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❖Physics, as well as, other scientific disciplines
like biology or finance, can be considered
observational sciences, that is, they try to infer
properties of an unfamiliar system from the
analysis of temporal sequences of observations of
it behavior, commonly called time series.

Dynamical Systems & Time Series



Dynamical Systems & Time Series

❖Dynamical systems are systems that evolve in time. 

❖In practice, one may only be able to measure a scalar
time series 𝑿(𝒕) which may be a function of variables

𝑽 = 𝒗𝟏, 𝒗𝟐, … . , 𝒗𝒌 describing the underlying dynamics 

(i.e. 
𝒅𝑽

𝒅𝒕
= 𝒇(𝑽)).



Dynamical Systems & Time Series

❖Then, the natural question is, from 𝑿 𝒕 how much we
can learn about the dynamics of the system.
❖In a  more formal way, given a system, be it natural 
or man-made, and given an observable of such system 
whose evolution can be tracked through time, a natural 
question arises: 
❖how much information is this observable encoding
about the dynamics of the underlying system? 



Dynamical Systems & Time Series

OBJETIVE:

❑ Given a time series:

𝑿 𝒕 = 𝒙𝒕 , 𝒕 = 𝟏,… ,𝑴
can we said if it originated by
a chaotic low dimensional dynamics or
it is originated by a stochatics dynamics ?



Chaotic  or  Stochastic Dynamics ? 

➢If one is able to show that the system is dominated by 
low-dimensional deterministic chaos, then only few 
(nonlinear and collective) modes are required to 
describe the pertinent dynamics. 

➢If not, then the complex behavior could be modeled by 
a system dominated by a very large number of excited 
modes which are in general better described by 
stochastic or statistical approaches.



❖Stochastic & Chaotic time series sheare
some characteristic which make them
almost indistiguishable

❖A wide-band power spectrum

❖Power spectrum of type 𝒇−𝒌, with 𝒌 ≥ 𝟎

❖A delta like auto-correlation function

❖An irregular behavior of the measured signals

Chaotic  or  Stochastic Dynamics ?  



Chaos & Information

❖Chaotic systems display “sensitivity to initial conditions”
which manifests instability everywhere in the phase space
and leads to non-periodic motion (chaotic time series).

❖They display long-term unpredictability despite the
deterministic character of the temporal trajectory.

❖In a system undergoing chaotic motion, two neighboring
points, in phase space move away exponentially rapidly.



Chaos & Information

❖Let 𝒙𝟏 𝒕 and 𝒙𝟐 𝒕 be two such points, located within a 
ball of radius 𝑹 at time 𝒕.

❖Further, assume that these two points cannot be resolved
within the ball due to poor instrumental resolution.



Chaos & Information

❖Let 𝒙𝟏 𝒕 and 𝒙𝟐 𝒕 be two such points, located within a 
ball of radius 𝑹 at time 𝒕.

❖Further, assume that these two points cannot be resolved
within the ball due to poor instrumental resolution.

❖At some later time 𝒕∗ the distance between the points 
will be typically grow to

𝒙𝟏 𝒕∗ − 𝒙𝟐 𝒕∗ ≈ 𝒙𝟏 𝒕 − 𝒙𝟐 𝒕 𝒆𝒙𝒑 𝚲 𝒕∗ − 𝒕

With 𝚲 > 𝟎 for a chaotic dynamics and 𝚲 the biggest
Lyapunov exponentes.

❖When this distance at time 𝒕∗exceeds 𝑹, the points 
become experimentally distinguishable.



Chaos & Information



Chaos & Information

❖ This implies that instability reveals some
information about the phase space population
that was not available at earlier times.
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❖ This implies that instability reveals some
information about the phase space population
that was not available at earlier times.

❖ We can think of chaos as an information source



Chaos & Information

❖ This implies that instability reveals some
information about the phase space population
that was not available at earlier times.

❖ We can think of chaos as an information source

We can use Information Theory based quantifiers

to characterize chaotics systems.



Information Theory Quantifiers

We can use Information Theory based
quantifiers to characterize chaotic systems !!!

