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Outline

• Introduction

o Generalities of the Hall effects

o Quantum metric: what it is and where it appears

o Theory of the intrinsic quantum metric anomalous Hall effect

• The quantum metric Hall effect in MnBi2Te4 and BP heterostructure

o An ideal platform for the quantum metric Hall effect

o Minimal model

• Summary 
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The Hall effect

[N. Nagaosa et al., Rev. Mod. Phys. 82 (2010)]

Linear Hall effect: • External 𝑩 ⇒ normal Hall 
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The Hall effect

Hall conductivity

[N. Nagaosa et al., Rev. Mod. Phys. 82 (2010)]

Linear Hall effect: • External 𝑩 ⇒ normal Hall 
[E. Hall, Am. J. Math. (1879)]

• Intrinsic 𝑴 ⇒ anomalous Hall
[E. Hall, Philos. Mag. (1881)]

carrier density
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The Hall effect

Hall conductivity
Require break of time-reversal symmetry 

Different microscopic mechanism

[N. Nagaosa et al., Rev. Mod. Phys. 82 (2010)]

Linear Hall effect: • External 𝑩 ⇒ normal Hall 
[E. Hall, Am. J. Math. (1879)]

• Intrinsic 𝑴 ⇒ anomalous Hall
[E. Hall, Philos. Mag. (1881)]

carrier density
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The Hall effect family grows

[Adapted from C. Chang et al. J. Phys. Cond. Matt. (2016), R. Samajdar et al. PRB (2019) and Z.Z. Du et al. 
Nat. Phys. (2021)] 

1980: Integer Quantum Hall
1982: Fractional Quantum Hall
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The Hall effect family grows

[Adapted from C. Chang et al. J. Phys. Cond. Matt. (2016), R. Samajdar et al. PRB (2019) and Z.Z. Du et al. 
Nat. Phys. (2021)] 

1980: Integer Quantum Hall
1982: Fractional Quantum Hall
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The non-linear anomalous Hall effects

• Hall current oscillates at a different frequency than the electric field 

This talk: second-order anomalous Hall effect

antisymmetric in y and x
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The non-linear anomalous Hall effects

• Hall current oscillates at a different frequency than the electric field 

This talk: second-order anomalous Hall effect

What is the microscopic mechanism?

Two possibilities:

antisymmetric in y and x

a) 𝜔1 = 𝜔2 ⇒ Σ = 2𝜔

b) 𝜔2 = −𝜔1⇒ Σ = 0

• Can happen even in the presence of time-reversal symmetry

• Require inversion symmetry breaking
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Theory of the linear Hall effects

Normal Hall

Lorentz force

[N. Nagaosa et al., Rev. Mod. Phys. 82 (2010)] 10



Theory of the linear Hall effects

Normal Hall

Lorentz force

(Linear) anomalous Hall

Extrinsic: disorder → depend on electron lifetime 𝜏

Intrinsic: anomalous velocity → independent of 𝜏

Cannot be explained by band structure alone!

[N. Nagaosa et al., Rev. Mod. Phys. 82 (2010)] 10



(Linear) anomalous Hall

Intrinsic: anomalous velocity → independent of 𝜏

Theory of the linear Hall effects

11
[N. Nagaosa et al., Rev. Mod. Phys. (2010), Jungwirth et al., Phys. Rev. Lett. (2002), Handane et al. 
PRL (2004)] 



(Linear) anomalous Hall

Intrinsic: anomalous velocity → independent of 𝜏

Theory of the linear Hall effects

Berry curvature!

Electrons in solids:
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(Linear) anomalous Hall

Intrinsic: anomalous velocity → independent of 𝜏

Theory of the linear Hall effects

Berry curvature!

Electrons in solids:
cell periodic
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(Linear) anomalous Hall

Intrinsic: anomalous velocity → independent of 𝜏

Theory of the linear Hall effects

Berry curvature!

Electrons in solids:
cell periodic

Electric current:

11
[N. Nagaosa et al., Rev. Mod. Phys. (2010), Jungwirth et al., Phys. Rev. Lett. (2002), Handane et al. 
PRL (2004)] 



(Linear) anomalous Hall

Intrinsic: anomalous velocity → independent of 𝜏

Theory of the linear Hall effects

Berry curvature!

Electrons in solids:
cell periodic Time reversal (𝒯):

Requires 𝒯 breaking!

