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Outline

 Univariate analysis

 Bivariate analysis

‒ Cross Correlation

‒ Mutual Information

‒ Event synchronization

‒ Causality

 Multivariate analysis



A. Aragoneses et al., “Unveiling temporal correlations characteristic to phase transition in the

intensity of fibre laser radiation”, Phys. Rev. Lett. 116, 033902 (2016).

Univariate analysis of “noisy” time series
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A. Aragoneses et al., Phys. Rev. Lett. 116, 033902 (2016).

Entropy vs. lag finds hidden periodicities in data.



Bivariate time series analysis: response of a bistable

system to an aperiodic signal
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Noise levelBarbay et al, PRL 85, 4652 (2000)

Zero-lag cross-correlation 

between input and output.

x(t) and y(t) are normalized 

to =0 and =1
Quantifying 

stochastic 

resonance 

using cross-

correlation



Cross-correlation detects linear relationships only
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Source: wikipedia
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Correlation is NOT causality
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Example: the number of sunspots 

and the number of the 

Republicans in the U.S. Senate in 

the years 1960 to 1986 (biannual 

sampling, 14 points): C=0.52

M. Palus, Contemporary Physics 48, 307 (2007).

http://tylervigen.com/spurious-correlations

Appropriate significance test needed!

http://tylervigen.com/spurious-correlations


 MI (x,y) = MI (y,x)

 p(x,y) = p(x) p(y)  MI = 0, else MI >0

 MI can be computed with a lag-time.

 MI can also be computed from symbolic probabilities 

(e.g., probabilities of ordinal patterns).

 If x and y are Gaussian processes MI = -1/2 log(1-2) 

(=cross-correlation).

The Mutual Information: a nonlinear correlation measure
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!!! (significance test needed)



 Define “events” in each time series. 

 Count c (x|y) = number of times an event appears in x shortly 

after (within interval ) an event appears in y. Idem for c (y|x).

 Calculate:

How to find “synchronized events” in two time series?
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mx, my are the number of events in each time series.

 Q = 1 : the events of the signals are fully synchronized. 

 q =1 : the events in x always occur before those in y.

 q = -1 : the events in x always occur after those in y.

Quian Quiroga et al, PRE 66, 041904 (2002).

Rat EEG signals from right 

and left cortical intracranial 

electrodes. For a better 

visualization, the left signal 

is plotted with an offset.

Time (sec)



Many other measures are available to quantify 

synchronization of two time series
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C. W. J. Granger

past of 𝑋1
Residual 

error

𝑋2 → 𝑋1

Hypothesis: X1 and X2 can be described by 

stationary autoregressive linear models.

If ൻ ۧ𝐸′
1(𝑡) < ۦ ۧ𝐸1(𝑡)

C. W. J. Granger Investigating causal relations by econometric models and cross-spectral 

methods. Econometrica 37, 424–438 (1969) (> 10000 citations)

Granger Causality
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 TE: is the Conditional Mutual Information, given the 

“past” of one of the variables.

Transfer Entropy (TE) and Directionality Index (DI)
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TE (x,y) = MI (x, y|x)

TE (y,x) = MI (y, x|y)

 MI (x,y) = MI (y,x)  but TE (x,y)  TE(y,x)

 Directionality Index:  TE(x,y)-TE(y,x)

 TE and GC are equivalent for Gaussian processes.

 TE can be computed from the probabilities of symbols 

(symbolic TE).

T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).



Problems of Grange Causality and TE
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In addition: Transfer Entropy is computationally demanding.

X Y Z X
Y

Z
↕ ?

Indirect link XZ? Common driver

X. Ying et al.

AAAS Research 2022

Causality method 1 Causality method 2



A “simple” solution
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Use the expression of Transfer Entropy that is valid for 

Gaussian processes [ MI = -1/2 log(1-2) ] 

Does this work? 

Sometimes

https://doi.org/10.1038/s41598-021-87818-3

R. Silini, C. Masoller “Fast and effective pseudo

transfer entropy for bivariate data-driven causal 

inference”, Sci. Rep. 11, 8423 (2021).



 Symbolic Transfer Entropy

 Partial Correlation

 Partial Directed Coherence

 Cross Mapping

 Partial Cross Mapping

 Etc.