❖Entropic Measures 
➢ Shannon,
➢ Tsallis, 
➢ Renyi

❖Fisher’s Information Measure

❖Generalized Statistical Complexity



❖Given a continuos probability distribution function (PDF) 

𝒇 𝒙 with 𝒙 ∈ 𝜴 ∈ ℝ and ׬𝜴 𝒇 𝒙 𝒅𝒙 = 𝟏 ,

it associated Shannon Entropy is defined by

𝑺 𝒇 = −න

𝛀

𝒇 𝒙 ln 𝒇 𝒙 𝒅𝒙

a measure of “global character” that it is not too sensitive
to strong changes in the distribution taking place on small-

sized región.

Information Theory Quantifiers



❖Such is not the case with Fisher’s Information Measure
(FIM), which constitutes a measure of the gradient 
content of the distribution 𝒇 𝒙 , thus being quite sensitive 
even to tiny localized perturbations, then is a measure of 
“local character”. 

𝑭 𝒇 = න
𝛀

𝟏

𝒇(𝒙)

𝒅𝒇(𝒙)

𝒅𝒙

𝟐

𝒅𝒙 = 𝟒න
𝛀

𝒅𝝍 𝒙

𝒅𝒙

𝟐

𝒅𝒙

where 𝒇 𝒙 = 𝝍(𝒙)𝟐 is the real probability amplitude. 

Information Theory Quantifiers



❖Let now 𝑷 = 𝒑𝒊 ≥ 𝟎; 𝒊 = 𝟏,… ,𝑵 be a discrete probability
distribution, with 𝑵 the number of possible states of the 
system under study and σ𝒊=𝟏

𝑵 𝒑𝒊 = 𝟏, then:

➢The associated Shannon Entropy is given by

𝑺 𝑷 =-σ𝒊=𝟏
𝑵 𝒑𝒊 ln 𝒑𝒊

and the normalized Shannon entropy, is given by

𝑯 𝑷 = Τ𝑺 𝑷 𝑺𝒎𝒂𝒙

with 𝑺𝒎𝒂𝒙 = ln𝑵.

Information Theory Quantifiers



➢The discrete normalized Fisher’s Information Measure is 
given by

𝑭 𝑷 = 𝑭𝟎 ෍

𝒊=𝟏

𝑵−𝟏

𝒑𝒊+𝟏
𝟏/𝟐 − 𝒑𝒊

𝟏/𝟐 𝟐

where

𝑭𝟎 = ൜
𝟏 𝐢𝐟 𝒑𝒊∗ 𝐟𝐨𝐫 𝒊

∗ = 𝟏, 𝐨𝐫 𝒊∗ = 𝑵 𝐚𝐧𝐝 𝒑𝒊 = 𝟎 ∀ 𝒊∗≠ 𝒊

Τ𝟏 𝟐 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

F. Olivares, A. Plastino, O. A. Rosso

Contrasting chaos with noise via local versus global information quantifiers

Physics Letters A 376 (2012) 1577–1583

Information Theory Quantifiers



• Complexity ?

Information Theory Quantifiers



Some options for measure of Complexity C[P] are:

* SHINER, DAVISON, LANSBERG 

Physical Review 59 (1999) 1459, Simple measure for complexity.

CSDL [ P ] =  H[ P ] . ( 1 – H[ P ] )

Measures for Complexity



* LOPEZ-RUIZ, MANCINI, CALVET

Physical Letters A 209 (1995) 321, A statistical measure of complexity.

CLMP[ P ] =  H[ P ] . QE( [ P, Pe ] )   with  QE = || P – Pe ||

Measures for Complexity



* MARTIN, PLASTINO, ROSSO

Physica A 209 (2006) 439, Generalized statistical complexity measures.

CMPR[ P ] =  H[ P ] . QJS( [ P, Pe ] ) with  QJS = JS{ P , Pe }

Measures for Complexity



• Complexity ?

