h/BHzsc3j0CK/Q==</latexit>

Ichininomiya  
(2004)

Restrepo, Hunt & Ott (2005) 
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Approaches:

Time-average Theory (TAT)

Continuum limit approach {
<latexit sha1_base64="NPgpjRaLte2mi8hgVjnypJaKnT8=">AAAB43icbZDLTgJBEEVr8IX4Ql266UhMXJEZNdEl0Y1LNPJIgJCepgY69DzSXWNCJnyBroy684/8Af/GBmeh4F2drns7qVt+oqQh1/1yCiura+sbxc3S1vbO7l55/6Bp4lQLbIhYxbrtc4NKRtggSQrbiUYe+gpb/vhm5rceURsZRw80SbAX8mEkAyk42dF9N+uXK27VnYstg5dDBXLV++XP7iAWaYgRCcWN6XhuQr2Ma5JC4bTUTQ0mXIz5EDsWIx6i6WXzTafsJIg1oxGy+ft3NuOhMZPQt5mQ08gserPhf14npeCql8koSQkjYSPWC1LFKGazwmwgNQpSEwtcaGm3ZGLENRdkz1Ky9b3FssvQPKt651Xv7qJSu84PUYQjOIZT8OASanALdWiAgACe4Q3eHXSenBfn9SdacPI/h/BHzsc3j0CK/Q==</latexit>

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Ichininomiya  
(2004)

Restrepo, Hunt & Ott (2005) 

Oscillator density functional  :ρω,k(θ, t)
Density of oscillators with degree  and natural 
frequency  located at angle  at time 

k
ω θ t

g(ω) & P(k)

ρω,k(θ, t)
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r̃eiΨ̃ =
∑N

j=1 rj

∑N
j=1 kj

=
∑N

j=1 rj

2L

Global Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Local Order Parameter

Kuramoto model in a Network

Kuramoto Order Parameter

·θi(t) = ωi + λ
N

∑
j=1

Aij sin (θj(t) − θi(t))

r(t)eiΨ(t) =
1
N

N

∑
j=1

eiθj(t)
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·θi(t) = ωi + λ
N

∑
j=1

Aij sin (θj(t) − θi(t))
·θi(t) = ωi + λri sin (ψi − θi(t))−λhi(t)

hi(t) = Im e−iθi

N

∑
j=1

Aij (⟨eiθj⟩T − eiθj)with

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T riei(Ψi−θi(t)) =
N

∑
j=1

Aije−iθi(t)⟨eiθj(t)⟩T

·θi(t) = ωi + λIm
N

∑
j=1

Aijei(θj(t)−θi(t))

Local Order Parameter

Kuramoto model in a Network

???
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Steady State:

ωi = λri sin (θi(t) − ψi)
Locking condition

|ωi | ≤ λri

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T ri =
N

∑
j=1

Aije−iΨi⟨eiθj(t)⟩T

Kuramoto model in a Network

·θi(t) = ωi + λri sin (ψi − θi(t))
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Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T ri =
N

∑
j=1

Aije−iΨi⟨eiθj(t)⟩T =
N

∑
j=1

Aij⟨ei(θj(t)−Ψi)⟩T

=
N

∑
|ωj|≤λrj

Aij⟨ei(θj(t)−Ψi)⟩T +
N

∑
|ωj|>λrj

Aij⟨ei(θj(t)−Ψi)⟩T

Steady State:

ωi = λri sin (θi(t) − ψi)
Locking condition

|ωi | ≤ λri

Kuramoto model in a Network

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T =
N

∑
j=1

Aij⟨ei(θj(t)−Ψi)⟩T

+
N

∑
|ωj|>λrj

Aij⟨ei(θj(t)−Ψi)⟩T=
N

∑
|ωj|≤λrj

Aijei(θj−Ψi)

ri =
N

∑
j=1

Aije−iΨi⟨eiθj(t)⟩T

Kuramoto model in a Network

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T =
N

∑
|ωj|≤λrj

Aijei(θj−Ψi)= Re
N

∑
|ωj|≤λrj

Aijei(θj−Ψi)ri =
N

∑
j=1

Aije−iΨi⟨eiθj(t)⟩T

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T = Re
N

∑
|ωj|≤λrj

Aijei(θj−Ψj)ei(Ψj−Ψi)