Read more: A. Krakovska et al., Comparison of six 

methods for the detection of causality in a bivariate 

time series, Phys. Rev. E 97, 042207 (2018)

Besides Granger Causality and Transfer Entropy, 

many methods have proposed

15



Outline

 Univariate analysis

 Bivariate analysis

 Multivariate analysis

‒ Functional networks

‒ Network inference



V. M. Eguiluz et al, Phys. Rev. Lett. 94, 018102 (2005).

Sij > Th

 Aij = 1, 

else Aij=0

The adjacency

matrix is obtained 

by “thresholding”

“Functional networks” are obtained by using bivariate 

correlation or causality measures

Example: brain functional network



How to characterize the graph? 

Regular Random
Scale-free

S. H. Strogatz, Nature 410, 268 (2001).

Begin with the degree distribution

Degree of node i: ki = j Aij
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How to compare two distributions? (Prof. Rosso’s talk)

Distance between two distributions P and Pe

S-H Cha: Comprehensive Survey on Distance/Similarity Measures between 

Probability Density Functions,  Int. J of. Math. Models and Meth. 1, 300 (2007).

Euclidean

Kullback

Jensen divergence



 Hamming distance

How different are two graphs? 
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 Can be used to compare two graphs of the same size.

 Main problem: not all the links have the same importance.

 A “dissimilarity” measure that can be used to compare graphs of different 

sizes, based in distances between distributions extracted from the graphs:

T. A. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos, C. Masoller, M. G. Ravetti, 

“Quantification of network structural dissimilarities”, 

Nature Communications 8, 13928 (2017).



 How to select the “optimal” threshold?

 How to keep weak-but-significant links?

 A classification problem: 

− the interaction exists (is significant)

− the interaction does not exists (or is not significant)

Network inference: How to reconstruct the network from 

observations?

21

Sij > Th  Aij = 1 else Aij=0



 Accuracy: How often is the classifier correct? (TP+TN)/total

 Misclassification (Error Rate): How often is it wrong? (FP+FN)/total

 True Positive Rate (TPR, Sensitivity or Recall): When it's yes, how often 

does it predict yes? TP/actual yes

 False Positive Rate (FPR) : When it's no, how often does it predict yes? 

FP/actual no

 Specificity (1 – FPR) : When it's no, how often it predicts no? TN/actual no

 Precision: When it predicts yes, how often is it correct? TP/predicted yes

Confusion matrix

22



Receiver operating characteristic (ROC curve) and 

Precision-Recall (PR curve)
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Similarity measure 1

Similarity measure 2

Similarity measure 3

Source: Wikipedia

For unbalanced sets the “Precision-Recall” curve is more informative because it 

does not depend on the # of true negatives.

Precision =TP / predicted yes (TP+FP)

Recall = TP / actual yes (TP+FN)



 Use a “toy model” where we know the “ground truth”, i.e., 

we know the underlying equations and interactions and so 

we can check the performance of the different measures 

in inferring the interactions.

 Problem: results will depend on the “toy model” used as 

the performance of the statistical similarity measure 

depends on the characteristics of the data.

How to compare the performance of different statistical 

similarity measures for inferring interactions from data? 

24



Kuramoto oscillators in a random network

Phases () CC MI MIOP

Aij is a symmetric 

random matrix; 

N=12 time-series, each 

with 104 data points.

“Observable” Y=sin()

True positives False positives True positives False positives

For each K, the threshold was varied to obtain optimal reconstruction.

G. Tirabassi, R. Sevilla-Escoboza, J. M. Buldú, C. Masoller, “Inferring the connectivity of coupled 

oscillators from time-series statistical similarity analysis”, Sci. Rep. 5 10829 (2015).



Instantaneous frequencies (d/dt)

CC MI MIOP

Perfect network inference is possible! 

BUT 

• the number of oscillators is small (12), 

• the coupling is symmetric (  only 66 possible links) and

• the data sets are long (104 points)

G. Tirabassi et al, Sci. Rep. 5 10829 (2015). 



Test with experimental data recorded from 12 chaotic 

electronic oscillators (symmetric and random coupling)

27

The Hilbert Transform 

was used to obtain 

phases from 

experimental data
for each coupling strength



Results obtained with experimental data
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Observed 

variable (x) 

Hilbert phase 

Hilbert frequency

CC MI MIOP

‒ No perfect 

reconstruction

‒ No important 

difference 

among the 3 

methods & 3 

variables

G. Tirabassi et al, Sci. Rep. 5 10829 (2015). 



 For the diagnosis of eye 

diseases & follow up of 

treatments.