11
[N. Nagaosa et al., Rev. Mod. Phys. (2010), Jungwirth et al., Phys. Rev. Lett. (2002), Handane et al. 
PRL (2004)] 



• Extrinsic contributions to the non-linear Hall effect also involves the Berry curvature

12

[Sodemann, Fu (2014; Ma et al. (2018); Kang et al. (2018)]

Non-linear Hall: beyond the Berry curvature

Berry curvature
dipole



• Intrinsic second-order Hall effect is generated by dipoles of the quantum metric

• Extrinsic contributions to the non-linear Hall effect also involves the Berry curvature

12

[Sodemann, Fu (2014; Ma et al. (2018); Kang et al. (2018)]

From Ma et al. (2018):

Observed in bilayer WTe2

Non-linear Hall: beyond the Berry curvature

Berry curvature
dipole



• Quantum geometric tensor: geometric properties of the electron wave functions 

The quantum geometry of the electrons

Non-Abelian Berry connection

12[J. P. Provost and G. Valle et al. Communications in Mathematical Physics (1980)]
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[J. P. Provost and G. Valle et al. Communications in Mathematical Physics (1980)]



• Quantum geometric tensor: geometric properties of the electron wave functions 

Berry curvature

Quantum metric

The quantum geometry of the electrons

Distance between quantum states

12

Non-Abelian Berry connection

[J. P. Provost and G. Valle et al. Communications in Mathematical Physics (1980)]



Theory of the intrinsic non-linear Hall effect: beyond Berry curvature

• Semiclassical description (second order in 𝑬, with 𝑩 = 0)

field correction to the 
anomalous velocity ( ෤𝑣𝑎𝑛)

[Y. Gao et al. PRL 112 (2014)]
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Theory of the intrinsic non-linear Hall effect

• From the field correction to the anomalous velocity:

Antisymmetric:

[Y. Gao et al. PRL 112 (2014), C. Wang et al. PRL 127 (2021)
Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)] 14



Theory of the intrinsic non-linear Hall effect

• From the field correction to the anomalous velocity:

Antisymmetric:
Quantum metric dipole: 

[Adapted from Liu et 
al. PRL 127 (2021)]

[Y. Gao et al. PRL 112 (2014), C. Wang et al. PRL 127 (2021)
Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)] 14



Additional interband
contributions 

Theory of the intrinsic non-linear Hall effect

• From the field correction to the anomalous velocity:

Antisymmetric:
Quantum metric dipole: 

[Adapted from Liu et 
al. PRL 127 (2021)]

[Y. Gao et al. PRL 112 (2014), C. Wang et al. PRL 127 (2021)
Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)] 14



Symmetry considerations

• What about the original anomalous velocity contribution?

• Quantum metric Hall effect dominates in 𝒫𝒯 symmetric materials

Inversion (𝒫):

First observation in a heterostructure of MnBi2Te4 and BP

Time-reversal (𝒯):

15

[Y. Gao et al. PRL 112 (2014), C. Wang et al. PRL 127 (2021)



Experimentally measured anomalous Hall effect

SETUP:

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)]

• Material: heterostructure composed by MnBi2Te4 (MBT) and black phosphorus (BP)

16
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Experimentally measured anomalous Hall effect

SETUP:

⟶ Dominance of the Hall response

• Material: heterostructure composed by MnBi2Te4 (MBT) and black phosphorus (BP)

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)]

Hall voltage

Longitudinal voltage

16
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Properties of MnBi2Te4

CRYSTAL STRUCTURE

References 

unit cell:
Septuple layer (SL)

• Crystal space group: 𝑅ത3𝑚
𝐶3𝑧 
𝒫 (spatial inversion)
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Properties of MnBi2Te4

CRYSTAL STRUCTURE

• Mn moments ferromagnetically in each SL below ~25K

• Ground state is AFM

𝒫𝒯 symmetric AFM⇒ 𝜴 𝒌 = 0

• Even layer structures:

𝒫𝒯
𝒫
𝒯

• SLs coupling is van der Waals type

References 

unit cell:
Septuple layer (SL)
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• Crystal space group: 𝑅ത3𝑚
𝐶3𝑧 
𝒫 (spatial inversion)