N

∑
|ωj|≤λrj

Aij [cos(θj − Ψj)cos(Ψj − Ψi) − sin(θj − Ψj)sin(Ψj − Ψi)]

ri =
N

∑
j=1

Aije−iΨi⟨eiθj(t)⟩T

=

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T N

∑
|ωj|≤λrj

Aij 1 − (
ωj

λrj )
2

cos(Ψj − Ψi) −
ωj

λrj
sin(Ψj − Ψi)

Symmetry of g(ω)

ri =

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

ri =

 Smallest possible λ

N

∑
|ωj|≤λrj

Aij 1 − (
ωj

λrj )
2N

∑
|ωj|≤λrj

Aij 1 − (
ωj

λrj )
2

cos(Ψj − Ψi) =

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T
ri =

N

∑
|ωj|≤λrj

Aij 1 − (
ωj

λrj )
2

r̃eiΨ̃ =
∑N

j=1 rj

∑N
j=1 kj

=
∑N

j=1 rj

2L

Global Order Parameter

TAT Auto-consistent equation for ri

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T
ri =

N

∑
|ωj|≤λrj

Aij 1 − (
ωj

λrj )
2

TAT Auto-consistent equation for ri

 Adjacency Matrix

 Set of nodes’ frequencies

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T N

∑
|ωj|≤λrj

Aij 1 − (
ωj

λrj )
2

≃ ∑
j

Aij ∫
λrj

−λrj

g(ω) 1 − ( ω
λrj )

2

dω

Frequency distribution approximation (FDA)

ri =

·θi(t) = ωi + λri sin (ψi − θi(t))
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Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T
≃ ∑

j

Aij ∫
λrj

−λrj

g(ω) 1 − ( ω
λrj )

2

dω

Frequency distribution approximation (FDA)

ri x =
ω
λrj

·θi(t) = ωi + λri sin (ψi − θi(t))



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

x =
ω
λrj

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

ri ≃ λ∑
j

Aijrj ∫
1

−1
g(xλrj) 1 − x2dx  Adjacency Matrix


 Frequency Distribution

Requires:At  we have λc ri → 0+ :

·θi(t) = ωi + λri sin (ψi − θi(t))



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

Local Order Parameter

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

ri ≃ λc ∑
j

Aijrjg(0)∫
1

−1
1 − x2dx

At  we have λc ri → 0+ :

 Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

Local Order Parameter

ri

At  we have λc ri → 0+ :

≃ λc ∑
j

Aijrjg(0)
π
2

 Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

Local Order Parameter

ri

At  we have λc ri → 0+ :

∑
j

Aijrj≃
λcg(0)π

2
 Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

2
λcg(0)π

Local Order Parameter

ri

At  we have λc ri → 0+ :

∑
j

Aijrj≃  Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))

2
λcg(0)π

⃗r ≃ A ⃗r

is an eigenvector of !!!A



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

2
λcg(0)π

Local Order Parameter

At  we have λc ri → 0+ :

= Λmax(A)  Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))

is an eigenvector of !!!A



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T

Frequency distribution approximation (FDA)

λc =
2

g(0)π
1

Λmax(A)
 Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))

Critical Coupling



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T
λc =

2
g(0)π

1
Λmax(A)

KKM
c =

2
g(0)π

= KKM
c

1
Λmax(A)

·θi(t) = ωi + λri sin (ψi − θi(t))

 Adjacency Matrix

 Frequency Distribution

Requires:Critical Coupling



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T
 Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))

