Emergence of mesoscale quantum phase transitions in a ferromagnet

Emergence of mesoscale quantum phase transitions in a ferromagnet

Emergence of mesoscale quantum phase transitions in a ferromagnet

Matthias Vojta TU Dresden

- 1. Recap quantum criticality
- 2. Transverse-field Ising model & LiHoF₄
- 3. Experimental results in **tilted** fields
- 4. Modelling: Stray fields and domains
- 5. Mesoscale quantum criticality

What is a phase transition?

A change in the collective properties of a macroscopic number of atoms.

What is a quantum phase transition?

A phase transition at T = 0, driven by "quantum fluctuations".

What is a quantum phase transition?

Experimentally observed in many compounds, e.g. in TlCuCl₃ under pressure.

Landau-Ginzburg-Wilson description

non-universal

quantum critical

OCP

quantum

disordered

thermally

disordered

ordered

classical critical

In many cases, underlying field theory is known.

Magnetic order-disorder transition (e.g. TlCuCl₃):

 φ^4 (or Landau-Ginzburg-Wilson) theory for antiferromagnetic order parameter $\varphi_{\alpha}(\vec{x}, \tau)$.

$$\mathcal{S} = \int d^d r d\tau \frac{1}{2} \left[c^2 (\vec{\nabla} \varphi_\alpha)^2 + (\partial_\tau \varphi_\alpha)^2 + m_0 \varphi_\alpha^2 \right] + \frac{u_0}{24} (\varphi_\alpha^2)^2$$

Coarse-grained description of microscopic (physical or emergent) degrees of freedom

Bitko / Rosenbaum / Aeppli, PRL 77, 940 (1997)

LiHoF₄: Non-Kramers moments

UNIVERSITÄT WÜRZBURG

Ho⁴⁺: *J*=8 electronic moments

Lowest CEF state of Ho in LiHoF₄:

non-Kramers doublet (11 K gap to next level) with large moment along z axis, but zero moment along x & y

CEF levels as fct of transverse field

Hyperfine coupling in LiHoF₄

UNIVERSITÄT WÜRZBURG

Ho: Nuclear spin I=7/2, hyperfine coupling A ≈ 0.04 K → Energy of hyperfine coupling of order 0.5 K

Hyperfine-induced stabilization of ordered phase

Excitations are mixed electro-nuclear modes, observable e.g. in neutron scattering

Time reversal broken near electronic QPT (e.g. transverse-field Ising)

 \rightarrow QPT shifted by hyperfine coupling

Time reversal unbroken near electronic QPT (e.g. coupled dimers)

\rightarrow QPT smeared by hyperfine coupling

Ising ferromagnet in tilted field (expectation)

Apply field tilted by angle ϕ from hard axis (\rightarrow couples to order parameter)

B p hard hard axis Transition smeared into crossover for finite ϕ

Crossover field B^* may be defined from susceptibility maximum. Landau theory: $B^*-B_c \sim \Phi^{2/3}$

LiHoF₄: Susceptibility in tilted fields

Magnetic ac susceptibility along easy axis as function of field for different angles φ

LiHoF₄: Susceptibility in tilted fields

Ordered FM (x limited by demagnetization effects) Magnetic ac susceptibility T = 1.2 KTransition along easy axis as function of field for different angles ϕ Paramagnet 0.3 0° B 0.15Sharp phase transition at any finite angle ϕ ! 6 **First order?** 4 Why not smeared?