Information Theory Quantifiers



The Simple & The Complex

H = 0

C = 0

H ≠ 0

C ≠ 0

H = 1

C = 0



Complexity



The Simple & The Complex

H = 0

C = 0

H ≠ 0

C ≠ 0

H = 1

C = 0



Crystal & Ideal Gas

CRYSTAL IDEAL GAS

• High ordered system • Completely disordered 

system

• Minimal information stored 

in the system

• Maximal information stored 

in the system

• Probability Distribution 

Function P in phase space:

pj = 1    for   j = k

pj = 0    for   j ≠ k 

• Probability Distribution 

Function P in phase space:

pj = 1/N   for   j = 1, ... , N 

(equiprobability distribution)

• Maximum   D( P, Pe) • Minimum   D( P, Pe)



Statistical Complexity

R. López-Ruiz, H. L. Mancini, and X.  Calbet.
A statistical measure of complexity.
Physics Letter A 209  (1995) 321-326.



Disorder H



Disequilibrium Q



Selection of the information measure J



Selection of Distance D



Generalized 
Statistical Complexity Measures

O. A. Rosso, M. T. Martín, A. Figliola, K. Keller, and A. Plastino.
EEG analysis using wavelet-based information tools.
Journal Neuroscience Methods 153 (2006) 163-182.



• Euclidean Distance 

• Wootters Distance

𝐷𝑊 𝑃1, 𝑃2 = cos−1 ෍

𝑗=1

𝑁

𝑝𝑗
(1) 1/2

𝑝𝑗
(2) 1/2

• Kullback Relative Probability

• 𝐷𝐾 𝑃1, 𝑃2 = 𝐾 𝑃1 𝑃2 = σ𝑗=1
𝑁 𝑝𝑗

(1)
ln

𝑝𝑗
(1)

𝑝
𝑗
(2)

Distances between two PDF

𝐷𝐸 𝑃1, 𝑃2 = σ𝑗=1
𝑁 𝑝𝑗

(1)
− 𝑝𝑗

(2) 2



Maximum and Minimum of
Generalized Statistical Complexity Measures

M. T. Martín, A. Plastino, and O. A. Rosso,
Generalized statistical complexity measures: Geometrical and analytical 
properties. Physica A 369 (2006) 439-462.



Maximum and Minimum of
Generalized Statistical Complexity Measures



N = 6

Maximum and Minimum of
Generalized Statistical Complexity Measures



Maximum and Minimum of
Generalized Statistical Complexity Measures



Generalized Statistical Complexity

❖ Statistical Complexity Measure (SCM), C[P] is able to detect 
essential details of the dynamical processes underlying the dataset.

❖ SCM depends on two different probability distributions: one 
associated with the system under analysis, P, and the other the 
uniform distribution, Pe.

❖ Furthermore, it was shown that for a given value of H, the range 
of possible C values varies between a minimum Cmin and a 
maximum Cmax, restricting the possible values of the SCM. 



Generalized Statistical Complexity

❖Thus, it is clear that important additional 
information related to the correlational 
structure between the components of the 
physical system is provided by evaluating the 
statistical complexity measure.



Generalized Statistical Complexity



Chaotic or Stochastic Dynamics

White noise

K = 0

Logistic  

Map

R =  4

PDF-Histogram PDF-Histogram



Chaotic or Stochastic Dynamics

White noise

K = 0

Logistic  

Map

R =  4

𝑯 𝑷(𝑯𝒊𝒔𝒕) ≅ 𝟏

C 𝑷(𝑯𝒊𝒔𝒕) ≅ 𝟎

F 𝑷(𝑯𝒊𝒔𝒕) ≅ 𝟎

𝑯 𝑷(𝑯𝒊𝒔𝒕) = 𝟏

C 𝑷(𝑯𝒊𝒔𝒕) = 𝟎

F 𝑷(𝑯𝒊𝒔𝒕) = 𝟎



Chaotic or Stochastic Dynamics

White noise

K = 0

Logistic  

Map

R =  4

𝑯 𝑷(𝑯𝒊𝒔𝒕) ≅ 𝟏

C 𝑷(𝑯𝒊𝒔𝒕) ≅ 𝟎

F 𝑷(𝑯𝒊𝒔𝒕) ≅ 𝟎

𝑯 𝑷(𝑯𝒊𝒔𝒕) = 𝟏

C 𝑷(𝑯𝒊𝒔𝒕) = 𝟎

F 𝑷(𝑯𝒊𝒔𝒕) = 𝟎



Chaotic or Stochastic Dynamics

❖ The PDF must to include the time causality

➢ networks: The visibility graph. 

