Geometrical effects on thermopower properties of correlated electrons

Thereza Paíva

JUNE 19-23, 2023 at Instituto de Física Teórica - UNESP, São Paulo, Brazil

Collaborators

Willdauany de F Silva Natanael C Costa

Abhisek Samanta

Nandini Trivedi

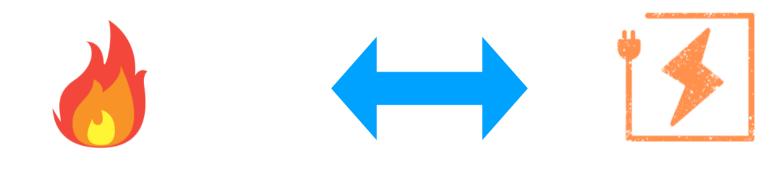
ArXiv:2303.16291

Effects of lattice geometry on thermopower properties of the repulsive Hubbard model

Willdauany C. de Freitas Silva,¹ Maykon V. Araujo,² Sayantan Roy,³ Abhisek Samanta,³ Natanael de C. Costa,¹ Nandini Trivedi,³ and Thereza Paiva¹ ¹Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-972, Brazil ²Departamento de Física, Universidade Federal do Piauí, 64049-550 Teresina PI, Brazil ³Department of Physics, The Ohio State University, Columbus OH 43210, USA

Thermoelectric materials and thermopower Hubbard Model Seebeck coefficient and Power factor Conclusions

Thermoelectric effects

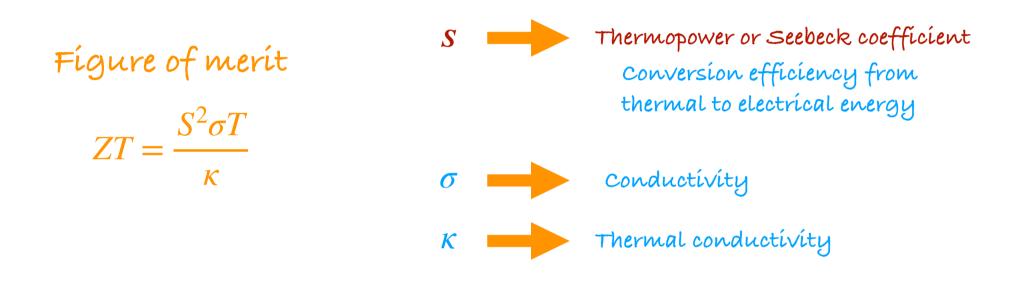


Thermic energy

Electric energy

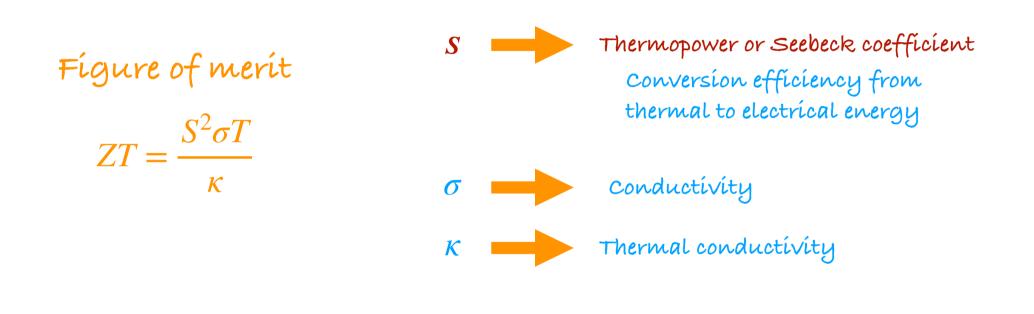
Thermoelectric materials: induced voltage in the presence of temperature gradient

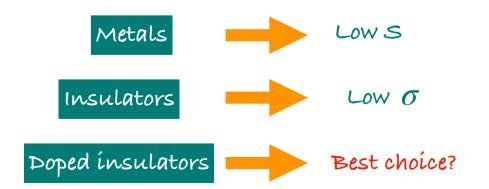
Thermoelectric materials



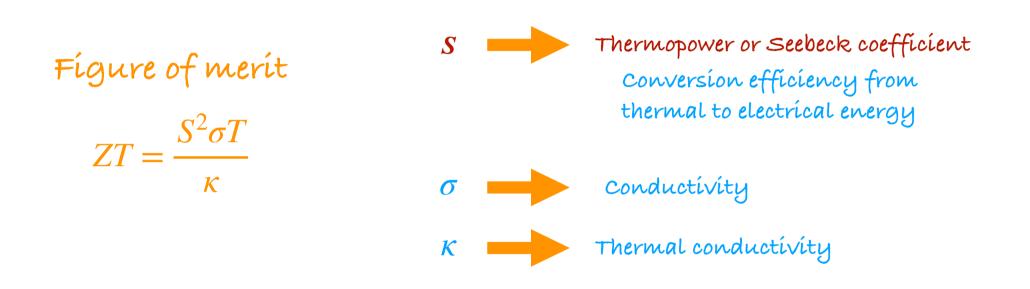
G. Mahan, B. Sales and J. Sharp, Physics Today 50, 3, 42 (1997)

Thermoelectric materials





Thermoelectric materials



Power Factor

$$PF = S^2 \sigma$$

Correlated materials

Wissgott et al PRB82 (10), Wissgott et al PRB 84 (11)

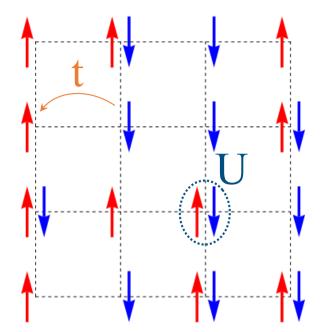
Obertelli et al PRB 46 (92), Tallon et al PRB 51 (95)

How is the thermopower affected by geometry?

How is thermopower affected by correlations?

