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 Uncovering similarities between lasers and neurons

 Analysis of regime transitions: EEG signals and 

vegetation fields

 Network based analysis of retina fundus images

Outline
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Time Time

Data analysis methods allow to discover statistical 

similarities in very different systems

10-9 s 10-3 s

(High-dimensional, Memory)



{…xi, xi+1, xi+2, …}

Possible order relations among  three numbers (e.g., 2, 5, 7)

Data analysis method: ordinal analysis

Bandt and Pompe: Phys. Rev. Lett. 2002

{…2, 5, 7…}

{…2, 7, 5…}

{…5, 2, 7…}

{…5, 7, 2…}

{…7, 2, 5 …}

{…7, 5, 2…}



The number of ordinal patterns increases as D! 

A problem for short datasets.
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Ordinal patterns can be defined using a lag

Example: climatological time 

series (monthly sampled)

− Consecutive months:

− Consecutive years:

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

Y. Zou et al. Phys. Rep. 787, 1 (2019)



From a time series, by counting the number of times the 

different patterns appear, we can calculate the set of 

“ordinal probabilities”

?
A. Analyze the probabilities 

(are differences 

statistically significant?) 

B. Compute information 

theory measures 

(entropy, complexity)



 Null hypothesis: 

pi = p = 1/D! for all i = 1 … D!

 If at least one probability is not in the 

interval p  3 with

and N the number of ordinal patterns:

We reject the NH with 99.74% 

confidence level.

 Else, we fail to reject the NH with 

99.74% confidence level.

Are the D! ordinal patterns equally probable?
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Example: chaotic time series generated with the Logistic map
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Ordinal analysis has been extensively used: 

 To test if a model is good for the data

 To fit the parameters of a model

 To classify different types of data based on the 

probabilities of ordinal patterns

I. Leyva, J. M. Martinez, C. Masoller, O. A. Rosso, M. Zanin, “20 Years of Ordinal Patterns:

Perspectives and Challenges”, EPL 138, 31001 (2022).



ECG signals: analysis of time series of inter-beat intervals
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Classifying ECG signals according to ordinal probabilities
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 Analysis of raw data (statistics of ordinal patterns is almost 

unaffected by a few extreme values)

 The probabilities are normalized with respect to the 

smallest and the largest value occurring in the data set.
U. Parlitz et al. Computers in Biology and Medicine 42, 319 (2012) 

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


Sequence of inter-spike-intervals (ISIs)  sequence of 

ordinal patterns

021=B 012=A

120=D

D=3 



The analysis of the ordinal probabilities 

uncovers similarities in ISI sequences

Forcing amplitudeForcing amplitude

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)J. M. Aparicio-Reinoso et al PRE 94, 032218 (2016)

Ordinal 

probabilities

Diode laserNeuron model



 Data centers, AI systems, HPC consume 

huge amounts of energy.

 Big concern in the context of climate change.

 The human brain processes huge amounts of 

information using only 19 Watts.

 Uncovering genuine similarities between 

neurons and lasers will allow to develop 

photonic neurons, able to process 

information as real neurons do, but 

• much faster,

• with much less energy consumption.

Uncovering similarities between neurons 

and lasers… Interesting but relevant?

16

European Centre for 

Medium-Range Weather 

Forecasts, Reading, UK



Time series recorded in our lab show excitability, tonic 

spikes, and bursting. Similar to real neurons? 
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A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent and C. Masoller, "Unveiling the complex 

organization of recurrent patterns in spiking dynamical systems", Sci. Rep. 4, 4696 (2014).

C. Quintero-Quiroz, J. Tiana-Alsina, J. Roma, M. C. Torrent, and C. Masoller, “Characterizing

how complex optical signals emerge from noisy intensity fluctuations”, Sci. Rep. 6 37510 (2016). 
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Understand how to mimic with lasers the way 

neurons encode and process information.
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Main challenge

J. A. Reinoso, M. C. Torrent, and C. Masoller, “Emergence of spike correlations in periodically 

forced excitable systems”, Phys. Rev. E. 94, 032218 (2016). 

Rate coding?

Weak, subthreshold signal



 Single-neuron encoding: slow because long spike 

sequences are needed to estimate the ordinal probabilities.

 Ensemble encoding: can be fast because, from the ISI 

sequences of all the neurons, few spikes per neuron can be 

enough to accurately estimate the probabilities.

Single-neuron vs ensemble encoding
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M. Masoliver and C. Masoller, “Neuronal coupling benefits the encoding of weak periodic signals 

in symbolic spike patterns”, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020). 

Weak, subthreshold signal



Ensemble encoding of a weak sinusoidal signal in the 

frequencies of occurrence of ordinal patterns
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M. Masoliver and C. Masoller, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020). 



Laser-neuron comparison: encoding a 

weak periodic signal using spike rate code

Experiments 

modulating 

the laser 

current

Neuron 

model with 

the same 

input signal

Sinusoidal Pulsed signal

J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, “Comparing the dynamics of 

periodically forced lasers and neurons”, New J. of Phys. 21, 103039 (2019) (2019).

J. Tiana-Alsina, C. Masoller, “Time crystal dynamics in a weakly modulated stochastic time 

delayed system”, Sci. Rep. 12, 4914 (2022).

