AC-LGAD Detectors for Spatial and Timing Measurements at EIC

Zhenyu Ye yezhenyu@uic.edu University of Illinois at Chicago ectron-lon Collider

ENERGY

[5] EIC Yellow Report

EIC - Physics Program

How are the gluons and sea quarks, and their spins, distributed in space and momentum inside the nucleon? What is the role of orbital motion in building the nucleon spin?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?

EIC - Accelerator Push limits of accelerator technologies

[4] EIC CDR

EIC is on the **highest priority** of US Nuclear Physics

- **High luminosity**: $L = 10^{33} 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, 10–100 fb⁻¹/year
- **Highly polarized** electron and light ion beams: ~70%
- Large center of mass energy range: $E_{cm} = 20-140 \text{ GeV}$
- Large ion species range: proton Uranium

Electron Beam: 5-18 GeV Ion: 40, 100-275 GeV

Zhenyu Ye @ UIC

Physics Processes and Particle Detection

- Physics Processes in eN scatterings
 - Inclusive DIS : scattered electron only
 - Semi-inclusive DIS: scattered electron, one or more final state hadrons
 - Exclusive: all the final state particles including the recoiling nucleon

Inclusive DIS

Semi-inclusive DIS

- Final state particles:
 - electrons
 - hadrons
 - photons
 - jets
 - muons
 - neutrinos

[6] EIC DPAP

EIC – Detector Requirements

			Tracking				Electrons and Photons		π/K/p		HCAL					
η	η Nomenclature	Resolution	Relative Momentun	Allowed X/X ₀	Minimum-p _T (MeV/c)	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution σ _E /E	PID	Min E Photon	p-Range	Separation	Resolution	Energy	Muons	
< -4.6	Low-Q2 tagger															
-4.6 to -4.0			Not Accessible													
-4.0 to -3.5								Reduced Perf	ormance							
-3.5 to -3.0			σ _p /p ~					1%/E								
-3.0 to -2.5			0.1%×p⊕2%					⊕ 2.5%/√E	up to 1:10 ⁻⁴	20 MeV			50% ME			
-2.5 to -2.0	Backward Detector		σ _p /p ~		150-300			⊕ 1%			≤ 10 GeV/c		⊕ 10%		Muons useful for	
-2.0 to -1.5			0.0	0.02% × p ⊕ 1%		[dca(xy) ~ 40/p _T	dca(z) ~ 100/p _T 2	2%/E πs	π suppression	50 MeV					background
-1.5 to -1.0			01%			µm ⊕ 10 µm	µm ⊕ 20 µm	⊕ 2%	up to 1:(1010 -)	oo mev					and	
-1.0 to -0.5			~ /n ~			destab	d==(=)								improved resolution	
-0.5 to 0.0	Barrel		0 _p /p∼ 0.02% × p	~5% or	400	dca(xy) ~ 30/p _τ μm	dca(z) ~ 30/p ₊ μm	2%/E ⊕ (12-14)%/√E	π suppression	100 MeV	< 6 GeV/c	≥ 3σ	100%/√E	~500MeV		
0.0 to 0.5	Barron	Darrot	⊕ 5% less	less	less ⊕5µ	⊕5μm	⊕5μm	⊕ (2-3)% up t	up to 1.10-				⊕ 10%		1	
0.5 to 1.0																
1.0 to 1.5			σ _p /p ~			dca(xy) ~ 40/p _T	$d_{CP}(z) \sim 100/p$									
1.5 to 2.0			0.02% ×p ⊕1%		.	µm ⊕ 10 µm	μm ⊕ 20 μm 2%/E ⊕ (4*-12)' ⊕ 2%	2%/E	2%/E ⊕ (4*-12)%/√E 3σ e/π ⊕ 2% 3σ e/π up to 15 GeV/c 50 5		50 MeV ≤50 GeV/c		50%/√E ⊕ 10%			
2.0 to 2.5	Forward Detectors		0.12		150-300			⊕ (4*-12)%/√E ⊕ 2%		50 MeV						
2.5 to 3.0			σ _p /p ~													
3.0 to 3.5			0.1%×p⊕2%													
3.5 to 4.0	Instrumentation to separate charged particles from photons		Reduced Performance													
4.0 to 4.5			Not Accessible													
>46	Proton Spectrometer															
24.0	Zero Degree Neutral Detection															