Hubbard Model

$$\begin{aligned} \mathcal{H} &= -\mathbf{t} \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + h.c. \right) \\ &+ \mathbf{U} \sum_{i} \left(\hat{n}_{i\uparrow} - \frac{1}{2} \right) \left(\hat{n}_{i\downarrow} - \frac{1}{2} \right) - \boldsymbol{\mu} \hat{N} \end{aligned}$$



Coulomb repulsion (U>0)Hopping (t)chemical potential (μ)

No known analytic solution in 2D

QMC to study the Hubbard Model on square, triangular and honeycomb lattices

Some details on our QMC simulations

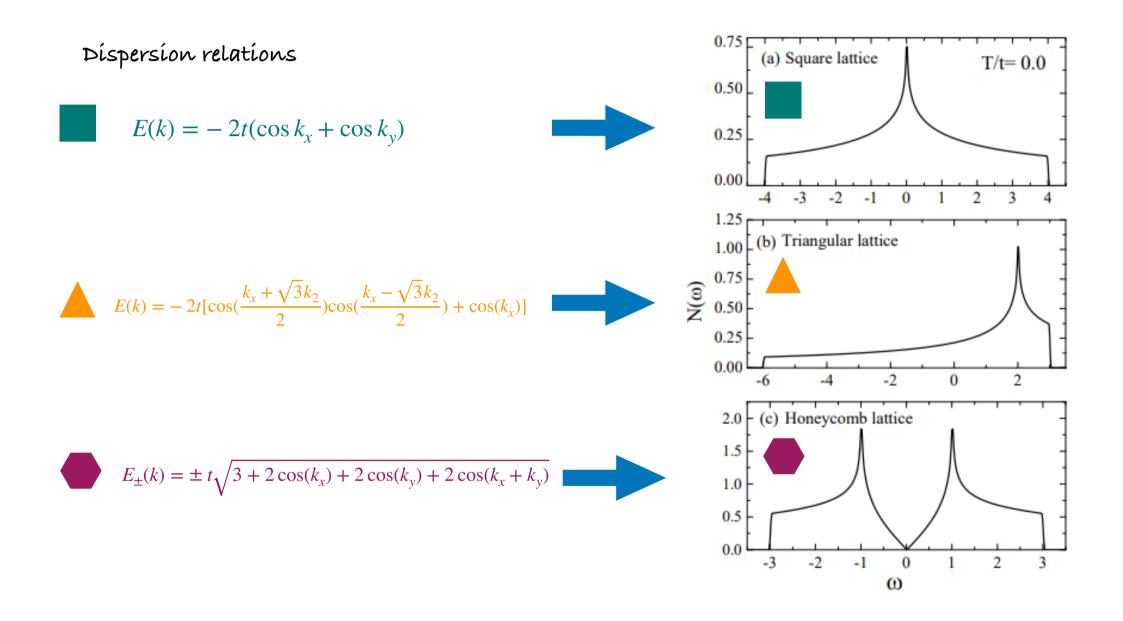
Each run:

2000 warm up sweeps, 5000 measurement sweeps

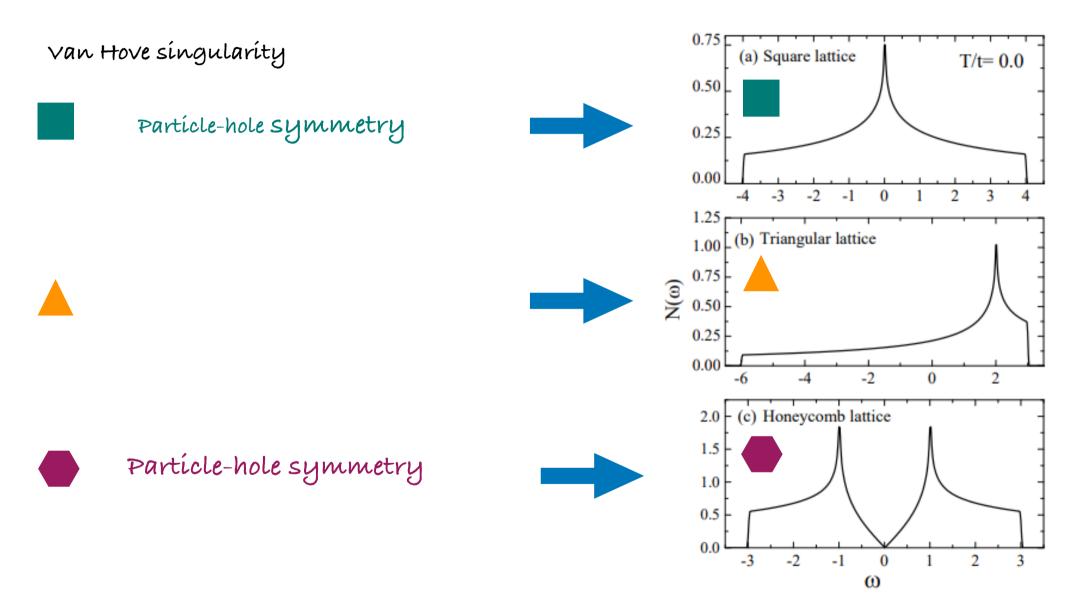
 $\Delta \tau < 0.1$ $0 \le U \le 10$

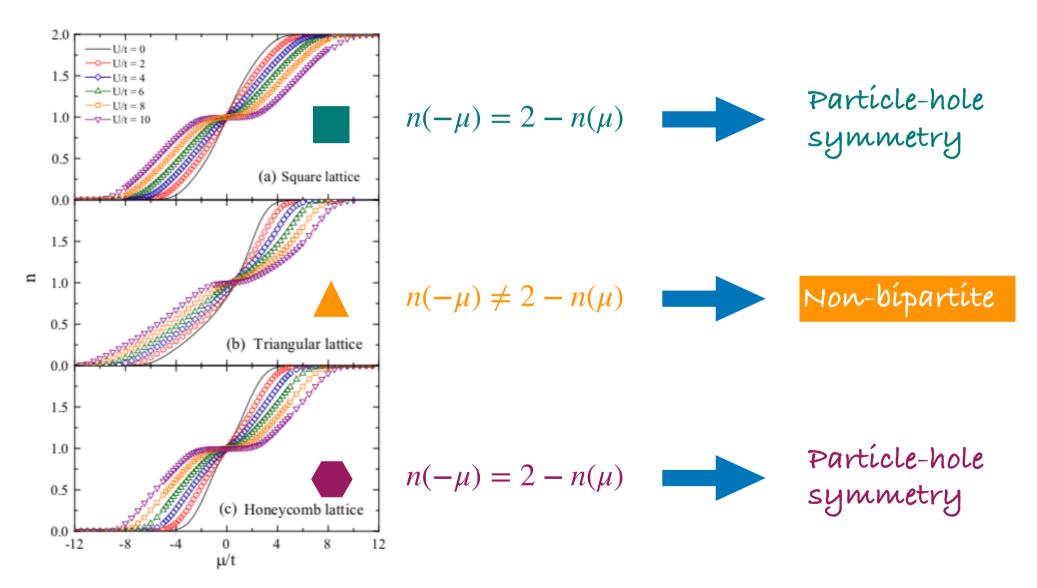
Sweeps through density: 500 jobs for each temperature and interaction strength