Proc. Natl. Acad. Sci. USA 105: 4972–4975.



Chaotic or Stochastic Dynamics

❖ The PDF must to include the time causality

➢Bandt and Pompe Methodology
Bandt C, Pompe B
Permutation entropy: a natural complexity measure for time series. Phys. 
Rev. Lett. 88 (2002) 174102.

➢Visibility Graph and Horizontal Visibility Grapph
Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC  
From time series to complex networks: The visibility graph. 
Proc. Natl. Acad. Sci. USA 105 (2008) 4972–4975.



Given a time series

𝑿 𝒕 = 𝒙𝒕 , 𝒕 = 𝟏,… ,𝑴 ; 𝒙𝒕 ∈ ℝ
we can define the associate probability distribution
function based on:
• Frequency counting
• Histogram of amplitudes
• Binary distribution
• Frequency representation (Fourier Transform)
• Frequency bands representation (Wavelet Transform)
• Ordinal patterns (Bandt-Pompe methodology)
• Horizontal Visibility Graph / Visibility Graph

Probability  distribution P



Application to Logistic Map

Robert May 1976. "Simple mathematical 
models with very complicated dynamics." 
Nature 261(5560):459-467 

discrete-time demographic model 

xn = population at year n,  
xo = initial population

-Reproduction (~xn)
-Starvation (~1-xn)



Application to Logistic Map



Application to Logistic Map

𝑃𝐷𝐹 − 𝑏𝑖𝑛𝑎𝑦 𝑒𝑣𝑎𝑙𝑢𝑡𝑖𝑜𝑛,
3.4 ≤ 𝑟 ≤ 4.0; Δ𝑟 = 0.0003



Application to Logistic Map

𝑃𝐷𝐹 − 𝑏𝑖𝑛𝑎𝑦 𝑒𝑣𝑎𝑙𝑢𝑡𝑖𝑜𝑛,
3.4 ≤ 𝑟 ≤ 4.0; Δ𝑟 = 0.0003



Application to Logistic MapApplication to Logistic Map

𝑃𝐷𝐹 − 𝑏𝑖𝑛𝑎𝑦 𝑒𝑣𝑎𝑙𝑢𝑡𝑖𝑜𝑛, 3.4 ≤ 𝑟 ≤ 4.0; Δ𝑟 = 0.0003



Application to Logistic Map



Application to Logistic Map

P. W. Lamberti, M. T. Martín, A. Plastino, and O. A. Rosso.
Intensive entropic nontriviality measure.
Physica A 334 (2004) 119-131.



Bandt & Pompe - PDF: 
Summary  

Given a time series 𝑿 𝒕 = 𝒙𝒕 , 𝒕 = 𝟏,… ,𝑴 ; 𝒙𝒕 ∈ ℝ

we map it on 𝑿 𝒕 ↦ 𝒀𝑠
𝐷,𝜏

= 𝑥𝑠 , 𝑥𝑠+𝜏 , 𝑥𝑠+2𝜏 , … , , 𝑥𝑠+(𝐷−1)𝜏

ordering the observations 𝑥𝑠 ∈ 𝒀𝑠
𝐷,𝜏 in increasing order

𝒀𝑠
𝐷,𝜏

↦ 𝝅𝑠
𝐷
= 𝑟0 , 𝑟1 , 𝑟2 , … , 𝑟𝐷−1

the permutation pattern is given by

𝝅𝑠
𝐷
↦ 𝜋𝑠

(𝐷)
= 0 , 1 , 2 , … 𝐷 − 1

such that 
𝑥𝑠+𝑟0 < 𝑥𝑠+𝑟1 < 𝑥𝑠+𝑟2 < … < 𝑥𝑠+𝑟𝐷−1



Bandt & Pompe - PDF: 
Summary  

❖The Bandt & Pompe PDF 𝚷(𝑫,𝝉) ≡ 𝑝 𝜋𝑠
(𝐷)

incorporate 

in natural way the time causality.

❖The methodology can be applied to any kind of time 
series.

❖The only condition for applicability of BP methodology is 
a very weak stationary assumption: for k ≤ 𝑫 the 
probability for 𝒙𝒕 < 𝒙𝒕+𝒌 should not depend of t.