λc =
2

g(0)π
1

Λmax(A)
= KKM

c
1

Λmax(A)

HMF: ri = r̃ki  Degree Distribution

 Frequency Distribution

Requires:
λc =

2
g(0)π

⟨k⟩
⟨k2⟩

Critical Coupling



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
CRITICAL COUPLING

Critical Coupling

Steady State: Locking condition
ωi = λri sin (θi(t) − ψi) |ωi | ≤ λri

Kuramoto model in a Network

rieiΨi =
N

∑
j=1

Aij⟨eiθj(t)⟩T
 Adjacency Matrix

 Frequency Distribution

Requires:

·θi(t) = ωi + λri sin (ψi − θi(t))

λc =
2

g(0)π
1

Λmax(A)
= KKM

c
1

Λmax(A)

HMF: ri = r̃ki λc =
2

g(0)π
⟨k⟩
⟨k2⟩  Degree Distribution


 Frequency Distribution

Requires:

1
Λmax(A)

⟨k⟩
⟨k2⟩



⟨k2⟩ ≃ ∫
∞

0
k2P(k)dk ∼ ∫

∞

0
k2−γdk
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r̄2

Scale-free Networks P(k) ∼ k−γ

λc =
2

πg(0)
⟨k⟩
⟨k2⟩

As  decreases the network 
becomes more heterogeneous 

and the second moment 
increases

γ

The critical coupling  
decreases as  decreases

λc
γ
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REPORTS
Explosive Percolation in
Random Networks
Dimitris Achlioptas,1 Raissa M. D’Souza,2,3* Joel Spencer4

Networks in which the formation of connections is governed by a random process often undergo a
percolation transition, wherein around a critical point, the addition of a small number of
connections causes a sizable fraction of the network to suddenly become linked together. Typically
such transitions are continuous, so that the percentage of the network linked together tends to zero
right above the transition point. Whether percolation transitions could be discontinuous has been
an open question. Here, we show that incorporating a limited amount of choice in the classic
Erdös-Rényi network formation model causes its percolation transition to become discontinuous.

Alarge system is said to undergo a phase
transition when one or more of its prop-
erties change abruptly after a slight change

in a controlling variable. Besides water turning into
ice or steam, other prototypical phase transitions
are the spontaneous emergence of magnetization
and superconductivity in metals, the epidemic spread
of disease, and the dramatic change in connectivity
of networks and lattices known as percolation. Per-
haps the most fundamental characteristic of a phase
transition is its order, i.e., whether the macroscopic
quantity it affects changes continuously or dis-

continuously at the transition. Continuous (smooth)
transitions are called second-order and include many
magnetization phenomena, whereas discontinuous
(abrupt) transitions are called first-order, a familiar
example being the discontinuous drop in entropy
when liquid water turns into solid ice at 0°C.

We consider percolation phase transitions in
models of random network formation. In the classic
Erdös-Rényi (ER) model (1), we start with n iso-
lated vertices (points) and add edges (connections)
one by one, each edge formed by picking two ver-
tices uniformly at random and connecting them
(Fig. 1A). At any given moment, the (connected)
component of a vertex v is the set of vertices that
can be reached from v by traversing edges. Com-
ponents merge under ER as if attracted by gravita-
tion. This is because every time an edge is added, the
probability two given components will be merged is
proportional to the number of possible edges be-
tween themwhich, in turn, is equal to the product
of their respective sizes (number of vertices).

One of the most studied phenomena in prob-
ability theory is the percolation transition of ER
random networks, also known as the emergence of
a giant component. When rn edges have been
added, if r < ½, the largest component remains
miniscule, its number of verticesC scaling as log n;
in contrast, if r > ½, there is a component of size
linear in n. Specifically, C ≈ (4r − 2)n for r slightly
greater than ½ and, thus, the fraction of vertices
in the largest component undergoes a continuous
phase transition at r =½ (Fig. 1C). Such continuity
has been considered a basic characteristic of per-
colation transitions, occurring in models ranging
from classic percolation in the two-dimensional
grid to randomgraphmodels of social networks (2).