Non-interacting Density of states



Non-interacting Density of states





2.0

0.5

0.0

1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0

-12

-8

-4

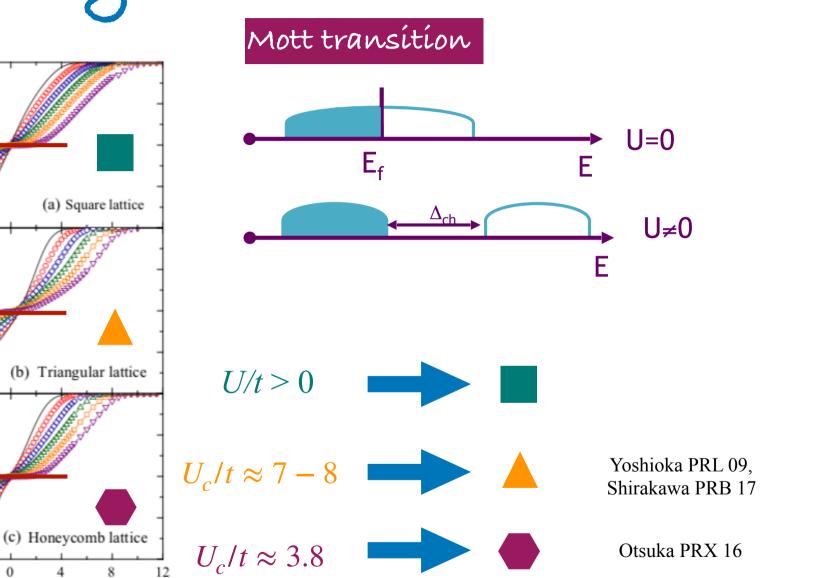
µ∕t

ц

1.5 $\begin{array}{c} -\mathbf{U}/t = 0 \\ -\mathbf{O} - \mathbf{U}/t = 2 \\ -\mathbf{O} - \mathbf{U}/t = 4 \\ -\mathbf{O} - \mathbf{U}/t = 6 \end{array}$

1.0 - U/t = 8 $-\nabla - U/t = 10$

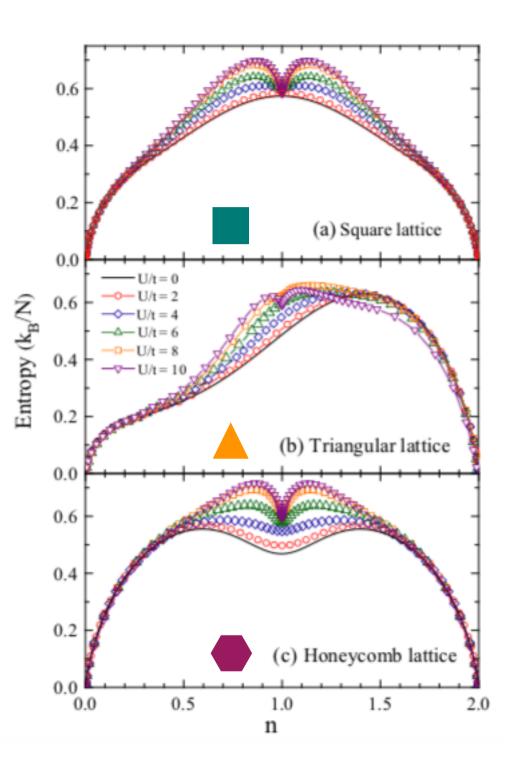




Entropy

$$s(\mu,T) = \int_{-\infty}^{\mu} d\mu \frac{\partial n}{\partial T} \Big|_{\mu}$$

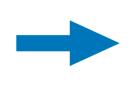
In units of $k_{B} \,$



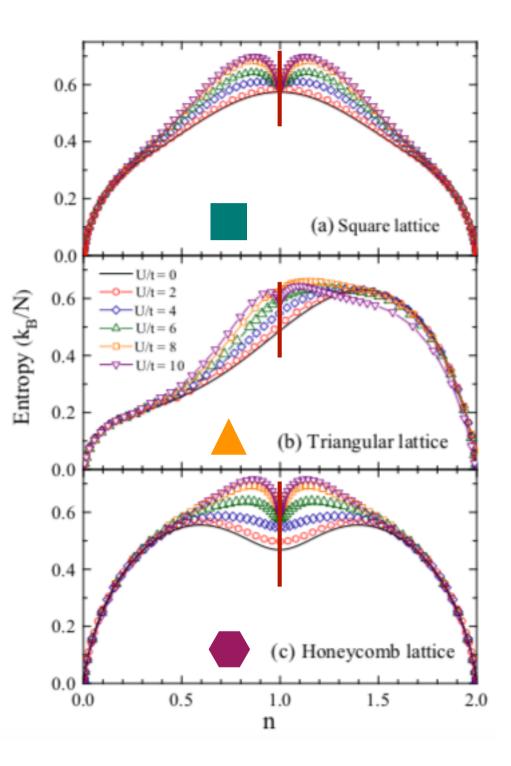
Entropy

$$s(\mu,T) = \int_{-\infty}^{\mu} d\mu \frac{\partial n}{\partial T}\Big|_{\mu}$$

Correlations only play a role in a geometry dependent region around half-filling



Mott insulator has lower entropy than surrounding metal



$$G(\mathbf{r}=0,\tau) = \int_{-\infty}^{\infty} d\omega \; \frac{e^{-\omega\tau}}{1+e^{-\beta\omega}} \; N(\omega) \qquad \qquad \Lambda(\mathbf{q}=0,\tau) = \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{e^{-\omega\tau}}{1-e^{-\beta\omega}} \; \mathrm{Im} \; \Lambda(\mathbf{q}=0,\omega) = \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \frac{e^{-\omega\tau}}{1-e^{-\omega}} \; \mathrm{Im} \; \Lambda($$

Key quantities obtained without inverting Laplace transforms

$$N(\omega = 0,T) = \frac{dn}{d\mu} = n^2 \kappa(T)$$

$$\sigma_{dc} \approx \frac{\beta^2}{\pi} \Lambda_{xx}(\mathbf{q} = \mathbf{0}, \tau = \beta/2)$$

