Jefferson Lab in the EIC Era

Patrizia Rossi

10th International Conference on Physics Opportunities at an ElecTron-Ion-Collider (POETIC2023) ICTP-SAIFR São Paulo (Brazil), May 2-6, 2023

TJNAF is managed by Jefferson Science Associates for the US Department of Energy

Introduction: An Asymmetric Path

"The ability to reduce everything to simple fundamental laws does not imply the ability to start from those laws and reconstruct the universe." -- *More is different*, P. W. Anderson [Science 177, 393 (1972)].

Non-pQCD: Lattice Calculations

Remarkable results by LQCD!

However:

- Currently there is no formulation of lattice QCD that allows us to simulate the real-time dynamics of a quark-gluon system
- It is computationally intensive

Jefferson Lab

Phys.Rev.Lett. 119 (2017) 14, 142002

Jefferson Lab and CEBAF

Too No

 Explore the fundamental nature of confined states of quarks and gluons → Non-perturbative regime of QCD

Jefferson Lab

Jefferson Lab and CEBAF

5

- Upgrade completed in September 2017
 - CW electron beam, $E_{max} = 12 \text{ GeV}$, $Pol_{max} \approx 90\%$
- High intensity polarized photon beam at 9 GeV (Hall D)
- Range of beam energies & currents delivered to multiple exp. halls simultaneously

Fixed target experiments at the "luminosity frontier" (up to 10³⁹ e-N /cm²/ s)

Jefferson Lab

Jefferson Lab and CEBAF

Jefferson Lab Physics Program

Probe the emergence of hadron structure & the dynamics non-pQCD

- 1D-3D Nucleon Structure
- Hadrons & Cold Nuclear Matter
- Hadron Spectra
- Test of SM & Fundamental Sym.

Complex problem which demands different approaches and measurements to access multiple observables

 86% complete in FY29 without SoLID, 70% complete with SoLID (assuming optimal running operation)

...not including new proposals

~90 approved experiment, ~1/3 executed

EIC-CEBAF: Two Complementary Facilities

Moving a step farther:

- Double CEBAF energy
- Positron beam

Why CEBAF @ 22 GeV?

- A medium energy electron accelerator at the luminosity frontier is
 - critical to understanding the rich variety of **non-perturbative** effects manifested in hadronic structure
 - complementary to high energy facilities that illuminate the perturbative dynamics and discover the fundamental role of gluons in nucleons and nuclei

Jefferson Lab

What a 22 GeV upgrade would bring:

- some important thresholds would be crossed → charm, nuclear distances, in fundamental symmetries, etc..
- An energy window which sits between JLab @ 12 GeV and EIC
 → test and validation of our theory from lower to higher energy and with high precision
- A rich physics program is under development, leveraging on existing or alreadyplanned infrastructure and on the <u>uniqueness of CEBAF HIGH LUMINOSITY</u>

Science Case for an Energy Upgrade

Science at the Luminosity Frontier: JLab at 22 Gev January 23-25, 2023

- Spectra and structure of heavy and light hadrons asprobes of QCD
- Sea and valence partonic structure and spin
- Form Factors, Generalized Parton Distributions and Energy-Momentum Tensor

https://www.jlab.org/conference/luminosity22gev

- Fragmentation, Transverse Momentum and Parton correlations
- Hadron-quark transition and nuclear dynamics at extreme conditions
- Low-energy tests of the Standard Model and Fundamental Symmetries

- Physics case summarized in a short document sent to the LRP writing committee
- Longer document is in preparation
 - It will be circulated within the community
 - Goal is to post it on
 (ArXiv) by the end of May

APS April Meeting 2023 Apr 15 & 16, 2023

<u>B15/K16 Mini-Symposium:</u> Opportunities with Jlab Upgrades in Energy, Luminosity and a Positron Beam

Spectroscopy of Exotic States with cc

Photoproduction of hadrons with charm quarks: <u>new tool for discovery in QCD</u>

→ potentially decisive information about the nature of some 5-quark and 4-quark candidates
 → a unique method to probe the structure of the proton

- Many "XYZ" states observed in B decays, e⁺e- colliders
- Scarce consistency between various production mechanisms
- Significant theoretical interest and progress, but internal structure not understood yet

Interpretation of data is complicated by nonresonant $D^{*-}D \rightarrow J/\psi\pi^-$ scattering that can produce peaks in invariant mass spectra for certain choices of $E_{\rm cm}$ and π^+ momentum that result in a $D^{*-}D$ interaction. These peaks are effects of initial state kinematics and do not require a resonance in π^-J/ψ .