❖The amplitude values of 𝒙𝒕 are not taken into account, 
only its sequential ordering.



Bandt & Pompe - PDF: 
Summary  

❖The Bandt & Pompe PDF 𝚷(𝑫,𝝉) is invariant under 
monotonic transform

❖The time series length 𝑴must be 𝑴 >> D! in order to 
have a good statistics

❖The causal 𝑯 × 𝑪 − 𝒑𝒍𝒂𝒏𝒆 is a good diagnostic tool for 
discriminate chaotic and stochastic nature of the time 
series, since the quantifiers have distinctive behaviors for 
different type of dynamics.



Bandt & Pompe - PDF: 
Summary  

❖ Chaotic maps have intermedia entropy 𝑯 while the complexity 
𝑪 reaches larger values close to those of a limit value 𝑪𝒎𝒂𝒙 .

❖ Similar behavior is still observed when the time series is
contaminated with small or moderate amount of uncorrelated or
correlated noise.

❖ Pure Uncorrelated stochastic time series are localized quite close to 
extreme value 𝑯,𝑪 ≅ (𝟏, 𝟎) . Pure correlated stochastic time series 
present decreasing values of entropy 𝑯with the increasing 
correlation value, and associate increase of the complexity  𝑪 value  
at intermediate value between 𝑪𝒎𝒊𝒏 and 𝑪𝒎𝒂𝒙 .



Bandt-Pompe PDF



Bandt-Pompe PDF



Bandt-Pompe PDF



Bandt-Pompe PDF

Ordinal patterns in a simple time series. (A) Ordinal patterns at the dimension d = 3. (B) Illustration of the 
ordinal procedure for d = 3  for sine and white noise time series. (C) Probability distribution of ordinal 
patterns π.



Bandt-Pompe PDF

The number of patterns increases as D! 
a drawback and an advantage; 
is a problem for short data sets.

D = 4 ; D! = 24

D = 5 ; D! = 120



Bandt-Pompe PDF



Bandt-Pompe PDF



Chaos &  Noise



STOCHASTIC DYNAMICS:
❑ Nises with power spectrum

k = 0, 0.5, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.5

❑ fractional Brawnian motion (fBm):

generalized power spectrum 

α = ( 2h+1 ) =  1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8

❑ fractional Gaussian noise (fGn): 

generalized power spectrum

β = ( 2h-1 ) = -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8

Chaos  &  Noise



Chaos  &  Noise



Bandt & Pompe - PDF: 
Summary  



❖ For deterministic one dimensional maps, Amigó et al.
[Europhys. Lett. 79 (2007) 50001] have conclusively shown
that not all the possible ordinal patterns can be effectively
materialized into orbits, which in a sense makes these
patterns “forbidden”.

❖ This is an established fact, not a conjecture !!!

❖ The existence of these forbidden ordinal patterns becomes a
persistent feature, a “new” dynamical property.

❖ For a fixed pattern-length the number of forbidden patterns
of a time series (unobserved patterns) is independent of the
series length N.

Amigó Paradigm: 
forbidden / missing patterns 



❖ Remark that this independence does not characterize other
properties of the series such as proximity and correlation,
which die out with time.

❖ For example, in the time series generated by the logistic map
if we consider patterns of length D=3, the pattern {2,1,0} is
forbidden.
That is, the pattern

x_{k+2} < x_{k+1} < x_{k}
never appears !!!!

Amigó Paradigm: 
forbidden / missing patterns 



❖ Remark that this independence does not characterize other
properties of the series such as proximity and correlation,
which die out with time.

❖ For example, in the time series generated by the logistic map
if we consider patterns of length D=3, the pattern {2,1,0} is
forbidden.
That is, the pattern

x_{k+2} < x_{k+1} < x_{k}
never appears !!!!

❖ Stochastic process COULD ALSO
PRESENT forbidden patterns !!!.

Amigó Paradigm: 
forbidden / missing patterns 



❖ However, in the case of either uncorrelated (white noise) or
correlated stochastic processes (noise with f^{-k} PS, oBm,
fBm, fGn) it can be numerically ascertained that no
forbidden patterns emerge.