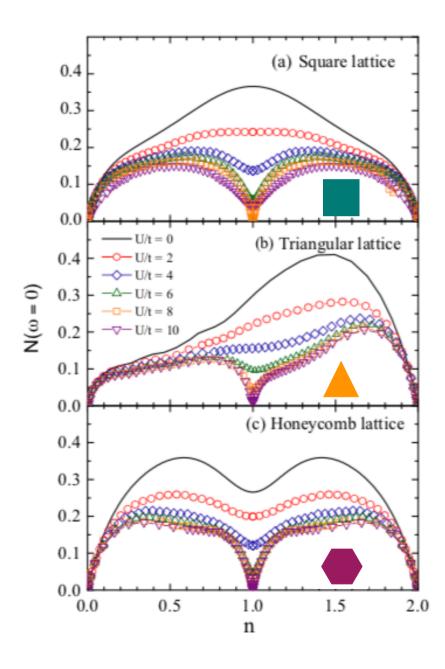
Current-current correlation function

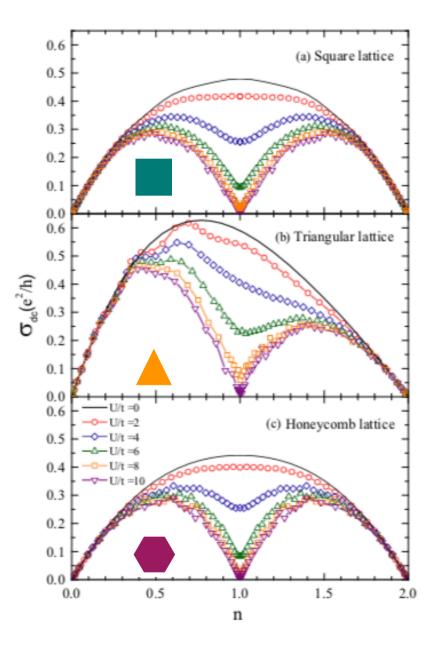
 $\Lambda_{xx}(\mathbf{q},\tau) = \left\langle j_x(\mathbf{q},\tau) j_x(-\mathbf{q},0) \right\rangle$

unequal time current operator

$$j_{x}(\mathbf{i},\tau) = \mathrm{e}^{\tau \mathcal{H}} \left[it \sum_{\sigma} \left(c^{\dagger}_{\mathbf{i}+\mathbf{x},\sigma} c_{\mathbf{i},\sigma} - c^{\dagger}_{\mathbf{i},\sigma} c_{\mathbf{i}+\mathbf{x},\sigma} \right) \right] \mathrm{e}^{-\tau \mathcal{H}}$$

Density of States





Kevín formula

$$S_{Kelvin} = -\frac{1}{e} \frac{\partial \mu}{\partial T} \Big|_{V,n} = \frac{\partial S}{\partial n} \Big|_{T,V}$$

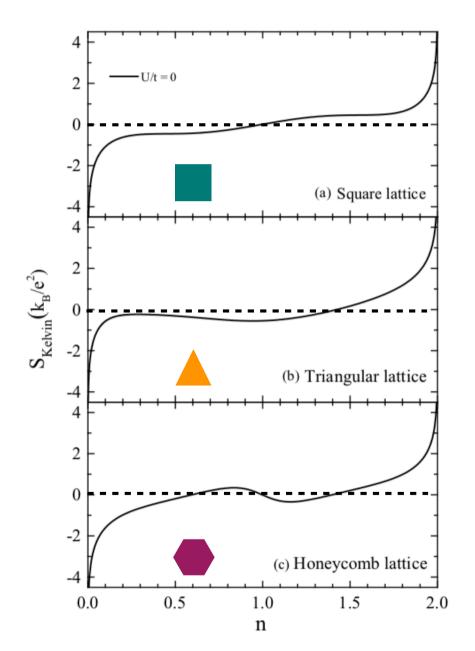
Low frequency: $\hbar \omega < U$

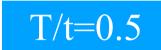
Sign is related to carrier:

negative for holes + and

positive for electrons -

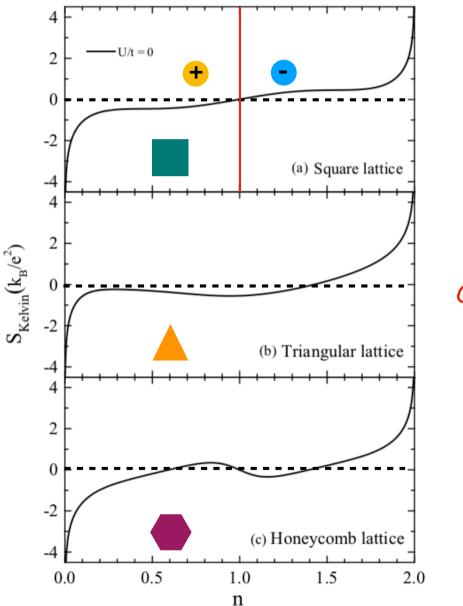
Seebeck coefficient



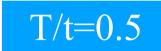


Change of sign: change of carrier

Seebeck coefficient

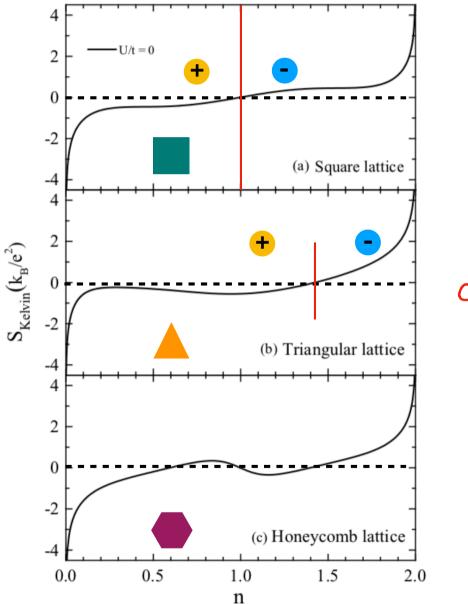


Geometry effects



Change of sign: change of carrier

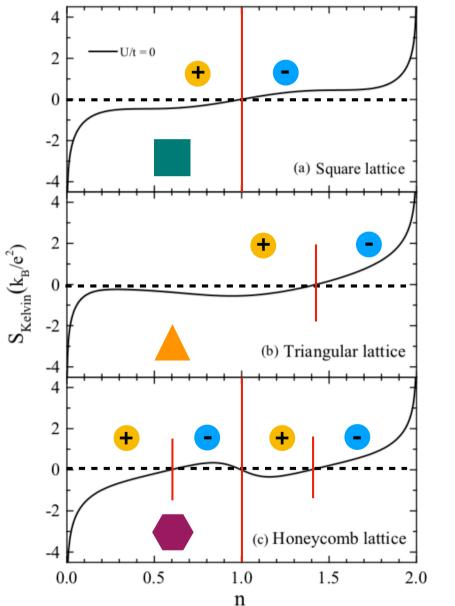
Seebeck coefficient



Change of sign: change of carrier

Half-filling n=1.42

Seebeck coefficient

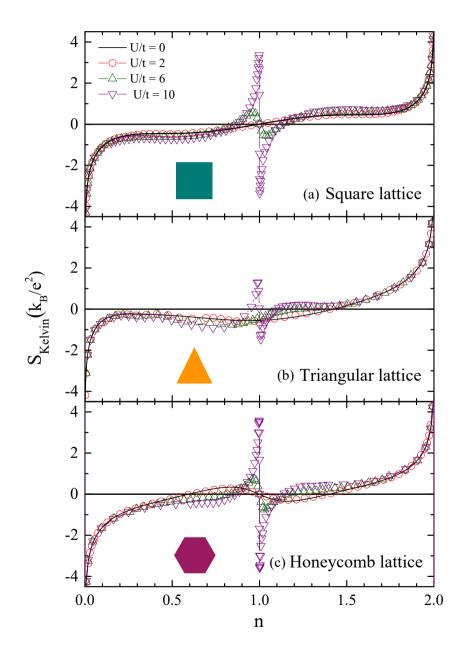


$$\longrightarrow Half-filling$$

$$\longrightarrow n=1.42$$

$$\longrightarrow n=0.6, 1.0 \text{ and } 1.4$$

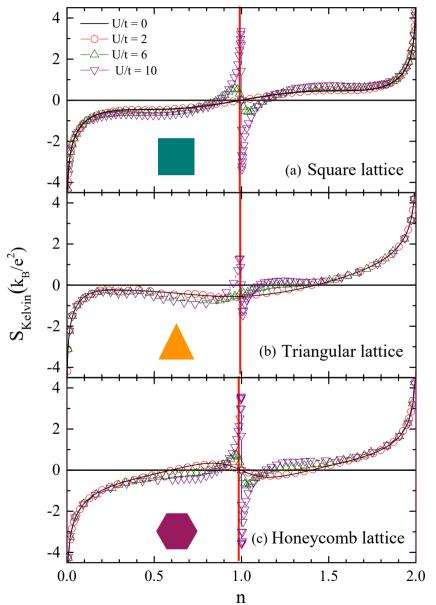
Seebeck coefficient



Role of Interactions

Strong increase near half-filling

Seebeck coefficient

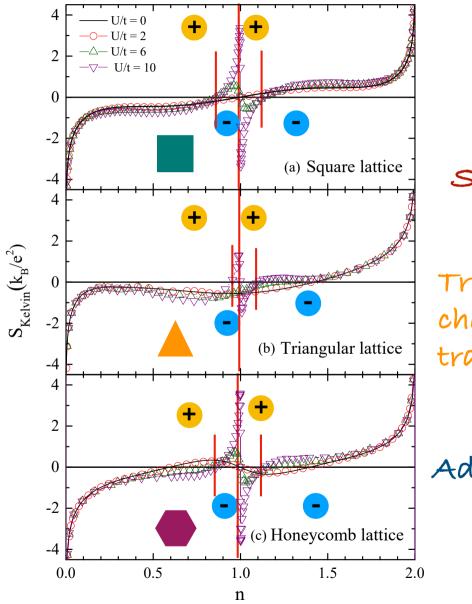


Role of Interactions

Strong increase near half-filling

Triangular lattice at half-filling: change of sign — Mott transition

Seebeck coefficient



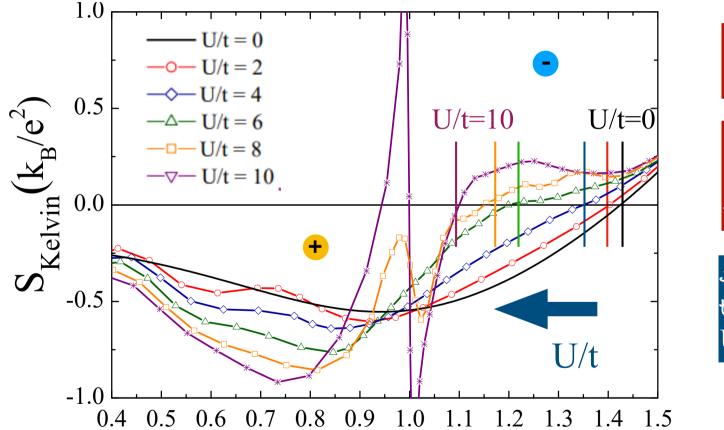
Role of Interactions

Strong increase near half-filling

Triangular lattice at half-filling: change of sign — Mott transition

Additional sign changing densities

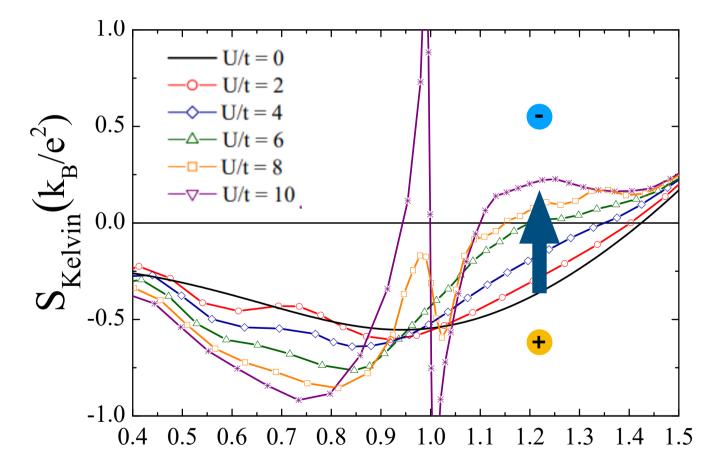
Seebeck coefficient for the triangular lattice



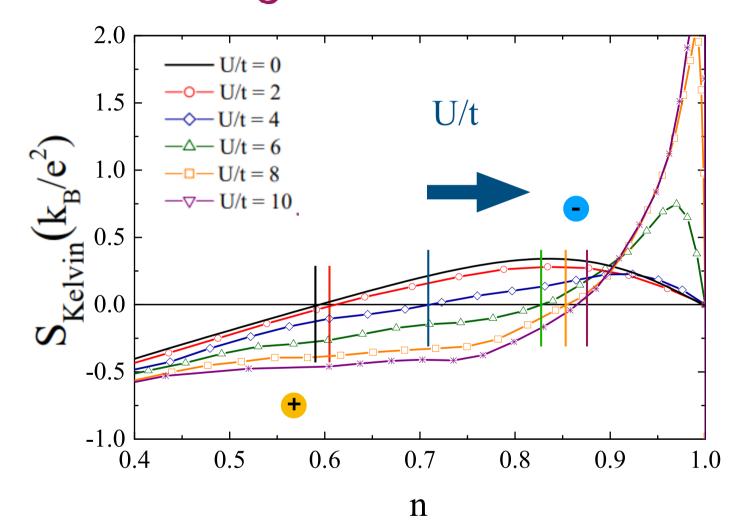
U/t dependent number of crossings

Large U/t → Strong íncrease near halffillíng

Sígn changes move to lower densítíes as U/t íncreases Seebeck coefficient for the triangular lattice