11

Spectroscopy of Exotic States with cc

- Never directly produced using γ /lepton beam
- Direct probe of the $Z_c \rightarrow J/\psi \pi$ coupling without re-scattering effects

- Photoproduction tool already used at 12 GeV to validate the existence of charmed pentaquark.
- With an energy upgraded CEBAF, this line of investigation can be extended to other exotic candidates.

Spectroscopy of Exotic States with cc

.

Simulations from GlueX & CLAS12 with existing detectors

• Diffractive production, dominated by Pomeron (2-gluon) exchange. Benefits from higher energies at the EIC

 Luminosity for 100 days running for JLab22 and EIC (5x100 GeV configuration).of the proton

J/ψ photoproduction near threshold

Used to study important aspects of the gluon structure of the proton

- gluon GPD _
- mass radius of the proton, _
- anomalous contribution to the proton mass.

.. based on some assumptions (mainly 2-g exchange)

p0

p1

p2

n3

D0

p1

p2

p3

1.239/3

1.375 ± 0.6935

1.678 ± 0.4026

0.00442 ± 0.00801

 $p_0 e^{tp_1} + p_2 e^{tp_3}$

 -0.4381 ± 0.4186

6

do/dt, nb/GeV²

- CANNOT be explained by t-channel (GLUON **EXCHANGE**) alone
- Can have contribution from open-charm exchange to both σ and $d\sigma/dt$ at high t

 χ^2 / ndf

 \mathbf{p}_0

p1

p2

D3

Can we interpret this as a possible • evidence for a s-channel resonance (?) Pc

3.507 / 5

8.821/7

1.53 ± 0.2821

 1.26 ± 0.3776

0.07952 ± 0.2152

 0.3356 ± 0.4655

3.207 ± 0.5251

1.838 ± 0.2868

0.302 ± 0.1726

 0.5406 ± 0.1106

10

GLUE

Preliminary

J/ψ photoproduction near threshold

Used to study important aspects of the gluon structure of the proton

gluon GPD Need precise measurements (high me assumptions mass radius of the statistics) to develop accurate theoretical xchange) anomalous contr models to understand the mechanism 3.507 / 5 σ, nb 35 p0 1.53 ± 0.2821 26 301 p1 1.26 ± 0.3776 J/ψ pCross Section [nb] ₀ 0 J/w p2 0.07952 ± 0.2152 0.3356 ± 0.4659 possible with GlueX at 17+ GeV Ē 10-1 GLUE Preliminar J. P⁺ Predictions Z_c(3900) Prediction 8.5 10 west energy slice f^{t} , GeV^{2} GLUR Possible struct J/心 Data (12 GeV) J/シ Projection (17 GeV) 10-1 Xct Projection (22 GeV) ψ(2S) Projection (22 GeV) Can we interpret this as a possible CANNOT be explained by t-cha • evidence for a s-channel **EXCHANGE**) alone 14 20 10 12 16 18 E, [GeV] Can have contribution from ope resonance (?) Pc exchange to both σ and $d\sigma/dt$ at high t

15

2.5

-t. GeV

Jefferson Lab

J/ψ photoproduction in Hall D - polarization

Energy upgrade gives significant increase of photon linear polarization

... allowing unique studies of the gluon exchange for J/ ψ and higher charmonium states

3D Picture of the Nucleon in Momentum Space (TMD)

The Nucleon Structure in 3D

 $\sigma = f(\mathbf{x}, \mathbf{Q}^2, \mathbf{z}, \mathbf{P}_{\mathrm{T}})$

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{h\perp}^2} \\ &= \frac{\alpha^2}{x\,yQ^2}\,\frac{y^2}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} \right. \\ &+ \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} + S_L\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\,\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h}\right] \\ &+ S_L\,\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ &+ S_T\left[\sin(\phi_h - \phi_S)\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\,F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) + \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} \right. \\ &+ \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}\right] + S_T\lambda_e\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} \right] \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,F_{LT}^{\cos\phi_S} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S)\,F_{LT}^{\cos(2\phi_h - \phi_S)}\right] \bigg\} \end{split}$$

• At large x fixed target experiments are sensitive to ALL Structure Functions

v = E - E'