 4π hermetic detector in $-4 < \eta < 4$ with light inner tracking detectors:

Excellent momentum and impact parameter resolution Excellent PID for e/h and pi/K/p separation Excellent EM calorimeter resolution in backward direction Good hadronic calorimeter resolution in forward region Zhenyu Ye @ UIC

EIC Project Detector (ePIC)

Tracking and Vertexing:

- MAPS (~ $3 \mu m$)
- AC-LGAD (~ $30 \mu m$)
- MPGD (~150 μm)

PID:

- AC-LGAD TOF (~30 ps)
- hpDIRC
- pfRICH
- dRICH

Calorimetry:

- **PbWO EEMCal**
- Imaging Barrel EMCal
- Inner HCal (instrumented frame)
- Outer HCal (sPHENIX re-use)
- FEMC
- LFHCAL

Differences to LHC

- lower momentum
- lower occupancy
- less irradiation

Advance detector technologies

[6] EIC DPAP

ePIC: Tracking and Vertexing

Zhenyu Ye @ UIC

• mid-rapidity:

5/5/2023

Ultra thin MAPS based Si-detectors, gaseous detectors & AC-LGADs

Forward and Backward:

MAPS based Silicon discs & AC-LGADs

- Outer layers placed to provide seeds for tracking & ideal track points before/after PID detectors
- ${\scriptstyle \bullet}$ New Magnet with BABAR dimensions B = 1.7-2T

ePIC: Particle Identification

Use multiple detector technologies to cover the wide kinematic range

- Backward: pfRICH + LAPPD TOF
- Barrel: hpDIRC + AC-LGAD TOF
- Forward: dRICH +AC-LGAD TOF

ePIC: Particle Identification

Low p_T PID by TOF is crucial for certain physics measurements

Zhenyu Ye @ UIC

ePIC: Far-Forward Detectors

Low Gain Avalanche Diode

E field Traditional Silicon detector

Ultra Fast Silicon Detector E field

Low Gain Avalanche Diode

High Luminosity LHC Era

- Dealing with the effects of pileup interactions in pp collisions will be a major challenge of the HL-LHC era.
- Sharping the tools for new discoveries as well as better measurement precision.

Role of Precise Timing at HL-LHC

- Per-particle timing allows 4D track and vertex reconstruction to reduce pile-up contributions
 - Significant benefit to CMS pp physics program
- Precise timing provides particle ID for low p_T hadrons
 - New opportunities in Heavy Ion physics for CMS

CMS Phase-2 Upgrades for HL-LHC

CMS MIP Timing Detector (MTP) for HL-LHC

BTL: LYSO bars + SiPM readout:

- TK/ ECAL interface: |η| < 1.45
- · Inner radius: 1148 mm (40 mm thick)
- · Length: ±2.6 m along z
- · Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{ed}/cm²

ETL: Si with internal gain (LGAD):

- On the HGC nose: 1.6 < |n| < 3.0
- Radius: 315 < R < 1200 mm
- · Position in z: ±3.0 m (45 mm thick)
- Surface ~15.8 m²; ~6M channels
- Fluence at 4 ab-1: up to 2x10¹⁵ n_{ed}/cm²

Thin layer between the tracker and calorimeters

- ETL ETL BTL
- Hermetic coverage for $|\eta| < 3.0$
- Time resolution of 30 ps for minimum ionizing particles (MIPs) before irradiation
- Sufficient radiation tolerance to maintain $\sigma_t < 60$ ps up to 3000 fb⁻¹.