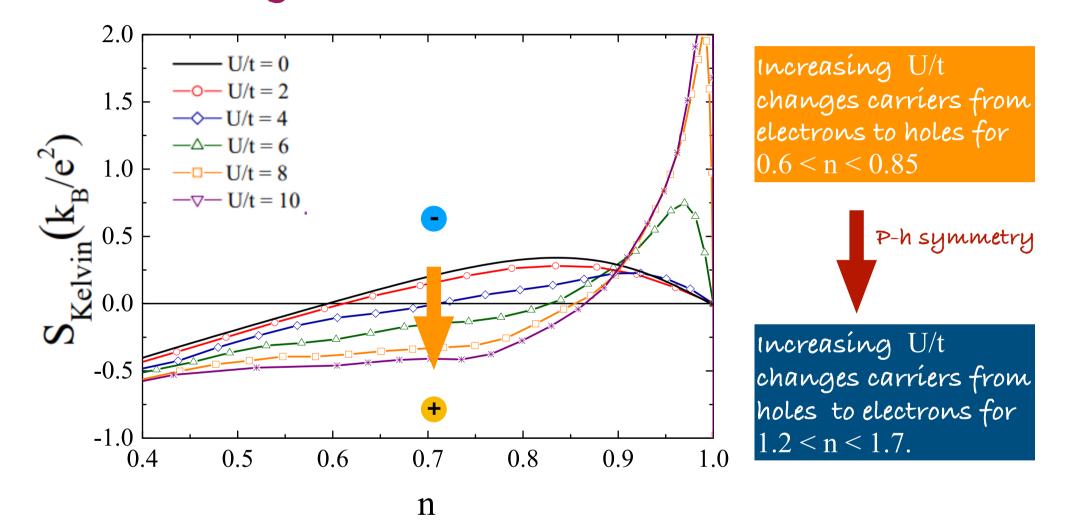


Increasing U/t changes carriers from holes to electrons Seebeck coefficient for the Honeycomb lattice

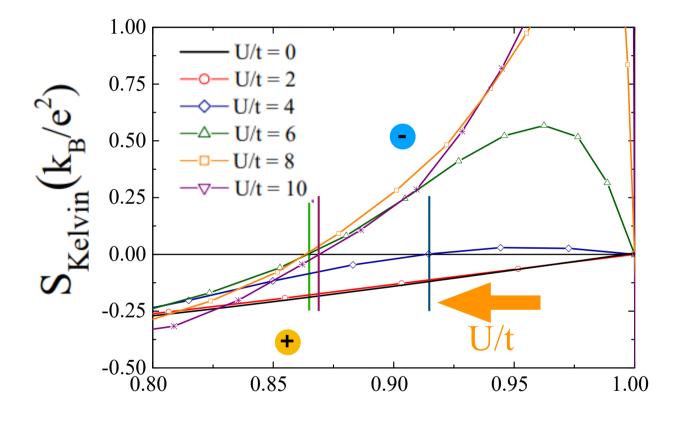


Large U/t → Strong íncrease near halffillíng

Sígn changes move to hígher (lower) densítíes below (above) half-fillíng as U/t íncreases Seebeck coefficient for the Honeycomb lattice



Seebeck coefficient for square lattice



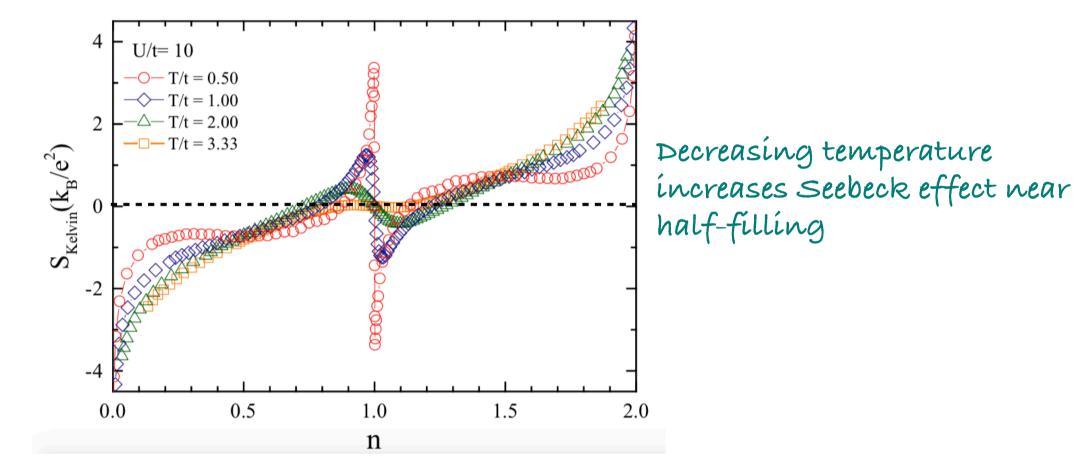
Large U/t → Strong íncrease near halffillíng

Sígn changes move to lower (hígher) densítíes below (above) half-fillíng as U/t íncreases

