# **Controlling the Stripe Order in a Diluted Frustrated Magnet**

Thomas Vojta, Xuecheng Ye

Department of Physics, Missouri University of Science and Technology

**Rajesh Narayanan** 

Department of Physics, Indian Institute of Technology Madras





Workshop on Strong Electron Correlations in Quantum Materials: Inhomogeneities, Frustration, and Topology, São Paulo, 19 June 2023

# **Motivation**

### **Question: Effects of disorder on phases that break real-space symmetries?**



charge "stripes" in cuprates, organic crystals, etc



nematic and spin-density wave orders in iron pnictides

# Outline

- Symmetry-breaking and types of disorder
- Stripe order in the  $J_1 J_2$  Ising model
- Random fields from dilution
- Domain formation vs. stripe order
- Controlling the random-field mechanism





# **Disorder effects on long-range ordered phases**

• coupling of order parameter to impurities and defects governed by order parameter symmetries

#### **Random**- $T_c$ disorder

- does not break order-parameter symmetries
- **no** change in character of the bulk phases
- **spatial variation** of coupling strength
- example: diluted ferromagnet



#### **Random-field disorder**

- locally breaks order-parameter symmetries
- **competes** with formation of long-range order

#### How can random fields arise?

- if OP breaks real space symmetry, impurities expected to prefer particular OP direction
- impurities expected to create random-field disorder
- example: charge or spin density wave phase



## **Two-dimensional** $J_1$ – $J_2$ **Ising model**





negative  $J_2 \Rightarrow$  frustration

#### **Ground state phases:**



 $J_1 > 0, J_2/J_1 > -0.5,$ ferromagnetic order, breaks Ising up-down symmetry  $J_1 < 0, \ J_2/|J_1| > -0.5,$ antiferromagnetic order, breaks Ising up-down symmetry, doubles unit cell  $J_2/|J_1| < -0.5$ stripe order breaks Ising up-down sym. and  $C_4$  lattice rotation sym.

# $J_1-J_2$ lsing model phase diagram ( $J_1 > 0, J_2 < 0$ )



Hamiltonian:

$$H = -J_1 \sum_{\langle ij \rangle} \epsilon_i \epsilon_j S_i S_j - J_2 \sum_{\langle \langle ij \rangle \rangle} \epsilon_i \epsilon_j S_i S_j$$

**dilution:** quenched random variables  $\epsilon_i$ 

$$\epsilon_i = \begin{cases} 0 & \text{with probability } p \\ 1 & \text{with probability } 1 - p \end{cases}$$

**Question: Effects of random site dilution on the ferromagnetic and stripe phases?** 

#### **Ferromagnetic phase**

- order parameter breaks Ising symmetry
- order parameter does not break real-space symmetries
- impurities produce random- $T_c$  disorder
- ferromagnetic phase **survives** in presence of impurities

#### Stripe phase

- order parameter breaks both Ising symmetry and
  C<sub>4</sub> lattice rotation symmetry
- stronger coupling between impurities and order parameter expected

#### **Objective:**

**Study stability of stripe phase against spinless impurities** 

## **Random fields from site dilution**

### **Effect of impurities on stripe phase:**

- single vacancy does not break symmetry between stripe directions
- vacancy pair on horizontal nearest-neighbor sites prefers horizontal stripes by  $2J_1$
- $\Rightarrow$  impurity pairs **locally break**  $C_4$  lattice rotation symmetry
- ⇒ impurity pairs create random-field disorder for nematic order parameter

## **Random field strength:**

 estimated from number of vacancy pairs via central limit theorem

$$\langle E_{RF}^2(L) \rangle = 2L^2 p^2 J_1^2 = h_{\text{eff}}^2 L^2$$





#### Imry and Ma:

compare energy gain from forming domain that takes advantage of disorder with energy cost of domain wall

#### random field energy gain:

$$E_{\rm RF} \sim h_{\rm eff} L^{d/2}$$

#### domain wall energy:

 $E_{\rm DW} \sim \begin{cases} J_2 L^{d-1} & (\text{discrete}) \\ J_2 L^{d-2} & (\text{continuous}) \end{cases}$ 

- if  $E_{\rm RF} > E_{\rm DW}$  for  $L \to \infty$ : domain formation favorable
- $\Rightarrow$  long-range stripe order destroyed by domain formation in  $d\leq 2$
- minimum domain size (in 2D):  $L_0 = A \exp(cJ_2^2/h_{eff}^2)$



#### Monte Carlo algorithms:

- single spin flips (Metropolis) and corner exchange moves
- system sizes up to  $192^2$
- site dilutions p = 1/8 and 1/4
- 3,000 to 100,000 disorder configurations
- up to  $2 \times 10^6$  equilibration and measurement sweeps