CMS

Endcap Timing Layer – Layout

ETL service channel

Endcap Timing Layer – Time Resolution Contributions

- $\sigma_{ionization}$: random variation in particle energy deposition, determining the amplitude and the shape of the signal ~30 ps up to $1 \times 10^{15} n_{eq}/cm^2$, and ~40 ps up to $2 \times 10^{15} n_{eq}/cm^2$
- σ_{jitter}: mostly due to electronics noise and depends on the amplifier slew rate (dV/dt) jitter <40 ps before irradiation. No degrading in ETROC0 performance observed up to 100 Mrad
- σ_{TDC} : the effect of the TDC binning
- σ_{clock} : contribution from clock distribution

CMS Endcap Timing Layer - LGAD Sensor

FBK UFSD3

Key Sensor Characteristics							
Depletion region thickness	50 µm	Minimize rise time, sufficient charge, gain uniformity					
Pad size	$1.3 \times 1.3 \ mm^2$	Minimize capacitance, Occupancy ~1%					
Sensor size	$2 \times 4 \ cm^2 \ (16 \times 32)$	Optimize wafer usage					
Interpad gap	< 90 µm	Fill factor > 85%					
Time resolution after irradiation	< 40 <i>ps</i>	Up to $1.7 \times 10^{15} n_{eq}/cm^2$					

5x5 array from HPK

Recent prototypes from Hamamatsu (HPK) and Fondazione Bruno Kessler (FBK) focus on

- improving the radiation hardness
- increasing fill factor
- large arrays

Endcap Timing Layer – Readout ASIC (ETROC)

Low noise & fast rise time

$$\sigma_{jitter} \sim \frac{e_n C_d}{Q_{in}} \sqrt{t_{rise}} < 40 \ ps$$

- Power budget: 1 W/chip, 4 mW/channel
- **ETROC** innovations:
 - Low power single TDC for both time of • arrival and time over threshold measurements
 - Flexible low & high-power modes

- ✓ ETROC0 : single analog channel
- ETROC1: with TDC and 4x4 clock tree
- **ETROC2: 16x16 full size full functionality**
- **ETROC3: 16x16 pre-production**

ETROC1+LGAD – Test Beam Results

From preliminary analysis of the data from ongoing beam test at FNAL, the resolution of single LGAD+ETROC1 devices with large signal amplitude is 42-46 ps.

$$\sigma_i = \sqrt{0.5 \cdot \left(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2\right)}$$

21

AC-Coupled LGAD

• Due to the presence of JTE and the gap between LGAD cells, 100% fill factor can not be achieved in LGAD. The position resolution is limited to be $\sqrt{1/12}$ of cell size.

- AC-LGAD: replacement of the segmented n⁺⁺ layer by a less doped but continuous n⁺ layer. Electrical signals in the n⁺ layer are AC-coupled to neighboring metal electrodes that are separated from the n⁺ layer by a thin insulator layer.
- AC-LGAD not only provides a timing resolution of a few tens of picoseconds, but also 100% fill factor and a spatial resolution that are orders of magnitude smaller than the cell size. Therefore, it is a good candidate for 4D detectors at future high energy experiments.

AC-LGAD Detectors for ePIC

	Area (m ²)	Channel size (mm ²)	# of Channels	Timing Resolution	Spatial resolution	Material budget
Barrel TOF	10.9	0.5*10	2M	30 ps	$30 \ \mu m \ { m in} \ r \cdot \varphi$	0.01 X0
Forward TOF	2.22	0.5*0.5	6 M	25 ps	30 μm in x and y	0.08 X0
B0 tracker	0.07	0.5*0.5	0.3M	30 ps	20 μm in x and y	0.05 X0
RPs/OMD	0.14/0.08	0.5*0.5	0.6M/0.3M	30 ps	140 μm in x and y	no strict req.

Requirements on timing and spatial resolutions and material budget are still being evaluated and are subject to change as the design matures, and we will continue to explore common designs for these detectors where possible to reduce cost and risk.