Wendl / Eisenlohr *et al.*, Nature **609**, 65 (2022)

LiHoF₄: More susceptibility in tilted fields

ct.qmat

Magnetic ac susceptibility along easy axis

Transition field very sensitive to φ

Height of jump in χ

Modelling including domains

Microscopic ingredients

$$H_{\rm mic} = -K \sum_{\langle ij \rangle} \mathbf{J}_i \cdot \mathbf{J}_j + \sum_i \left[V_{\rm CF}(\mathbf{J}_i) + A\mathbf{J}_i \cdot \mathbf{I}_i \right] - \mu_B \mathbf{B} \cdot \sum_i (g\mathbf{J}_i + g_N \mathbf{I}_i)$$

All CEF levels (required for tilted fields!) All nuclear levels + hyperfine coupling

Interactions approximated as Heisenberg, treated at mean-field level

 \rightarrow m-f theory with 17x8-dim Hilbert space

Domains

Sheet-like domains (assumed)

Stray-field energy computed exactly

 μ_0

Combine into consistent mean-field theory for transverse-field Ising ferromagnet w/ domains

Chakraborty *et al.*, PRB **70**, 144411 (2004) Tabei *et al.*, PRB **78**, 184408 (2008) McKenzie *et al.*, PRB **97**, 214430 (2018) Stray fields induce effective antiferromagnetic coupling between domains! ational parameters

s taken from Monte Carlo

Biltmo et al., EPL 87, 27007 (2009)

Microscopic part, separately for each domain:

$$H_{\rm mic}^{\rm MF} = -nK(\mathbf{J} \cdot \mathbf{\bar{J}} - \frac{\mathbf{\bar{J}}^2}{2}) + V_{\rm CF}(\mathbf{J}) + A\mathbf{J} \cdot \mathbf{I} - \mu_B \mathbf{B} \cdot (g\mathbf{J} + g_N \mathbf{I})$$

Domain energies, written as effective interaction for domains 1 and 2:

$$E_{\rm dom} = M \sum_{\alpha} \left(c_1^{\alpha} \bar{J}_1^{\alpha} \bar{J}_1^{\alpha} + c_2^{\alpha} \bar{J}_2^{\alpha} \bar{J}_2^{\alpha} + c_{12}^{\alpha} \bar{J}_1^{\alpha} \bar{J}_2^{\alpha} \right)$$

Combined m-f theory:

$$\begin{split} H_{1}^{\mathrm{MF}} &= \left(-\frac{n}{2}K + \frac{c_{1}^{x}}{1 - v} \right) \left(2\bar{J}_{1}^{x}J_{1}^{x} - (\bar{J}_{1}^{x})^{2} \right) \\ &+ \frac{c_{12}^{x}}{1 - v} \left(\bar{J}_{2}^{x}J_{1}^{x} - \frac{1}{2}\bar{J}_{1}^{x}\bar{J}_{2}^{x} \right) \\ &+ \left(-\frac{n}{2}K + \frac{c_{1}^{z}}{1 - v} \right) \left(2\bar{J}_{1}^{z}J_{1}^{z} - (\bar{J}_{1}^{z})^{2} \right) \\ &+ \left(-\frac{n}{2}K + \frac{c_{1}^{z}}{1 - v} \right) \left(2\bar{J}_{1}^{z}J_{1}^{z} - (\bar{J}_{1}^{z})^{2} \right) \\ &+ \frac{c_{12}^{z}}{1 - v} \left(\bar{J}_{2}^{z}J_{1}^{z} - \frac{1}{2}\bar{J}_{1}^{z}\bar{J}_{2}^{z} \right) \\ &+ \frac{c_{12}^{z}}{1 - v} \left(\bar{J}_{2}^{z}J_{1}^{z} - \frac{1}{2}\bar{J}_{1}^{z}\bar{J}_{2}^{z} \right) \\ &- \frac{n}{2}K \left(2\bar{J}_{1}^{y}J_{1}^{y} - (\bar{J}_{1}^{y})^{2} \right) + H_{\mathrm{ion}}(\hat{\mathbf{J}}_{1}), \end{split} \qquad H_{2}^{\mathrm{MF}} = \left(-\frac{n}{2}K + \frac{c_{2}^{x}}{v} \right) \left(2\bar{J}_{2}^{x}J_{2}^{x} - (\bar{J}_{2}^{x})^{2} \right) \\ &+ \frac{c_{12}^{x}}{v} \left(\bar{J}_{1}^{x}J_{2}^{x} - \frac{1}{2}\bar{J}_{1}^{x}\bar{J}_{2}^{z} \right) \\ &+ \frac{c_{12}^{z}}{v} \left(\bar{J}_{2}^{z}J_{2}^{z} - \frac{1}{2}\bar{J}_{1}^{z}\bar{J}_{2}^{z} \right) \\ &- \frac{n}{2}K \left(2\bar{J}_{1}^{y}J_{1}^{y} - (\bar{J}_{1}^{y})^{2} \right) + H_{\mathrm{ion}}(\hat{\mathbf{J}}_{1}), \end{split}$$