❖ If the data set is large enough, all the ordinal patterns should
eventually appear. The PDF is the uniform.

❖ For correlated stochastic processes the probability of observing
individual pattern depends not only on the time series length
N but also on the correlation structure.

❖ The existence of a non-observed ordinal pattern does not
qualify it as “forbidden”, only as “missing” and is due to the
finite length of the time series.

Amigó Paradigm: 
forbidden / missing patterns 



➢ Consider the ordinal pattern PDF with embedding dimension D
and embedding lag 𝝉 , 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒕𝒊𝒎𝒆 𝒔𝒆𝒓𝒊𝒆𝒔 𝒙 𝒕

P 𝒙,𝑫, 𝝉 ≡ 𝒑(𝝉) 𝝅𝒌 , 𝒌 = 𝟏,… ,𝑫!
➢ The Normalized Permutation Shannon Entropy is given by:

PE 𝒙,𝑫, 𝝉 ≡ -
𝟏

ln 𝑫!
σ𝒌=𝟏
𝑫! 𝒑(𝝉) 𝝅𝒌 ln 𝒑(𝝉) 𝝅𝒌

➢ The Normalized Permutation Renyi Entropy is given by:

RPE 𝒙,𝑫, 𝝉, 𝒒 ≡ -
𝟏

ln 𝑫!

𝟏

𝟏−𝒒
ln σ𝒌=𝟏

𝑫! 𝒑(𝝉) 𝝅𝒌
𝒒

Where the parameter 𝒒 ≥ 𝟎 , and 𝒒 ≠ 𝟏

Permutation Min-Entropy
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➢ Consider the ordinal pattern PDF with embedding dimension D
and embedding lag 𝝉 , 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒕𝒊𝒎𝒆 𝒔𝒆𝒓𝒊𝒆𝒔 𝒙 𝒕

P 𝒙,𝑫, 𝝉 ≡ 𝒑(𝝉) 𝝅𝒌 , 𝒌 = 𝟏,… ,𝑫!
➢ The Normalized Permutation Shannon Entropy is given by:

PE 𝒙,𝑫, 𝝉 ≡ -
𝟏

ln 𝑫!
σ𝒌=𝟏
𝑫! 𝒑(𝝉) 𝝅𝒌 ln 𝒑(𝝉) 𝝅𝒌

➢ The Normalized Permutation Renyi Entropy is given by:

RPE 𝒙,𝑫, 𝝉, 𝒒 ≡ -
𝟏

ln 𝑫!

𝟏

𝟏−𝒒
ln σ𝒌=𝟏

𝑫! 𝒑(𝝉) 𝝅𝒌
𝒒

Where the parameter 𝒒 ≥ 𝟎 , and 𝒒 ≠ 𝟏

Permutation Min-Entropy



Note that:
❖ 𝒒 < 𝟏 ⟹ benefits rare events
❖ 𝒒 > 𝟏 ⟹ prinvileges  salient events
❖ 𝒒 = 𝟏 ⟹ Shannon Entropy
When q→ ∞ the RPE converge to the Permutation Min-Entropy given by by 

PME 𝒙,𝑫, 𝝉 ≡ -
𝟏

ln 𝑫!
ln

𝑀𝑎𝑥
𝑘 = 1,… , 𝐷!

𝒑(𝝉) 𝝅𝒌

❖ We retain the main adventages of PE:
a) Simplicity
b) Low computational cost
c) Noise robustness
d) Invariance with respect to monotonus transformations
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O. A. Rosso, L. C. Carpi, P. M. Saco, M. Gómez Ravetti,  A. Plastino, H. A. Larrondo

Causality and the Entropy-Complexity Plane: Robustness and Missing Ordinal Patterns , 

Physica A 391 (2012) 42 – 55 
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N = 10**5 ; 
D = 6

O. A. Rosso, L. C. Carpi, P. M. Saco, M. Gómez Ravetti, H. A. Larrondo, A. Plastino

The Amigó paradigm of forbidden/missing patterns: a detailed analysis, The European Physics Journal B 85 (2012) 419 – 430 
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Fisher Information Measure