Barrel TOF Layout

More details: https://indico.bnl.gov/event/16765/

ePIC Barrel TOF (~1% X₀)

STAR Intermediate Silicon Tracker

- 288 staves, each with 32 strip sensors wire-bonded to 64 frontend ASICs on low mass Kapton flex and CF support
- Power consumption: ~4 kW for 500µm x 1cm strips (2.4 kW for ASIC, 1.0 kW for DC-DC, 0.6 kW for sensor+cable+RB)

Forward TOF Layout

Forward TOF: dz < 10cm Patch Panels (~4% X₀) Cooling pipes Cables

- 212 modules, each with 24 to 96 bump-bonded pixel sensor + ASIC assemblies on Al disk
- Power consumption: 13 kW for $500 \times 500 \ \mu m^2$ pixels (6 kW for 800 x 800 μ m²)

More details: <u>https://indico.bnl.gov/event/17336/</u>

CMS Endcap Timing Layer

BV

LV

Barrel TOF PID Performance

Barrel TOF Impact on Tracking

AC-LGAD Detectors for ePIC

Roman Pots

AC-LGAD Sensor R&D

Nicolo Cartiglia

R&D Goals

- 15-20 ps timing resolution, $O(3-50\mu m)$ position resolution where needed
- Minimal readout channel density (long strip, rectangular pixel) for reduced power, material and cost
- Plan
 - Produce and test sensors with thinner active volume to achieve the desired timing resolution
 - Optimize implantation parameters and AC-pad segmentation through simulation and real device studies
 - Engage commercial vendors to improve fabrication process and yield

AC-LGAD Sensor R&D

- Production of medium/large area sensors with different doping concentration, pitch and gap sizes between electrodes and Si thickness to optimize performance by BNL IO and HPK.
 - 1st BNL (06/2021-11/2021): 5-25 mm strips with 500 μm pitch, 100-300 μm electrode width, 50 μm active Si
 - 2nd BNL (06/2022-11/2022): 5-25 mm strips with 500-700 μm pitch, 50-100 um electrode width, 20-50 μm Si
 - 3^{rd} BNL (08/2022-12/2022): pixels with 500-700 μm pitch, various electrode shapes, 20-50 μm Si
 - 1st HPK (06/2022-04/2023): strip+pixel sensors with different electrode width, active thickness and n⁺ doping
 - 4th BNL (02/2023-06/2023): deep gain layer to increase signal amplitudes

3rd BNL Production

Joint HPK Production

eRD112: AC-LGAD Sensor R&D

Figure 7: Picture (top) and diagram (bottom) of the FTBF silicon telescope and reference instruments used to characterize AC-LGAD performance. The telescope comprises five pairs of orthogonal strip layers and two pairs of pixel layers, for a total of up to 14 hits per track.

Figure 8: Three AC-LGAD strip sensors wire-bonded on Fermilab test board and tested at FTBF: BNL 5-200 (left), BNL 10-200 (middle) and BNL 25-200 (right). See text for details.

arXiv:2211.09698

eRD112: AC-LGAD Sensor R&D

Figure 7: Picture (top) and diagram (bottom) of the FTBF silicon telescope and reference instruments used to characterize AC-LGAD performance. The telescope comprises five pairs of orthogonal strip layers and two pairs of pixel layers, for a total of up to 14 hits per track.

Figure 8: Three AC-LGAD strip sensors wire-bonded on Fermilab test board and tested at FTBF: BNL 5-200 (left), BNL 10-200 (middle) and BNL 25-200 (right). See text for details.

- Timing and spatial resolutions of 1 cm long strip sensors from 1st BNL production demonstrate good performance, making strip sensors a promising candidate for EIC applications.
- Production of medium/large area sensors by BNL IO and HPK with different doping concentration, pitch and gap sizes between electrodes and Si thickness to optimize performance.

arXiv:2211.09698

•

Frontend ASIC R&D

- R&D Goals
 - 15-20 ps jitter with minimal (1 mW/ch) power consumption, match AC LGAD sensors for EIC
- Plan
 - Continue the ASIC prototyping efforts and utilize the design and experience in ASICs for fast-timing detectors from ATLAS and CMS, and investigate common ASIC design and development for RP/B0 and ToF

Frontend ASIC R&D

EICROC by Omega/Irfu/AGH

- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TOA TDC adapted by IRFU Saclay
- ADC adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)

FCFD by Fermilab

- Adapt the Constant Fraction Discriminator (CFD) principle in a pixel paired with a TDC, one time measurement gives the final answer.
- Charge injection consistent with simulations:
 ~30 ps at 5 fC, and <10 ps at 30 fC
- Tested with laser, beta source and beam