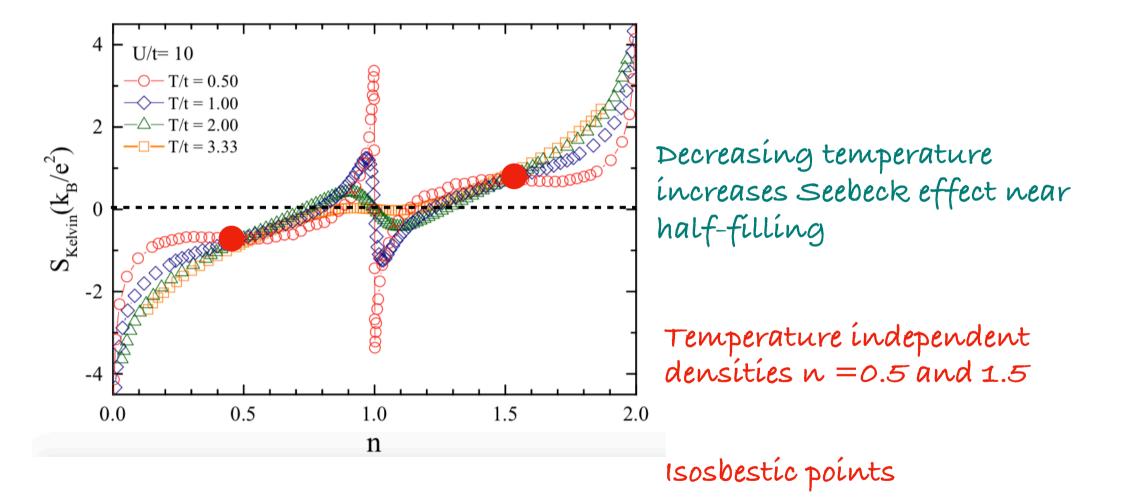
Change of sign pushed to smaller U/t

n

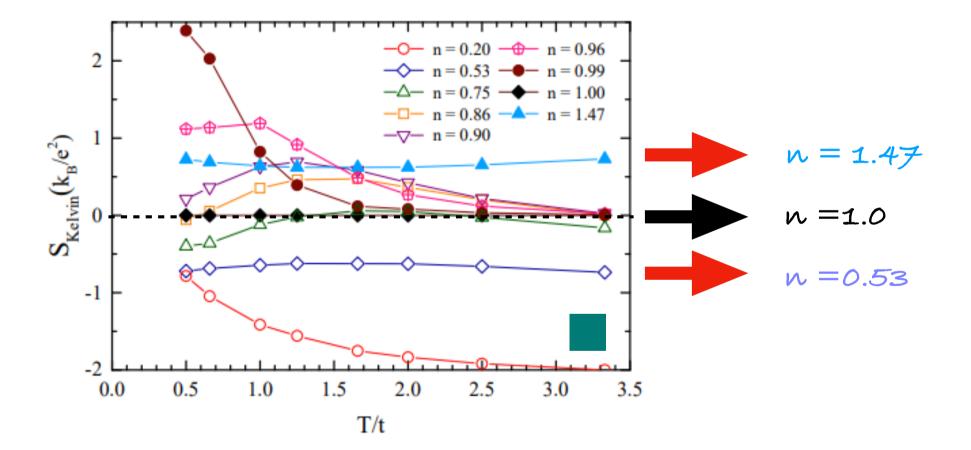
Effect of temperature for the square lattice



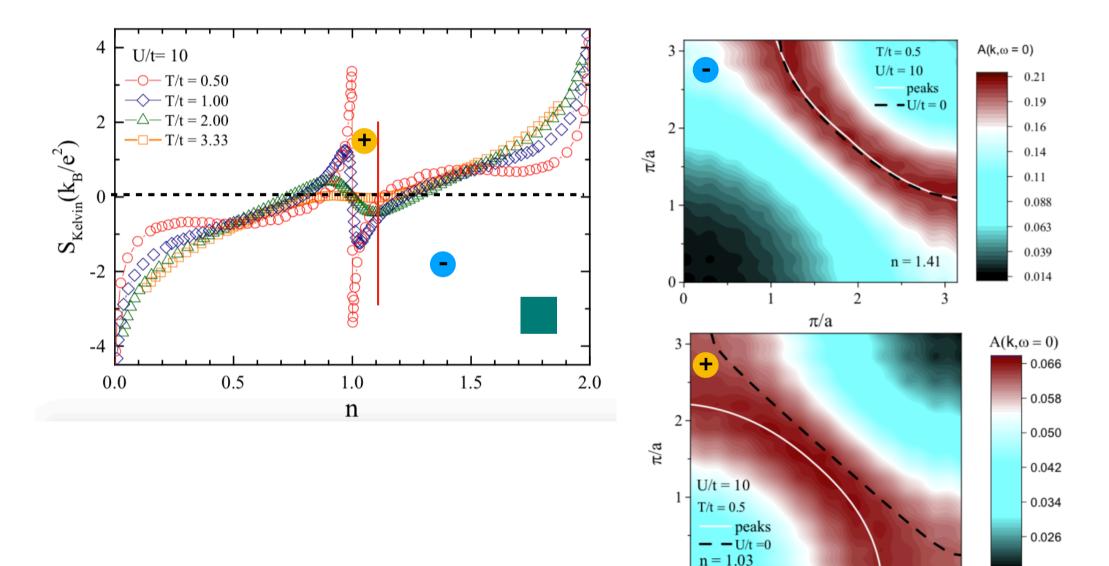
Effect of temperature for the square lattice



Effect of temperature for the square lattice



Fermí surface reconstruction



 π/a

2

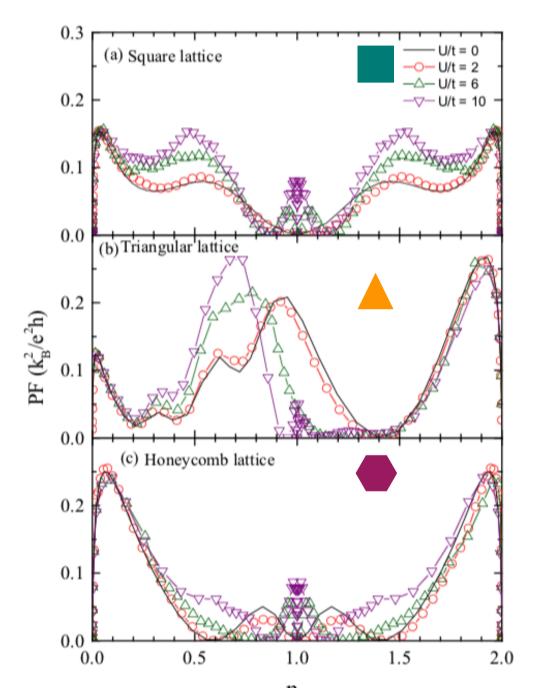
3

0

0

0.018

Power factor



 $PF = S^2 \sigma$

Increased by correlations in the vicinity of half-filling

At intermediate densities (around n = 0.4 - 0.6 and n = 1.4 - 1.6) the peaks in PF have a strong contribution from the conductivity with positions strongly dependent on geometry.

Conclusions

Anomalous Seebeck effect near half-filling: change in signals the Fermi surface reconstruction

Anomaly intensified by temperature reduction and increased correlations

Away from half-filling, at intermediate densities (around n = 0.4 - 0.6 and n = 1.4 - 1.6) the peaks in PF have a strong contribution from the conductivity with positions strongly dependent on geometry.

The thermoelectric Power Factor displays a competition between the Seebeck coefficient and the conductivity

Thank you!

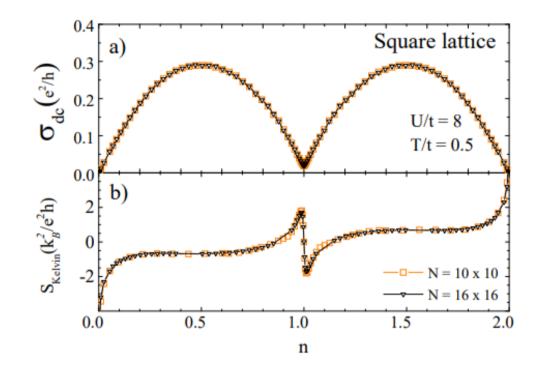
NATIONAL GEOGRAPHIC TRAVELER PHOTO CONTEST 2012 © COPYRIGHT IGNAZIO SCIACCA. ALL RIGHTS RESERVED

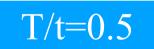
Photograph by Ignazio Sciacca

NATIONAL GEOGRAPHIC

Felíz aniversário, Eduardo!