Spike rate in color code



How about the temporal code? 

Ordinal analysis uncovers differences in spike timing.

Diode 

laser with 

optical 

feedback

FitzHugh-

Nagumo

model

Sinusoidal Pulsed signal

J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, New J. of Phys. 21, 103039 (2019).

Most 

probable 

pattern in 

color 

code



Software
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Python and Matlab codes for computing 

the ordinal pattern index are available 

here: U. Parlitz et al. Computers in 

Biology and Medicine 42, 319 (2012) 

World length (wl): 4

Lag = 3 (skip 2 points)

Result: 

indcs=3

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


1. Test the “ordinal pattern” program with some “hand made” 

examples (e.g., the sequence [5,2,7] returns index 3).

2. For the logistic map with r=3.99, calculate the probabilities of 

the 6 D=3 ordinal patterns and plot the distribution. 

3. Calculate the ordinal bifurcation diagram with r in (3.5,4).

Hands on activity: Ordinal analysis of the logistic map
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 Uncovering similarities between lasers and neurons

 Analysis of regime transitions: EEG signals and 

vegetation fields

 Network based analysis of retina fundus images

Outline
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Analysis of eyes-closed eyes-open transition in 

EEG recordings of healthy subjects.

Eyes closed Eyes open

Time (seconds)

DTS1: Britbrain (Zaragoza)

DTS2: Physionet



Permutation entropy: Shannon’s entropy computed 

from ordinal probabilities 
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PE partially distinguishes EC-EO states

C. Quintero-Quiroz, L. Montesano, A. J. Pons, M. C. Torrent, J. García-Ojalvo, C. Masoller, 

“Differentiating resting brain states using ordinal symbolic analysis”, Chaos 28, 106307 (2018).

Eyes closed Eyes open

B. R. R. Boaretto, R. C. Budzinski, K. L. Rossi, C. Masoller, E. E. N. Macau, “Spatial permutation 

entropy distinguishes resting brain states”, Chaos, Solitons & Fractals 171, 113453 (2023).



The spatial permutation entropy can be an 

early indicator of vegetation transitions

29

G. Tirabassi and C. Masoller, “Entropy-based early detection of critical transitions in spatial 

vegetation fields”, PNAS 120, e2215667120 (2022).

H
Spatial 

correl.



 Uncovering similarities between lasers and neurons

 Analysis of regime transitions: EEG signals and 

vegetation fields

 Network based analysis of retina fundus images

Outline
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 For the diagnosis of eye 

diseases & follow up of 

treatments.

 Biometric identity identification.

 The retina is a window to the 

brain.

 Opportunity to detect other 

diseases: alterations in retina 

network may reflect alterations 

in other arterial systems.

Network-based analysis of retina fundus images

cristina.masoller@upc.edu        @cristinamasoll1

H2020-675512



 45 high resolution images (3504 × 2336 pixels)

15 healthy subjects

15 glaucoma

15 diabetic retinopathy

Steps:

1. Pre-process and un-supervisely, segment the images.

2. Extract network.

3. Compare networks obtained from different images. 

4. Classify the images.

Data and image analysis steps

32

cristina.masoller@upc.edu        @cristinamasoll1

https://www5.cs.fau.de/research/data/fundus-images/

 For every subject we had:  

─fundus photography 

─manual segmentation done 

by an expert ophthalmologist.



Step 1: Pre-process and segmentation

33

cristina.masoller@upc.edu        @cristinamasoll1

We adapted an unsupervised algorithm, originally developed 

for segmenting images of cultured neural networks.

D. Santos-Sierra, I. Sendiña-Nadal, I. Leyva et al. Cytometry Part A. 87, 513 (2015).

P. Amil, F. Reyes-Manzano, L. Guzmán-Vargas, I. Sendiña-Nadal, C. Masoller, “Network-based 

features for retinal fundus vessel structure analysis”, PLoS ONE 14, e0220132 (2019). 

Manual segmentation



Step 2: extract the network (identification of the optical 

nerve, nodes and links and assign weights to the links).

34

cristina.masoller@upc.edu        @cristinamasoll1



Steps 3 and 4: Compare the networks extracted from 

different images and classify the images.

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).
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cristina.masoller@upc.edu        @cristinamasoll1

Distance distribution to 

the central node in the 

manual segmentation 

 {pi,j}: distances between probability distributions that 

characterize the networks obtained from images i and j.

 We used nonlinear dimensionality reduction (Isomap) to 

reduce the set of 45x45 {pi,j} values to only two features. 



Performance of network features in the manual segmentation

Distribution of weights 

along the shortest 

path to central node

36

cristina.masoller@upc.edu        @cristinamasoll1

Distribution of 

weighted degrees

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).



In the automated segmentation
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cristina.masoller@upc.edu        @cristinamasoll1

Fractal dimension 
Mean weight distribution along 

the shortest path to central node 

Simple network 

features do not 

differentiate

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).



 Data analysis techniques allow us to uncover similarities in 

very different systems.

 Different methods provide complementary information, and 

can be adapted to study very different systems.

 “Surrogate” tests are needed to determine if the numerical 

values are statistically significant.

 Holger Kantz: “Every data set bears its own difficulties: data 

analysis is never routine”.

Take home messages
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