FCFDv0 Chip - Beta Source

On-going Work

Simulation [1]

- Geometry, digitization, reconstruction
- Timing resolution
- Spatial resolution (granularity)
- Material budget

Project Engineering and Design [3]

- Mechanical engineering
 - Mechanical structure and cooling
- Electric engineering (via DAQ group)
 - Prototype readout board, cables
 - Precision clock distribution

R&D [2]

- Sensor: BNL/HPK
- ASIC: EICROC, FCFD, UCSC/SCIPP
- ASIC/Sensor integration
- Low-density mechanical structure
- Low-mass service hybrid

<u>https://wiki.bnl.gov/EPIC/index.php?title=TOFPID</u>
 <u>https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY23</u>
 <u>https://www.overleaf.com/read/vftxyvjtjrvp</u>

Summary and Outlook

- AC-LGAD is the selected technology by EIC Detector-1 for timing and tracking in central and far-forward detectors. Other fast timing technologies could be considered for Detector-2
 - **Opportunity**: new detector technology development; multi-million and multi-year projects.
 - Challenge: strict detector performance requirements; tight schedule.

TOF WG Mailing list: <u>eic-projdet-tofpid-l@lists.bnl.gov</u> Indico page: <u>https://indico.bnl.gov/category/414</u>

- eRD112: develop sensor, ASIC, and other key components for AC-LGAD detectors at EIC
 - Approach: having common design and with combined R&D efforts for different detectors when possible.

eRD112 Mailing list: <u>https://mailman.rice.edu/mailman/listinfo/lgads-eie</u> Indico page: <u>https://indico.bnl.gov/category/323/</u>

Timeline – What is Coming for EIC CD-0 approval December 19, 2019 Community-wide Yellow Report effort Dec 2019 - Feb. 2021 CD-1 review (includes CDR) January 26-29, 2021 Call for Collaboration Proposals for Detectors March 6, 2021 CD-1 approval June 29, 2021 **DOE/OPA Status Review** October 19-21, 2021 Status Update to Federal Project Director June 28-30, 2022 Cost and Schedule Event(s) May-June 2022 **Technical Subsystem Reviews** Jan. – Dec. 2022 **OPA Status Review** January 2023 Preliminary Design Complete & Review May 2023 Final Design/Maturity Readiness for CD-3A Items May 2023 ~October 2023 CD-3A review (expectation), requires pre-TDR CD-3A (expectation) ~January 2024 CD-2/3 review (expectation), requires TDR ~January 2025

CD-2/3 (expectation)

• You are welcome to join eRD112 and other EIC detector/physics efforts.

EIC Users Group and ePIC Collaboration Meeting @ Warsaw, July 25-31, 2023

Zhenyu Ye @ UIC

~April 2025

References

- [1] Electron Ion Collider: The Next QCD Frontier Understanding the glue that binds us all (2012), <u>arXiv:1212.1701</u>
- [2] Reaching for the Horizon: The 2015 Long Range Plan for Nuclear Science (2015), link
- [3] An Assessment of U.S.-based Electron-Ion Collider Science (2018), link
- [4] Electron Ion Collider Conceptual Design Report (2021), link
- [5] Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report, arXiv:2103.05419
- [6] EIC Detector Proposals and Advisory Panel Report (2022), link
- [7] eRD112: EIC AC LGAD R&D Proposal (2022), link

Forward TOF Layout

Forward TOF: dz < 10cm Patch Panels (~4% X₀) Cooling pipes Cables

- 212 modules, each with 24 to 96 bump-bonded pixel sensor + ASIC assemblies on Al disk
- Power consumption: 13 kW for $500 \times 500 \ \mu m^2$ pixels (6 kW for 800 x 800 μ m²)

More details: <u>https://indico.bnl.gov/event/17336/</u>

CMS Endcap Timing Layer

BV

LV

Zhenyu Ye @ UIC

3/27/2023

40

AC-LGAD for EIC

- Precise timing detectors based on DC-LGAD being built by ATLAS (6.4 m^2) and CMS (14 m^2) for data taking in 2028+.
- AC-LGAD can not only provide precise timing resolution similar to DC-LGAD, but also 100% fill factor and much better spatial resolution thanks to charge sharing.
- AC-LGAD proposed for EIC experiments
 - TOF PID and tracking for central detectors
 - timing and tracking for forward detectors ٠

with common designs in sensor, ASIC etc. where possible.