 $z = E_{\mu} / v$

 $Q^{2} = 4EE'\sin(\theta/2)$ $x = Q^{2}/2Mv$

The Nucleon Structure in 3D

 $\sigma = f(\mathbf{x}, \mathbf{Q}^2, \mathbf{z}, \mathbf{P}_T)$

• At large x fixed target experiments are sensitive to ALL Structure Functions

 $\boldsymbol{\varepsilon}$ = ratio of longitudinal and transverse photon flux

The Nucleon Structure in 3D v = E - E' $Q^2 = 4EE'\sin(\theta/2)$ $x = Q^2 / 2Mv$ $\sigma = f(\mathbf{x}, \mathbf{Q}^2, \mathbf{z}, \mathbf{P}_T)$ $z = E_{\mu} / v$ $\vec{p}_{\rm had}$ $d\sigma$ $dx dy d\phi_S dz d\phi_h dP_h^2$ $= \frac{\alpha^2}{x y Q^2} \frac{y^2}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} \right\}$ $\mathbf{\varepsilon}$ = ratio of longitudinal and transverse photon flux $+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{L}^{\sin\phi_{h}}+S_{L}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}$ √**1-**ε² **dLAS12** X=0.3 OCLAS24 1 F_{LL} $+S_L \lambda_e \left[\sqrt{1-\varepsilon^2} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F \right]$ 0.8 $F_{III}^{\sin(\phi_1-\phi_2)}\sin\Delta\phi$ + $S_T \left| \sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} \right|$ 0.6 0 EIC 5x41 $+\varepsilon\sin(3\phi_h-\phi_S)F_{UT}^{\sin(3\phi_h-\phi_S)}+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_SF_{UT}^{\sin\phi_S}$. 0.4 00 $+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)F_{UT}^{\sin(2\phi_h-\phi_S)} + S_T\lambda_e \sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)F_{TT}^{h-\phi_S}$ 0 0.2 -0 $+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}\left[b\left(\frac{\varepsilon}{\varepsilon}\right)+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})\right]\right\}$ EIC 18x275 0 At large x fixed target experiments are 50 0 100 Q²

Jefferson Lab

sensitive to ALL Structure Functions

Structure Functions Separation

A combined 11 and 22 GeV SIDIS program

will provide a unique determination of the ratio of longitudinal to transverse photon SIDIS cross sections essential to properly understand SIDIS multiplicities, Sivers and Collins effects,...

Jefferson Lab

Multi-D phase space at 22 GeV kinematics

- Multi-dimensional coverage of P_T access give access to fine binning of all observables
- Projections using the existing CLAS12 simulation/reconstruction chain for 100 days of running with L= 10³⁵ cm⁻²s-1

Expected uncertainties for SIDIS cross sections in 4D bins

Luminosity: a "Must"

Luminosity: a "Must"

Enhancement of Q² Range

Q² evolution studies possible

QCD predicts only the Q² dependence

Increase significant the range of high Q² where

- theory is supposed to work better
- Bigger change of observables vs Q²

allowing

- studies of evolution properties
- Disentangle leading/sub-leading contributions
- Validate/test the phenomenology

25

SIDIS Phase Space

Pion Structure Studies with Exclusive Measurements

Trun F (Q²)

G_{nNN}(t)

- 1) Determine the pion form factor, F_{π} to high Q^2
- F_{π} is a key QCD observable
- Measure F_{π} indirectly using pion cloud of the proton via $p(e, e'\pi^+)n$

$$|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$$

- 2) Study the hard-soft factorisation regime
- Determine region of validity of hard-exclusive reaction mechanism
- Can only extract GPDs where factorisation applies

One of the most stringent tests of factorization is the x-section Q^2 dependence

- σ_L scales to leading order as Q⁻⁶
- σ_{T}^{-} expectation as Q^{-8}
- As Q^2 becomes large: $\sigma_L >> \sigma_T$

F $_{\pi}asymptotic$ behavior rigorously calculable in pQCD F $_{\pi}Q^{2}\!\!<\!\!0.3$ measured

$$\frac{d\sigma_{L}}{dt} \propto \frac{-tQ^{2}}{(t-m_{\pi}^{2})} g_{\pi NN}^{2}(t) F_{\pi}^{2}(Q^{2},t)$$

All these studies require σ_L/σ_T separation

JLab22 F_{π} Data in the EIC Era

- L-T separations not possible at the EIC
- JLab will remain only source of quality L-T separated data!
- Phase 2 with upgraded HMS (VHMS)
 - Extends region of high quality F_{π} values to $Q^2 = 13 \ GeV^2$
 - Larger error point at $Q^2 = 15 \ GeV^2$