Size effects





Irrelevant at this temperature

Density of States

$N(\omega = 0) \approx \frac{\beta}{\pi} G(|\mathbf{i} - \mathbf{j}| = \mathbf{0}, \tau = \beta/2)$

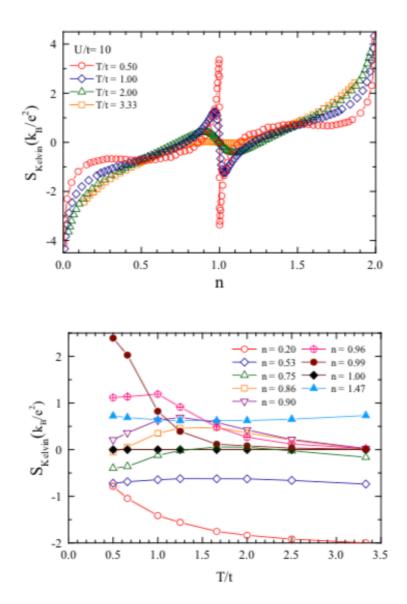
$$\sigma_{dc} \approx \frac{\beta^2}{\pi} \Lambda_{xx}(\mathbf{q} = \mathbf{0}, \tau = \beta/2)$$

$$\Lambda_{xx}(\mathbf{q},\tau) = \langle j_x(\mathbf{q},\tau) j_x(-\mathbf{q},0) \rangle$$

$$\begin{split} \tau &= \beta/2 \\ \beta &= 1/k_B T \end{split} \qquad j_x(\mathbf{i},\tau) = \mathrm{e}^{\tau \mathcal{H}} \left[it \sum_{\sigma} \left(c^{\dagger}_{\mathbf{i}+\mathbf{x},\sigma} c_{\mathbf{i},\sigma} - c^{\dagger}_{\mathbf{i},\sigma} c_{\mathbf{i}+\mathbf{x},\sigma} \right) \right] \mathrm{e}^{-\tau \mathcal{H}} \right] \end{split}$$

Seebeck coefficient

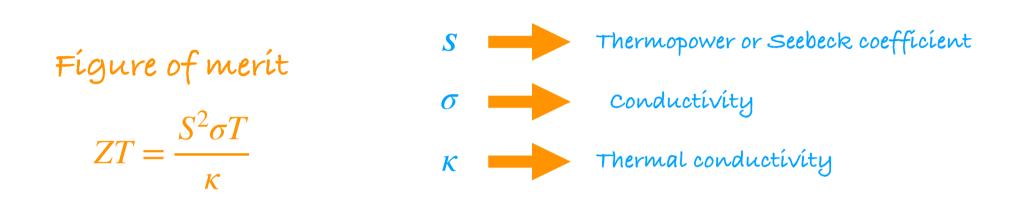
Temperature effects



Square lattice

Decreasing temperature increases Seebeck effect near half-filling

Temperature independent densities n = 0.5 and 1.5

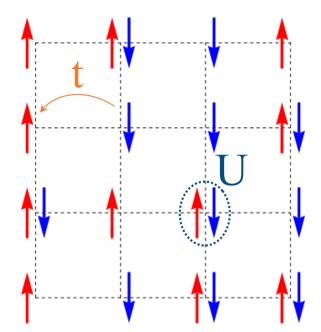


$$PF = S^2 \sigma$$

Competition between Seebeck coefficient and conductivity

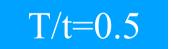
Hubbard Model

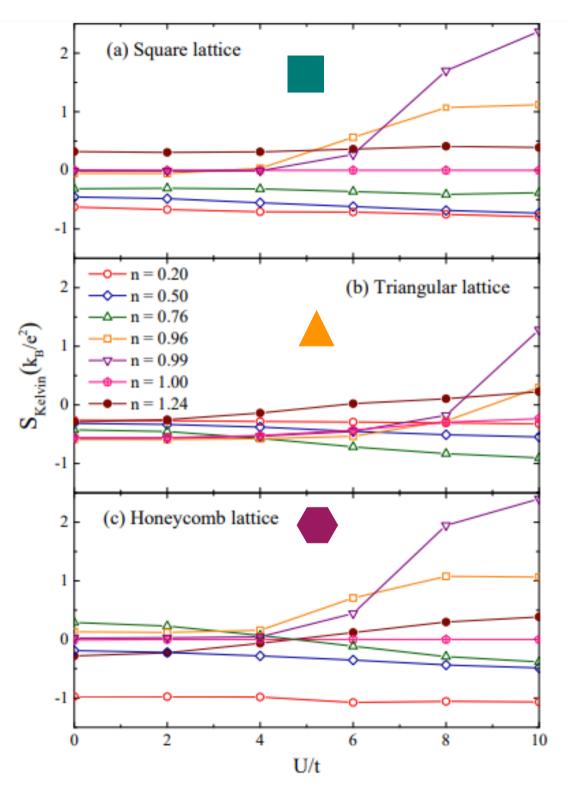
$$\mathcal{H} = -\mathbf{t} \sum_{\langle i,j \rangle,\sigma} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + h.c. \right) \\ + \mathbf{U} \sum_{i} \left(\hat{n}_{i\uparrow} - \frac{1}{2} \right) \left(\hat{n}_{i\downarrow} - \frac{1}{2} \right) - \boldsymbol{\mu} \hat{N}$$



Coulomb repulsion (U>0)Hopping (t)chemical potential (μ)

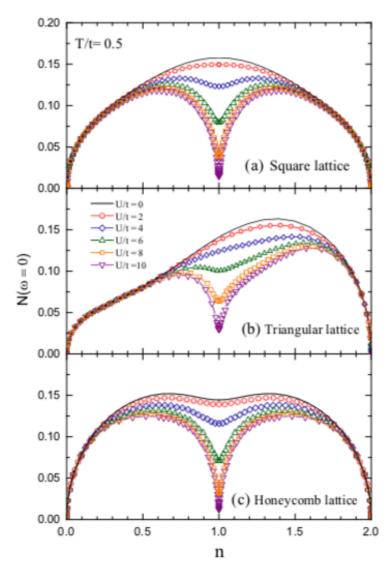
No known analytic solution in 2D





Density of States

$$N(\omega = 0, T) = \frac{dn}{d\mu} = n^2 \kappa(T)$$



$$\mathsf{V}(\omega=0) \approx \frac{\beta}{\pi} G(|\mathbf{i}-\mathbf{j}| = \mathbf{0}, \tau = \beta/2)$$