Key quantity: Domain volume ratio $v = D_2 / (D_1 + D_2)$

TECHNISCHE UNIVERSITÄT DRESDEN

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Domains vanish at microscopic transition

Minority domains are expelled

Wendl / Eisenlohr *et al.*, Nature **609**, 65 (2022)

Why is ``hyperfine nose" suppressed for tilted fields?

Interplay of non-Kramers & hyperfine physics

ф=0:

Electronic moment |J| strongly varies as fct of B

(because x component is small)

ightarrow hyperfine coupling gains more energy in FM phase

 \rightarrow FM phase stabilized at low T

φ>5°:

|*J*| variation weak

ightarrow hyperfine coupling does no longer stabilize FM phase

Calculation w/ full CEF Hamiltonian

Calculation w/ Kramers + single-ion anisotropy

Two types of (continuous) quantum phase transitions in LiHoF₄:

- 1) Multi-domain ferromagnet $\leftarrow \rightarrow$ Single-domain paramagnet for $\phi=0$ Domains disappear by vanishing magnetization Exponents $\alpha=0$, $\beta=1/2$, $\gamma=1$, $\delta=3$ (mean-field) due to dipolar interactions
- Multi-domain ← → Single-domain for φ≠0 Domains disappear by vanishing minority domain volume Exponents α=0, β=1, γ=0, δ=1

UNIVERSITÄT WÜRZBURG

Wendl / Eisenlohr et al., Nature 609, 65 (2022)

Heat capacity of LiHoF₄

Wendl et al., unpublished

Heat capacity of LiHoF₄: transverse & tilted field

Wendl et al., unpublished

LiHoF₄ displays sharp phase transition even under tilted fields.

Theory including domains is in excellent agreement w/ experiment.

Open questions:

ct.qmat

Are domain-driven transitions always of m-f type? Role of (quantum) fluctuations?

Related transitions in other domain-forming systems (ferroelectrics)?

Criticality for transverse field

Susceptibility diverges according to $\chi \sim (B-B_c)^{-\gamma}$ with $\gamma=1$ after removing demagnetization effects

UNIVERSITÄT WÜRZBURG TECHNISCHE UNIVERSITÄT DRESDEN

Needle-like domains along easy axis

Karci et al., Rev. Sci. Inst. 85, 103703 (2014)

Biltmo *et al.*, EPL **87**, 27007 (2009)

• Stray field energy (exact): calculate from magnetostatic potential of surface charges

$$E_{s} = \frac{1}{2} \frac{\mu_{0}}{4\pi} \int d^{2}r \,\Phi_{s}(\vec{r})\sigma(\vec{r}) \qquad \Phi_{s}(\vec{r}) = \frac{\mu_{0}}{4\pi} \int d^{2}r' \,\frac{\sigma(\vec{r}')}{|\vec{r'} - \vec{r}|} \qquad \sigma(\vec{r}) = \vec{m}(\vec{r}) \cdot \vec{n}(\vec{r})$$

• Domain wall energy (estimate)

$$E_{\rm dw} = \sigma_{\rm dw} A_{\rm dw} N_{\rm dw} \frac{|\vec{m}_1 - \vec{m}_2|^2}{f^2}$$