Pitch - Metal [um]

AC-LGAD Detectors for EPIC

0.5*0.5

0.5*0.5

0.5*0.5

1	0/	2	0/	2	022

Forward TOF

B0 tracker

RPs/OMD

1.20/2.22

0.07

0.14/0.08

25 ps

30 ps

30 ps

~6 M

~0.3M

~0.6M/0.3M

0.04 X0

0.01 X0

no strict req.

 $30 \ \mu m$ in x and y

 $20 \ \mu m$ in x and y

140 μm in x and y

AC-LGAD TOF Overview

Baseline design:

- 500 μ m x 1 cm strip, ~1% X₀ for barrel
- 500 x 500 μ m² pixel, 8% X₀ for forward
- 25 ps single hit time resolution
- ~30 µm spatial resolution

- Barrel TOF: improve momentum resolution when single hit is missing in Si layers
- Forward TOF: expect positive impact on momentum and angular resolution when included in tracking

EIC Detector-1 Design: Particle Identification

5

EIC Detector-1 Design: EM Calorimeters

Endcap regions:

- **EEMC** homogenous high resolution PbWO₄ crystal ECal
- FEMC highly granular W-Scintilating Fiber calalorimeter

Barrel region - alternatives:

- Sci-Glass: homogenous, projective Sci-Glass ECal
- Imaging: 6 layers of 0.5x0.5mm Astro-Pix Silicon layers, interleaved with Pb-SciFi calorimeter

EIC Detector-1 Design: Hadronic Calorimeters LFHCAL

 Designed to complement tracking in Particle-Flow algorithm

oHCAL/IHCAL

- Fe/Scint sampling calorimeter
- partial sPHENIX re-use & magnet flux return

LFHCAL 0

- Fe/Scint & W/Scint sampling calorimeter
- Highly segmented (7 long. segments)
- W-segment as colimator
- High granularity inserts under discussion for forward E&HCal
- Electron end-cap HCAL as neutral veto, shallow Fe/Scint calo

BHCAL

	Barrel HCal	LFHCAL
η	[-11]	[14]
$\sigma_{\rm E}/{\rm E}$	~75%/√E + 15%*	~33%/√E + 1.4%
depth	~4-5 λ _ι	~7-8 入 _l

*Based on prototype beam tests and earlier experiments

epoxy 0.40 cm

EPIC Barrel TOF Module

h=0.642 cm

 $l = \frac{1}{2} L = 1.35 m$

- **32 AC-LGAD sensors**, each 3.2*4 cm² read out by **2 ASICs**
- Low mass flexible Kapton PCB distributes power and I/O signals from a low mass connector(s) at the edge
- Liquid coolant in Al cooling tube takes away heat from the ASICs

H=1.242 cm

5.6 cm

EPIC Barrel TOF Module

h=0.642 cm

- AC-LGAD sensor
- Frontend ASICs
- Carbon foam+
 - **Carbon honeycomb+ CF skins**
- Al cooling tube
- Liquid coolant
- Kapton PCB
- Connector

[7] eRD112 R&D Proposal

Sensor R&D

- R&D Goals
 - 15-20 ps timing resolution, $O(\sim 30 \mu m)$ position resolution where needed
 - Minimal readout channel density (strip, rectangular pixel) for reduced power, material and cost
- Plan
 - Produce and test large area sensors with thinner active volume to achieve the desired timing resolution
 - Optimize implantation parameters and AC-pad segmentation through simulation and real device studies
 - Engage commercial vendors to improve fabrication process and yield

AC-LGAD Sensor Wafer by BNL IO 2021

[7] eRD112 R&D Proposal

eRD112: ASIC R&D

- R&D Goals
 - 15-20 ps jitter with minimal (1-2 mW/ch) power consumption, match AC-LGAD sensors for EIC
- Plan
 - Utilize the design and experience in ASICs for fast-timing detectors from ATLAS and CMS, and investigate common ASIC design and development for TOF/Tracking and RP/B0

