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Presentation

 Originally from Montevideo, Uruguay.

 Bachelor and Master degrees from Facultad de Ciencias, 

Universidad de la Republica, Uruguay.

 PhD in physics (Bryn Mawr College, USA).

 Professor of Physics, Universitat Politecnica de Catalunya.

 Research group: Dynamics, Nonlinear Optics and Lasers



Where are we? UPC Campus Terrassa
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Laser lab in Gaia Building, 

UPC Campus Terrassa



Research lines

Data 

analysis

techniques

Applications

Nonlinear

dynamics

and complex

systems
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Lasers, neurons, climate, complex systems?
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Extreme event example: ocean rogue 

wave (sea surface elevation in meters)

Polarization switching 

Laser & neuronal spikes

Tipping point

example:

Laser turn-on

High laser pulse (optical rogue wave)



Outline

Class 1: From dynamical systems to complex systems

- Dynamical systems

- The Logistic map

- Chaotic attractors

- Synchronization

- The Kuramoto model

- Complex networks

- Machine learning and data science

Class 2: Univariate time series analysis

Class 3: Bivariate and Multivariate analysis



 Mid-1600s: Newtonian mechanics

 Analytic planetary orbits (the “two-body” problem).

 No analytic solution of the “three-body” problem.

 Late 1800s: Poincare’s phase space and recurrence theorem

The start of dynamical systems: Newton & Poincare

x
y

z Certain systems will, after a sufficiently 

long but finite time, return to a state 

very close to the initial state. 



“The evolution of a deterministic system can be 

aperiodic, unpredictable, and strongly depends on the 

initial conditions”.

How to determine the prediction horizon? 

How to estimate the uncertainty?

Poincare also had the intuition of the possibility of chaos



 Huge advance in the field of “Dynamical Systems”.

 1960s: Eduard Lorenz: simple model of 

convection rolls in the atmosphere.

 Most famous chaotic attractor.

1950-60s: computer simulations

2D projection of 3D attractor



Can we observe chaos experimentally?



 Robert May : "Simple mathematical models with 

very complicated dynamics“, Nature (1976).

The 1970s

 Difference equations (“iterated maps”), in spite of being 

simple and deterministic, can exhibit: stable points, 

stable cycles, and apparently random fluctuations. 

)(1 tt xfx 

)1( )( xxrxf A classical example: The Logistic map

x(0,1), r(0,4)



The logistic map:
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The fixed point is the solution 

of: x = r x (1-x)  x = 1 – 1/r

)](1)[( )1( ixixrix 

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation → long-term stability

Transient dynamics → oscillations

(regular or irregular)

x(0,1), r(0,4)



Bifurcation diagram: period-doubling (or subharmonic) 

route to chaos 
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M. Feigenbaum, using a small HP-65 

programmable calculator, discovered 

“hidden” order in the route to chaos: the 

scaling of the bifurcation points of the 

Logistic map.

Order within chaos (1975)

HP-65 calculator: 

the first magnetic 

card-programmable 

handheld calculator

...669201.4lim
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A universal law

Feigenbaum demonstrated that the same behavior, with the 

same mathematical constant (=4.6692…), occurs for a wide 

class of functions.

 Very different systems (in chemistry, biology, physics, etc.) 

go to chaos in the same way, quantitatively.

)(1 tt xfx 



18

(about 10 years later) With a modulated laser, keeping constant the 

modulation frequency and increasing modulation amplitude.

Problems: 

‒ How to identify an approaching 

bifurcation point (tipping point)?

‒ How to distinguish transient from 

non-transient behavior?

J. R. Tredicce et al, 

Phys. Rev. A 34, 2073 (1986).

Laser 

output 

intensity

Time

m (%)

Can we observe the period doubling route experimentally?



 Benoit B. Mandelbrot (Polish-born, 

French and American mathematician  

1924-2010): “self-similarity” and fractal 

objects: 

each part of the object is like the whole 

object but smaller.

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images.

The late 1970s



How to estimate the dimension of a fractal? 
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Abarbanel et al, Reviews of Modern Physics 65, 1331 (1993).

Box counting: number of occupied boxes scales as (1/)D

 




Examples of fractal objects in nature

Broccoli D=2.66

Human lung D=2.97 Coastline of Ireland D=1.22



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977).

 Studied chemical systems far from equilibrium.

 Discovered that the interplay of (external) input 

of energy and dissipation can lead to “self-

organized” patterns.

Patterns in nature: how “self-organization” emerges?



The 1990s: can two chaotic systems synchronize?

Coupled Lorenz systems



Can we observe the synchronization of two chaotic systems?

A problem of time series analysis: 

How to quantify synchronization? 



Mid-1600s Christiaan Huygens: two pendulum 

clocks mounted on a common board 

synchronized and oscillated in opposite 

directions (in-phase also possible).

In fact, the first observation of synchronization was done 

much earlier: mutual entrainment of two pendulum clocks



Stochastic resonance: an optimal level of noise can, in some 

bistable systems, enhance the detection of a weak signal, 

improving the performance of the system.