 Biometric identity identification.

 The retina is a window to the 

brain.

 Opportunity to detect other 

diseases: alterations in retina 

network may reflect alterations 

in other arterial systems.

Machine learning, network-based analysis of retina 

fundus images

cristina.masoller@upc.edu        @cristinamasoll1

H2020-675512



What is a ML algorithm?

A computer program that learns from experience E with respect to 

some task T and performance measure P: its performance at task 

T, as measured by P, improves with experience E. 
(T. Mitchell, Machine Learning, 1997)

Brief introduction to machine learning algorithms

30

(taken from T. Eliassi-Rad)



 Supervised learning: Given a labeled training set, 

can we accurately predict/classify new data points?

• Classification

• Regression

 Unsupervised learning: Can we discover structure 

in unlabeled data?

• Clustering

Main types of ML algorithms

31

Output of community 

detection algorithm

M. Zanin et al., Physics Reports 635, 1 (2016).

Problem: 

overfitting



Input System Output

32

M. Zanin et al., Physics Reports 635, 1 (2016).

Classification and regression

More in general:



Supervised learning algorithms
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Decision Tree Artificial Neural Network

Sigmoidal activation function

k nearest neighbors



 Learn function

 Evaluate performance

 kNN:

 Support Vector Machine (SVM): inner product of points in the set is 

used to approximate the response function

Forecasting methods

34

mean absolute relative error, cross correlation, etc.

Parameters are obtained with 

optimization techniques

Linear Nonlinear

P. Amil, M. C. Soriano, and C. Masoller, “Machine learning algorithms for predicting the 

amplitude of chaotic laser pulses”, Chaos 29, 113111 (2019). 



 45 high resolution images (3504 × 2336 pixels)

15 healthy subjects

15 glaucoma

15 diabetic retinopathy

Steps:

1. Pre-process and unsupervisely, segment the images.

2. Extract network.

3. Extract features by comparing networks obtained from different images. 

4. Classify the images.

Data and image analysis steps

35

cristina.masoller@upc.edu        @cristinamasoll1

https://www5.cs.fau.de/research/data/fundus-images/

 For every subject we had:  

─fundus photography 

─manual segmentation done 

by an expert ophthalmologist.



Step 1: Pre-process and segmentation

36

cristina.masoller@upc.edu        @cristinamasoll1

We adapted an unsupervised algorithm, originally developed 

for segmenting images of cultured neural networks.

D. Santos-Sierra, I. Sendiña-Nadal, I. Leyva et al. Cytometry Part A. 87, 513 (2015).

P. Amil, F. Reyes-Manzano, L. Guzmán-Vargas, I. Sendiña-Nadal, C. Masoller, “Network-based 

features for retinal fundus vessel structure analysis”, PLoS ONE 14, e0220132 (2019). 

Manual segmentation



Step 2: extract the network (identification of the optical 

nerve, nodes and links and assign weights to the links).
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cristina.masoller@upc.edu        @cristinamasoll1



Steps 3 and 4: Compare the networks extracted from 

different images and classify the images.

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).
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cristina.masoller@upc.edu        @cristinamasoll1

Distance distribution to 

the central node in the 

manual segmentation 

 {pi,j}: distances between probability distributions that 

characterize the networks obtained from images i and j.

 We used nonlinear dimensionality reduction (Isomap) to 

reduce the set of 45x45 {pi,j} values to only two features. 



Performance of network features in the manual segmentation

Distribution of weights 

along the shortest 

path to central node
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cristina.masoller@upc.edu        @cristinamasoll1

Distribution of 

weighted degrees

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).



In the automated segmentation

40

cristina.masoller@upc.edu        @cristinamasoll1

Fractal dimension 
Mean weight distribution along 

the shortest path to central node 

Simple network 

features do not 

differentiate

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).



 Bivariate and multivariate analyses uncover inter-

relationships in datasets

 Different similarity measures are available for inferring the 

connectivity of a complex system from observations.

 Different methods can uncover different properties.

 Methods can be adapted to analyze different types of data.

Summary
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