Logistic Map:  𝑿𝒏+𝟏 = 𝑹 𝑿𝒏( 𝟏 − 𝑿𝒏)
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F. Olivares, A. Plastino, O. A. Rosso
Contrasting chaos with noise via local versus global information quantifiers
Physics Letters A 376 (2012) 1577–1583 Logistic Map:  𝑿𝒏+𝟏 = 𝑹 𝑿𝒏( 𝟏 − 𝑿𝒏)
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C & Fisher Information Measure

Logistic Map:  𝑿𝒏+𝟏 = 𝑹 𝑿𝒏( 𝟏 − 𝑿𝒏)



Fisher Information Measure

Delay Logistic Map:  ቊ
𝑿𝒏+𝟏 = 𝑹 𝑿𝒏 𝟏 − 𝒀𝒏

𝒀𝒏+𝟏 = 𝑿𝒏
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Scalp EEG signal for an epileptic tonic–clonic seizure, recorded at the central right location C4. Original (left) and without muscular contributions.
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Application to EEG Tonic-Clonic Epileptic records

Schematic illustration of the method: the EEG is transformed to the time–frequency domain by the ODWT. Wavelet 

coefficients for each resolution level are obtained and used for calculation of the wavelet energy, from which the

Relative Wavelet Energy is computed (RWE). RWE are further used for the calculation of Normalized Total Wavelet 

Entropy and Wavelet Statistical Complexity.



Time-evolution of RWE energy corresponding
to EEG noise-free signal (without contribution
of frequency bands B1and B2, representing
frequency contributions
> 12.8Hz corresponding mainly to muscular 
activity that blur the EEG signal. It is clear that
the seizure is dominated by the middle
frequency bands B3 and B4 (12.8-3.2 Hz), with
a corresponding abrupt activity decreases in 
the low frequency bands B5 and B6 (3.2-
0.8Hz). This behavior can be associated with
the epileptic recruiting rhythm – 10 Hz 
(shadowed area).  

O. A. Rosso, M. T. Martín, A. Figliola, K. Keller, and A. Plastino.
EEG analysis using wavelet-based information tools.
Journal Neuroscience Methods 153 (2006) 163-182.

Application to EEG Tonic-Clonic Epileptic records



O. A. Rosso, M. T. Martín, A. Figliola, K. Keller, and A. Plastino.
EEG analysis using wavelet-based information tools.
Journal Neuroscience Methods 153 (2006) 163-182.

Application to EEG Tonic-Clonic Epileptic records



Temporal evolution of the normalized escort-
Tsallis wavelet entropy (GWS)  corresponding
to an EEG noise-free signal.
The behavior of  the GWS  clearly varies with
q in the temporal domain. 
During the pre- and post-ictal stages, these
normalized GWS-values acquire a rather
regular,  constant behavior, with a dispersion
that diminishes as  q grows. 
For all q >1, the normalized GWS values
during the ictal stage are much smaller than
those pertaining to the pre-ictal stage. 
This difference is better appreciate in the
time range corresponding to the ``epileptic
recruiting rhythm" (shadowed area in the
figure). 

O. A. Rosso, M. T. Martín, A. Figliola, K. Keller, and A. Plastino.
EEG analysis using wavelet-based information tools.
Journal Neuroscience Methods 153 (2006) 163-182.
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Temporal evolution of the Jensen escort-Tsallis
wavelet statistical compplexity (JGWC)  
corresponding to an EEG noise-free signal.
The behavior of  the JGWC  clearly varies with q 
in the temporal domain. For all q >1, the JGWC 
values during the ictal stage are much grater
than those pertaining to the pre-ictal stage. 
This difference is better appreciate in the time 
range corresponding to the ``epileptic
recruiting rhythm" (shadowed area in the
figure). 

O. A. Rosso, M. T. Martín, A. Figliola, K. Keller, and A. Plastino.
EEG analysis using wavelet-based information tools.
Journal Neuroscience Methods 153 (2006) 163-182.
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O. A. Rosso, M. T. Martín, A. Figliola, K. Keller, and A. Plastino.
EEG analysis using wavelet-based information tools.
Journal Neuroscience Methods 153 (2006) 163-182.



• Thank a lot !!! 
• Questions ?

• Gracias !!!
• Preguntas ?