Fermi surface and quantum metric dipole in the 6SL MBT

• Low energy physics dominated by 𝑝𝑧 orbitals of Bi and Te atoms

Each SL: k.p model around the center of BZ 

6 SL

[B. Lian et al. PRL 124 (2020)]
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Fermi surface and quantum metric dipole in the 6SL MBT

• Low energy physics dominated by 𝑝𝑧 orbitals of Bi and Te atoms

Each SL: k.p model around the center of BZ 

Normal state 
(consistent with 𝑅ത3𝑚)

Ferromagnetic 
ordering in each SL

6 SL

[B. Lian et al. PRL 124 (2020)]

Inter-SL hopping: 𝑇0 𝒌

Large quantum metric!
18



Fermi surface and quantum metric dipole in the 6SL MBT

Quantum metric dipole:

𝜇

For 𝜇 = −50 meV :
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Fermi surface and quantum metric dipole in the 6SL MBT

Quantum metric dipole:

𝜇

No quantum metric Hall effect 

For 𝜇 = −50 meV :

𝐶3𝑧
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Fermi surface and quantum metric dipole in the 6SL MBT

Quantum metric dipole:

We need to break 𝐶3𝑧 symmetry and keep 𝒫𝒯… 
How? 

𝜇

No quantum metric Hall effect 

For 𝜇 = −50 meV :

𝐶3𝑧
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Black phosphorus (BP) promotes the needed 𝐶3𝑧 breaking

• Low energy physics: tight-biding dominated by 𝑝𝑧 orbitals of P atoms

top view 

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)]

[Ezawa et al. NJP (2014) 
Rudenko et al. PRB (2015)]
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Black phosphorus (BP) promotes the needed 𝐶3𝑧 breaking

• Low energy physics: tight-biding dominated by 𝑝𝑧 orbitals of P atoms

top view 

Sources of 𝐶3𝑧 breaking:

• BP tetragonal lattice breaks 𝐶3𝑧
a) Hybridization of BP and MBT bands

b) Lattice mismatch ⇒ strain

Next-neighbor interlayer hoping: ෡𝑈𝑏 and ෡𝑈𝑡

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)]

[Ezawa et al. NJP (2014) 
Rudenko et al. PRB (2015)]
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The BP/MBT/BP heterostructure: results from theoretical modeling

Band structure:

Large quantum metric 
at small band gaps
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The BP/MBT/BP heterostructure: results from theoretical modeling

Band structure: Quantum metric dipole:

For 𝜇 = −50 meV:

Large quantum metric 
at small band gaps
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Energy dependence of the non-linear anomalous Hall effect

Electron doping Hole doping

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)] 21
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Energy dependence of the non-linear anomalous Hall effect

Electron doping Hole doping

1) Zero at charge neutrality
⇒Fermi surface property

2) Larger for electron doping 
⇒Larger quantum metric

3) Changes sign
⇒ hybridization between BP 
and MBT bands

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)] 21



Strain alone cannot capture the features of the observed Hall signal

• Large mismatch between MBT and BP lattice induces strain

• New terms in the MBT minimal model

Strain only Strain and MBT-BP hybridization

23



Energy dependence of the non-linear anomalous Hall effect

Electron doping Hole doping

[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)] 22



Ruling out other sources of second-order AHE

1) Finite only below 𝑇𝑁 ⇒ Hall 
signal comes from the spin texture

𝑇𝑁
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Ruling out other sources of second-order AHE

1) Finite only below 𝑇𝑁 ⇒ Hall 
signal comes from the spin texture

2) Independent of 𝜎𝑥𝑥 ⇒ intrinsic effect

𝑇𝑁

3)Hall signal changes 
sign under time-reversal

4) Symmetry constraint 
rule out Berry curvature 
dipole 

AFM: 𝒯ℳ𝑎

preserved

24



Summary

• Second-order anomalous Hall effect
• Extrinsic: disorder, Berry curvature multipoles
• Intrinsic: dipoles of quantum metric

• Intrinsic component dominates in PT-symmetric materials with large quantum 
metric
• BP/MBT/BP is an ideal platform 
• Main features captured by a minimal model
• Hybridization between MBT and BP bands is essential to account for sign 

change of the Hall signal

• Future direction: what about multipoles of quantum metric?

Thank you!
[Gao, Liu, Qiu, Gosh, Trevisan et al., Science (2023)]
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Extra Slides 



Frequency dependence of the quantum metric anomalous Hall conductivity



Dominant contribution of the quantum metric term
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