EICROC by Omega/Irfu/AGH

- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TOA TDC adapted by IRFU Saclay
- ADC adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)

FCFD by Fermilab

- Adapt the Constant Fraction Discriminator (CFD) principle in a pixel paired with a TDC, one time measurement gives the final answer.
- Charge injection consistent with simulations:
 ~30 ps at 5 fC, and <10 ps at 30 fC
- Tests with beta sources and beam are planned

HPSoC by Nalu Scientific LLC

Parameter	Specification
Channel no.	100+ <mark>(</mark> pitch 300-500 μm)
Process	65nm CMOS
Sample rate	10 GSa/s
Bandwidth	2 GHz
No. bits	10
Supply Voltage	1.0V (2.5V for digital I/O)
Timing accuracy	5ps
Front-End stage	Embedded TIA
Buffer length/channel	256 samples
Power/channel	<2mW
On-chip integration	Sampling, Digitization, Calibration, Feature Extraction, Data Fusion

eRD112: Frontend ASIC R&D

• A first ASIC prototype that is compatible with EIC Roman Pot requirements and can read out an AC-LGAD with 500 micron pitch and 20 ps time resolution.

EICROC0 (submitted in 3/2022, received in 7/2022) by OMEGA/CEA-Irfu/AGH/IJCLab

- 4 x 4 channels with $500x500 \text{ um}^2$ pitch
- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TDC (TOA) adapted by CEA-Saclay/Irfu
- ADC (40 MHz) adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)

EICROCO chip wire-bonded by BNL

EICROC0, 1 channel implantation

eRD112: Frontend ASIC R&D

FCFDv0 (Fermilab CFD v0)

- Adapt the Constant Fraction Discriminator (CFD) principle in a pixel when a CFD is paired with a TDC, one time measurement gives the final answer.
- Charge injection and beta source tests consistent with expectation. Tests with beam are planned

FCFD0

ASIC Efforts at UC Santa Cruz

Institution		Technology	Output	# of Chan	Funding	Specific Goals	Status
INFN Torino	FAST	110 nm CMOS	Discrim. & TDC	20	INFN	Large Capacitance TDC	Testing
NALU Scientific	HPSoC	65 nm CMOS	Waveform	5 (Prototype) > 81 (Final)	DoE SBIR	Digital back-end	Testing
Anadyne Inc	ASROC	Si-Ge BiCMOS	Discrim.	16	DoE SBIR	Low Power	Simulations, final Layout, Board design

HPSoC

10/20/2022

LGAD for CMS at HL-LHC

Endcap Timing Layer – Module Design

1: AlN module cover 2: LGAD sensor 3: ETL ASIC 4: Mounting film 5: AlN carrier 6: Mounting film 7: Mounting screw 8: Front-end hybrid 9: Adhesive film 10: Readout connector 11: High voltage connector 12: LGAD bias voltage wirebond 13: ETROC wirebonds

ETL consists of ~9000 modules. LGAD sensors and ETROC chips are bump-bonded together and attached to AlN base plate with thermal adhesive film to make one module. Electric connection between flexible circuits and LGAD/ETROCs are made through wire-bonding.

Endcap Timing Layer – Service Hybrid

- Service Hybrid is an assembly of two PCBs, a Power Board and a Readout Board, servicing 12 modules.
- **Power Board** distributes low voltages provided by power supplies to ETROCs, slow control adapter chip, lpGBT, and VTRx+. The voltages are regulated by radiation hard and B-tolerant DC-DC converters on the power board.
- **Readout Board** distributes bias voltages to LGAD sensors, receives and distributes fast control signals and slow controls to ETROCs, and route data and monitoring information from ETROCs to backend DAQ.

ETROC1+LGAD – Test Beam Results

- For pre-radiated sensor and ETROC0 operating above 20 fC, ~100% efficiency across the sensor area and time resolution of 40-50 ps have been achieved.
- Irradiation effects will be reduced by operating at lower temp (-30 °C) and mitigated by increasing the sensor bias voltage and by the high power mode of ETROC. Time resolution will be maintained below 50 ps.