#### **Observables:**

• two-component stripe order parameter  $\psi = (\psi_h, \psi_v)$ 

$$\psi_h = \frac{1}{N} \sum_i (-1)^{y_i} \epsilon_i S_i , \quad \psi_v = \frac{1}{N} \sum_i (-1)^{x_i} \epsilon_i S_i$$

• Binder cumulant  $g_{av} = \left[2 - \frac{\langle |\psi|^4 \rangle}{\langle |\psi|^2 \rangle^2}\right]_{dis}$ 



# **Domain formation**



Snapshot of spin configuration  $T = 0.1 \ L = 192$ , p = 1/4,  $J_1 = -J_2 = 1$ 

Local nematic order parameter  $\eta_i = \sum_j' \pm \epsilon_i \epsilon_j S_i S_j$ distinguishing horizontal and vertical stripes

### **Destruction of the stripe phase**



- ferromagnetic phase survives with reduced  $T_c$  (impurities create random- $T_c$  disorder)
- stripe phase **destroyed** by **random-field** induced domain formation



- stripe Binder cumulant vs. temperature, p = 1/4,  $J_1 = -J_2 = 1$
- $\Rightarrow\,$  curves do not cross
- $\Rightarrow$  **no phase transition** into stripe phase

### **Controlling the random-field mechanism I: impurity correlations**

- random fields produced by vacancy pairs on nearest neighbor sites
- random fields suppressed if impurities are anti-correlated (repulse each other)





- perfect anticorrelations (no vacancy pairs): Binder cumulant curves cross
- $\Rightarrow$  stripe phase is **restored**
- $\Rightarrow T_c \text{ reduced w.r.t. clean case}$  $(vacancies act as random-T_c disorder)$

### Controlling the random-field mechanism II: global symmetry breaking

• symmetry between two lattice directions weakly broken (e.g., by external strain)

$$H = -J_{1h} \sum_{\langle ij \rangle_h} \epsilon_i \epsilon_j S_i S_j - J_{1v} \sum_{\langle ij \rangle_v} \epsilon_i \epsilon_j S_i S_j - J_2 \sum_{\langle \langle ij \rangle \rangle} \epsilon_i \epsilon_j S_i S_j$$

• nearest-neighbor interaction depends on direction  $\Rightarrow$  horizontal stripes **preferred** for  $\Delta J > 0$ 





### Stripe transition for $\Delta J > 0$

- Binder cumulant curves cross for any nonzero  $\Delta J$
- $\Rightarrow$  stripe phase is **restored**



1.8 1.6 1.4 0.9 1.2 0.8  $T_c$  $1/T_c$ 0.7 0.8 0.6 0.6 0.4 0.5 0.2 -3 -2 \_4 -1 0  $\ln(\Delta J)$ 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0

 $\Delta J$ 

- very small  $\Delta J$  sufficient to produce sizable  $T_c$ 
  - logarithmic dependence:  $T_c \sim 1/|\ln(\Delta J)|$

#### percolation theory

- domain structure resembles percolation problem
- distance from percolation criticality  $\sim \Delta J$
- Ising model on percolating lattice:  $T_c \sim 1/|\ln(x-x_c)|$

# **Critical behavior**

### Symmetry expectation:

- for  $\Delta J > 0$ , order parameter has **Ising** symmetry
- impurities create random- $T_c$  disorder
- $\Rightarrow$  expect disordered 2D Ising universality class

### Harris criterion:

• disorder marginal w.r.t. Harris criterion  $d\nu>2$ 

## **RG** prediction:

- critical behavior controlled by **clean Ising fixed point**
- disorder produces universal logarithmic corrections
- stripe susceptibility  $\chi_s \sim L^{\gamma/\nu} \left[1 + O(1/\ln L)\right]$  with  $\gamma/\nu = 7/4$
- specific heat:  $C \sim \ln \ln L$



# Conclusions

- when order parameter breaks a real-space symmetry  $\Rightarrow$  impurities generically create both random- $T_c$  disorder and random-field disorder
- random fields destroy the long-range ordered phase in dimensions  $d \leq 2$  by domain formation
- long-range order can be restored by weak global symmetry breaking ("strain engineering")
- in  $J_1-J_2$  lsing model, strength of random-fields can be tuned by repulsion between impurities

#### Manipulating the random fields provides a novel way of controlling the phase diagram.

- S.S. Kunwar, A. Sen, T. Vojta and R. Narayanan, *Tuning a random field mechanism in a frustrated magnet*, Phys. Rev. B **98**, 024206 (2018), arXiv:1803.05597
- X. Ye, R. Narayanan and T. Vojta, *Stripe order, impurities, and symmetry breaking in a diluted frustrated magnet,* Phys. Rev. B. **105**, 024201 (2022), arXiv:2111.00101