Here, we show that percolation transitions in
random networks can be discontinuous. We dem-
onstrate this result for models similar to ER,
thus also establishing that altering a network-
formation process slightly can affect it dra-
matically, changing the order of its percolation
transition. Concretely, we consider models that,
like ER, start with n isolated vertices and add
edges one by one. The difference, as illustrated
in Fig. 1B, is that to add a single edge we now
first pick two random edges {e1,e2}, rather than
one, each edge picked exactly as in ER and inde-
pendently of the other. Of these, with no knowl-
edge of future edge-pairs, we are to select one and
insert it in the graph and discard the other. Clearly,
if we always resort to randomness for selecting
among the two edges, we recover the ER model.
Whether nonrandom selection rules can delay (or
accelerate) percolation in such models, which have
become known as Achlioptas processes, has re-
ceived much attention in recent years (3–6).
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Fig. 1. Network evolu-
tion. (A) Under the Erdös-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e1,e2} are
picked in each step yet
only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e1 (with
product 2 × 7 = 14) would be chosen and e2 discarded (because 4 × 4 =

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e2 rather than e1. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
n = 512,000.
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Fig. 1. Network evolu-
tion. (A) Under the Erdös-
Rényi (ER) model, in each
step two vertices are cho-
sen at random and con-
nected by an edge (shown
as the dashed line). In
this example, two com-
ponents of size 7 and 2
get merged. (B) In mod-
els with choice, two ran-
dom edges {e1,e2} are
picked in each step yet
only one is added to the
network based on some selection rule, whereas the other is discarded.
Under the product rule (PR), the edge selected is the one minimizing the
product of the sizes of the components it merges. In this example, e1 (with
product 2 × 7 = 14) would be chosen and e2 discarded (because 4 × 4 =

16). In contrast, the rule selecting the edge minimizing the sum of the com-
ponent sizes instead of the product would select e2 rather than e1. (C) Typical
evolution of C/n for ER, BF (a bounded size rule with K = 1), and PR, shown for
n = 512,000.
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Recipe

Gómez-Gardeñes et al. Phys. Rev. Lett. (2011)

EXPLOSIVE SYNCHRONIZATION?

Correlated Degree-Frequency 
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Other possible 
Explosive set-ups



[Gómez-Gardeñes et al. 2011]

g(!) P (k)

CFD

CFC

FCG

Adaptive

 [Zhang et al. 2015]

 [Leyva et al. 2013]

 [Zhang et al. 2013]
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ER-like networks
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Other possible Explosive set-ups

Suppressing the emergence of a Sync macroscopic component
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Explosive Sync 
in Experiments
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NEXT STEP

Bad News

Rossler System: ·x = − (y + z)
·y = σy + x
·z = β + z(x − c)
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Explosive Sync 
in Real World? 
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Explosive Sync. Evidences
 Ongoing consensus about the role of bistability as a natural 

framework for biological switches

 Abrupt transitions and hypersensitive responses have been 
analyzed from the perspective of ES

Conscious-Unconscious Transitions (Anesthesia) 
[Kim et al. 2016, Kim et al. 2017]

Epileptic Seizures
[Wang et al. 2017]

Choroid Plexus & Circadian clocks
[Myung et al. 2018]

Frequency detection of the cochlea
[Wang et al. 2016]

Hypersensitivity of Fibromyalgia patients
[Lee et al. 2018]



@gomezgardenes

SCHOOL ON NONLINEAR DYNAMICS, COMPLEX NETWORKS, INFORMATION THEORY, AND MACHINE LEARNING IN NEUROSCIENCE 
EXPLOSIVE SYNC.

Hypersensitivity of Fibromyalgia patients [Lee et al. 2018]
EXPLOSIVE SYNC. EVIDENCES
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