• JLab energy upgrade and Hall C upgrade provides much improved overlap of F_{π} data between JLab and EIC

28

Talk by S. Kay APS GHP 2023 14/04/23

Bound 3 Quark Structure of N*s and Emergence of Mass

29

- Q² evolution of the γ_vpN* electrocouplings could offer an insight into hadron mass generation and the emergence of the N* structure from QCD
- Simulations indicate JLab22 is the only foreseeable facility to extend these measurements up to 30 GeV2

Continuum Schwinger Method

C.D. Roberts, Symmetry 12, 1468 (2020), AAPS Bull 31, 6 (2021)

 the solution of the QCD equations of motion for q/g fields reveals existence of dressed q/g with momentum-dependent masses.

Jefferson Lab

Bound 3 Quark Structure of N*s and Emergence of Mass

30

- Q² evolution of the γ_vpN* electrocouplings could offer an insight into hadron mass generation and the emergence of the N* structure from QCD
- Simulations indicate JLab22 is the only foreseeable facility to extend these measurements up to 30 GeV2

Continuum Schwinger Method

 the solution of the QCD equations of motion for q/g fields reveals existence of dressed q/g with momentum-dependent masses.

• Q2 range(<35 GeV2) where the dominant portion of hadron mass is expected to be generated

Partonic Structure and Spin

Nucleon Strangeness

The nucleon strange sector is largely unexplored with an up to 80% uncertainty in the s⁺ = s + s PDF

Substantial improvement with a reduction in the s+ uncertainty that can reach more than a factor two at large-x

+ Precision extraction of $sin^2 \theta_W$

Meson structure

- Available phase space significantly increased
 - → large improvement in the determination of the valence structure c the pion
 - → kin. coverage to smaller x_{π} region to probe the sea content of mesons
- Overlap the existing π induced DY data
 → test the universality of PDFs in the mid to large x_π region

PVDIS @ 22 GeV with the SoLID

~100 days, 40 μA beam split between 40 cm D and H targets

Nuclear Dynamics at Extreme Conditions

The dynamics of the nuclear repulsive core is still poorly understood

- Crucial for understanding the dynamics of transition between hadronic to quark-gluon phases of matter
 - → evolution of the universe
 - ightarrow dynamics of superdense matter at the cores of neutron stars

A 22 GeV upgrade will provide reach to the nuclear forces dominated by nuclear repulsion

• Superfast Quarks

The high Q² reach will allow

- the suppression of quasi-elastic contributions,
- the first-ever direct study of nuclear DIS structure function at Bjorken x > 1.2 (r~ 0.5 fm,)

CEBAF FFA Upgrade – Baseline under Study

33

- Starting with 12 GeV CEBAF
- NO new SRF (1.1 GeV per linac)
- New 650 MeV recirculating injector
- Remove the highest recirculation pass (Arc 9 & A) and replace them with two FFA arcs including time-of-flight chicanes
- Recirculate 4 + 6.5 times to get to 22 GeV

Pass Arithmetic: 5 -1 + 6.5 = 10.5

Multi-Bunch Dynamics in CBET FFA Arc

34

Courtesy A. Bogacz

Permanent Magnet Design – Open Mid-plane Geometry

Focusing Magnet BF G_F = -41.13 T/m L_{QF} = 1.67 m B_F = -0.812 T

Defocusing Magnet BD G_D= 43.44 T/m L_{BD}= 1.24 m B_D= -0.593 T

CBET magnets: from 38cm² to 78cm²

A prototype open midplane BF magnet was built and evaluated for mechanical integrity. Magnetic measurement confirmed a robust design with >1.5 Tesla in good field region, 10⁻ ³ field accuracy. Radiation resilience tests will be carried out at CEBAF.