Effect of noise in nonlinear systems? (late 80’ and 90’)
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Bistable system Periodic signal Noise

x(t)

Time

Gammaitoni, Hanggi et al, 

Rev. Mod. Phys. 70, 223 (1998).



Can we observe the stochastic resonance phenomenon?
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(using a bistable

laser that emits in 

two orthogonal 

polarizations)



Effect of noise in excitable systems?
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B. Lindner et al., Phys. Rep. 392, 321 (2004).
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Fitz Hugh–

Nagumo model

D=0: stable behavior

D



Observation of coherence and stochastic resonance in 

excitable lasers
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(varying the frequency of the signal)(varying the level of noise)



 Douglass et al., “Noise enhancement of information-

transfer in crayfish mechanoreceptors by stochastic 

resonance”, Nature 365, 337 (1993).

 Levin and Miller, “Broadband neural encoding in the cricket 

cercal sensory system enhanced by stochastic resonance”, 

Nature 380, 165 (1996).

 Moss et al., “Stochastic resonance and sensory information 

processing: a tutorial and review of application”, Clinical 

Neurophysiology 115, 267 (2004).

 McDonnell and Lawrence, “The benefits of noise in neural 

systems: Bridging theory and experiment”, Nat. Rev. 

Neurosci. 12, 415 (2011).

And in neural systems?
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However, what is “noise”? “neural noise”? 
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2D random walk or drunkard’s walk
(The Viking Press, New York,1955)

A main problem in time series 

analysis: How to “find the 

signal”? 

How to filter out noise? 

How to define a “point process”?

Someone's noise is another one's signal
(example: for a climatologist “weather” is noise).



Late 90s, early 2000s: synchronization of a large number 

of dynamical systems



Another example of synchronization: the opening of the 

London Millennium Bridge, June 10, 2000

Source: BBC

Crowd synchrony on the Millennium Bridge, 

Strogatz et al, Nature 438, 43 (2005)



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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The Kuramoto model (Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Synchronization transition as the coupling strength increases

Strogatz, Nature 2001

Video: https://www.ted.com/talks/steven_strogatz_on_sync

https://www.ted.com/talks/steven_strogatz_on_sync


 Large number of interacting elements

 The elements and/or their interactions are nonlinear.

 Main difference with linear systems: a “reductionist” 

approach does not work. 

 The behavior of complex system can not be predicted from 

the behavior of the individual units.

2000s to present: from chaotic systems to complex systems 



Complexity science

S. Strogatz, Nature 2001

 Networks (or graphs) are used for mathematical modelling 

of complex systems.

 Emergent properties, not present in the individual elements.

 The challenge: to understand how 

the structure of the network and 

the dynamics of individual units 

determine the collective behavior.

 Applications

‒ Communication networks

‒ Transport networks

‒ Epidemic and rumor spreading

‒ Neuroscience

‒ Physiology

‒ Etc.



Multilayer networks
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Kivela et al, J. Complex Netw. 2, 203 (2014).

Facebook

Twitter

Linkedin



Networks of networks
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Source: Wikipedia

Can we predict the 

effect of a critical (or 

extreme) event in 

one network? 

Cascade of failures?



Interactions among several elements: simplicial complexes
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Example:

Giusti et al., J Comput Neurosci 41, 1 (2016).

Battiston et al., Phys. Rep. 874, 1–92 (2020).
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for groundbreaking contributions to our understanding of complex systems

½ Syukuro Manabe and Klaus Hasselmann

"for the physical modelling of Earth's climate, 

quantifying variability and reliably predicting 

global warming“

½ Giorgio Parisi "for the 

discovery of the interplay of 

disorder and fluctuations in 

physical systems from atomic 

to planetary scales." 



 Systems formed by a large number of elements / 

subsystems that have nonlinear behavior.

 The elements / subsystems interact with each other in a 

non-linear way (multiple spatial and/or temporal scales).

 The structure of the system is heterogeneous (neither 

regular nor completely random).

 The response of the system to a change or to a perturbation 

is often unexpected, contra intuitive (adaptation).

 A large linear system is complicated but not complex.

Which systems are “complex”?
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Time series analysis: extracts “features” from the output 

signals of complex systems
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Algorithms allow massive feature extraction from data

Fulcher & Jones, hctsa: A Computational Framework for Automated Time-Series 

Phenotyping Using Massive Feature Extraction. Cell Systems, 5, 527–531 (2017). 



Machine learning classification algorithms
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Support Vector Machine

M. Zanin et al, Physics Reports 635, 1 (2016).

Decision Tree



From dynamical systems to complex systems & data science

 Dynamical systems theory (bifurcations, low-dimensional 

attractors) allows to 

‒ uncover “order within chaos”, 

‒ uncover universal characteristics

 Synchronization emerges in interacting systems

 Complexity science: study “emergent” phenomena in large sets 

of nonlinear interacting units (tipping points, critical transitions).

 Time series analysis allows to characterize signals and to 

“obtain features” that encapsulate properties of the signals.

 Data science: feature selection, classification, forecasting.