Courtesy A. Bogacz

Electron/positron injector vault is required for 12 GeV e+ and 22 GeV e-

36

Positron Program White Paper

37

Expe	eriment	M	leasurement Configura	ation										
Label	Short	Hall	Detector	Target	Polarity	p	P	Ι	Time	PAC				
(EPJ A) Name		IIan	Detector	Inget	Totarity	(GeV/c)	(%)	(μA)	(d)	Grade				
Two Photon Exchange Physics														
57:144	H(e, e'p)	В	CLAS12 ⁺	H_2	$+/{s}$	2.2/3.3/4.4/6.6	0	0.060	53	1				
57:188	$H(\vec{e}, e'\vec{p})$	A	ECAL/SBS	H_2	$+/{p}$	2.2/4.4	60	0.200	121					
57.100	r_p	в	PRod II	H_2	j.	0.7/1.4/2.1	0	0.070	40					
07.133	r_d	D	1 1040-11	D_2	T	1.1/2.2	0	0.010	39					
57:213	$\vec{\mathrm{H}}(e,e'p)$	A	BB/SBS	NH3	$+/{s}$	2.2/4.4/6.6	0	0.100	20					
57:290	H(e, e'p)	Α	HRS/BB/SBS	H_2	$+/{s}$	2.2/4.4	0	1.000	14					
57:319	SupRos	Α	HRS	H_2	$+/{p}$	0.6 - 11.0	0	2.000	35					
58:36	A(e,e')A	Α	HRS	He	$+/{p}$	2.2	0	1.000	38					
Nuclear Structure Physics														
57:186	p-DVCS	В	CLAS12	H_2	$+/{s}$	2.2/10.6	60	0.045	100	C2				
57:226	n-DVCS	В	CLAS12	D_2	$+/{s}$	11.0	60	0.060	80					
57:240	p-DDVCS	Α	$SoLID^{\mu}$	H_2	+/-s	11.0	(30)	3.000	100					
57:273	He-DVCS	в	CLAS12/ALERT	$^{4}\mathrm{He}$	$+/{s}$	11.0	60							
57:300	p-DVCS	\mathbf{C}	SHMS/NPS	H_2	+	6.6/8.8/11.0	0	5.000	77	C2				
57:311	DIS	A/C	HRS/HMS/SHMS		+/-s	11.0								
57:316	VCS	\mathbf{C}	HMS/SHMS	H_2	$+/{s}$		60							
			Bey	ond the S	tandard N	Iodel Physics								
57:173	C_{3q}	Α	SoLID	D_2	$+/{s}$	6.6/11.0	(30)	3.000	104	D				
57:253	LDM	в	PADME	\mathbf{C}		11.0	õ	0.100	180					
			ECAL/HCAL	$PbW0_4$	+	11.0	U	0.100	120					
57:315	CLFV	Α	$SoLID^{\mu}$	H_2	+	11.0								
							Tot	tal (d)	1121					

 $CLAS12^+ \equiv CLAS12$ implemented with an Electromagnetic Calorimeter in the Central Detector

 $\mathrm{SoLID}^{\mu} \equiv \mathrm{SoLID}$ complemented with a muon detector

+ Secondary positron beam

-s Secondary electron beam

 $-_p$ Primary electron beam

(30) Do not require polarization but would take advantage if available at the required beam intensity

https://doi.org/10.1140/epja/910050-6

VERY ROUGH Timeline for Positrons and the 22 GeV Upgrade

Gantt chart made by David Dean to give a rough idea when these project could become a reality.

	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Moller (funded)																		
SoLID (science rev)																		
Positron Source Dev																		
PreProject/Project Dev																		
Upgrade Phase 1																		
Transport comm/e+																		
Upgrade Phase 2																		
CEBAF Up																		

Phase 1 includes building the positron source and the tunnel & beamline connecting the source to main machine. Phase 2 includes the new permanent magnets to allow 22 GeV within current CEBAF footprint.

NOTE: Plan was formulated so that these projects are ramping up as the EIC project cost is ramping down.

38

Jefferson Lab

Conclusions and Outlook

- Understanding the strong interaction dynamics of non-pQCD and ``how'' hadrons/nuclei emerge from fundamental QCD principles, is a complex problem which demands different approaches and precise measurements of multiple observables
- With a fixed-target program at the "luminosity frontier", large acceptance detection systems, as well as highprecision spectrometers, CEBAF offers unique opportunities to shed light on the nature of QCD and the emergence of hadron structure

39

- With CEBAF at higher energy some important thresholds would be crossed and an energy window which sits between JLab @ 12 GeV and EIC would be available. This can provide a unique insight into the non-pQCD dynamics.
- Positrons are an exciting addition to the Jefferson Lab 12 GeV program under development
- A strong science case for these upgrades is emerging and it is supported by JLab management, staff and user community. It will complement/enhance the EIC program

THANK YOU!

Jefferson Lab