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Superconductor-Normal State Transition
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BQNB Hertz (1976), Millis (1993), Belitz and Kirkpatrick (1996)
0y = 5 ~ — Non-thermal Tuning parameter
C

wn| = Damping from the underlying fermions.

Equivalenttoa 1/|1 — T’\Q interaction in imaginary time



0p — do(x) — Random mass disorder —

Runaway flow Belitz and Kirkpatrick (1996)
R Narayanan, Voijta, Belitz and Kirkpatrick (1999)

The problem is tackled by the SDRG
Introduced by Ma, Dasgupta, Hu (1979), and further developed

by D. Fisher (1992, 1995)
Application to problem at hand: Hoyos, Kotabage, Vojta (2007)
Voijta, Kotabage, Hoyos (2009)
Discretized Large-N theory
S =T (e +yilwnl” ") i(wn)|* = D Jibi(~wn)it1(wn)
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Competing local energies

€; — favouring the disordered phase

J; — favouring the ordered phase



If the largest energy scaleis €3 > Ja, J3 :

Site 3 is removed from the system

New weaker coupling mediates between sites 1 and 4
JoJ3

€3
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The greatest energy scales is Jo >> €9, €3 :

Fuse the rotors together with a renoer??hzed

gap on the composite rotor € = T



§ =T 3 (e +ileonl**)gilwn)* = 2 Jidi(—wn)ditr (wn)
b)tn z =2 (Ohmlc damzpufﬁg)
Recursion relation: J = J2J3 and €= eiﬁ exactly equivalent
€3 2

Random Transverse Field Ising Model Fisher (1994), (1995)

A special transition called Infinite Disorder Transition
Critical behavior lies in same universality class

Supports activated scaling In&, ~ £/2 unlike conventional &, ~ &7

Hoyos, Kotabage, Vojta (2007) Vojta, Kotabage, Hoyos (2009)

1 <z<2  Super-Ohmic damping

Disordered KT like behaviour
Vojta, Hoyos, Mohan, Narayanan (2010)



Off critical solution: (In €)qis — (In J)qis = dg
0o — Distance to criticality

1
Oft criticality one can show that &, ~ &2%

Implies a non-universal dynamical exponent that varies with
tuning parameter

Smoking gun is the non-universal dynamical exponent z

Look for a dynamical exponent that diverges as we approach B,
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B Finite spatially B nfinite extent in time

B Endowed with very slow dynamics due to infinite extent
N Imaginary time.

B Slow dynamics responsible for anomalous effects
IN thermodynamic observables.

B In particular: Look at the lower critical dimension of Rare
Regions Vojta Review (2013)




Resistivit¥ Measurements in 2-DEGS
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Strategy use the scaling ansatz to extract Vz

T0>1/uz‘ vz — Universal — conventional

RD — Rcf (B — Bc) (T

vz — VarieswithB —
Griffiths Behavior



Use the power-law scaling ansatz

Rp = Rcf

_— (%>1/Vz-

Extract and effective vz as a function of T and B
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For each set of resistance isotherms find Bo and R¢

Perform a data collapse on these isotherms and obtain

effective (vz) q(T')




Smoking Gun: The first divergence

Extract vz(B¢) 6

Note the first divergence in line with 5

2v ~ (B.* — B:.)™"" IRFP and the Griffiths
phase

However, the kink like feature at lower R 3-

4_

temperature is not consistent with 2 -

puts constraint on functional form of 1-
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in line with IRFP predictions.
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¢« However for T<0.07 K the data does not fit with the IRFP scenario
For 1" > 0.07 Similar results: Lewellyn (2019), Xing (2015)
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¥ In the range:0.07 K < T < 0.17

<i>ﬁ - 1¢ m(Ti/T)

¥In the range 1T' < 0.07K

w(T)~T 7 —>
Incompatible with the notion
of Quantum Critical Point.

¥ Scaling collapse with activated

scaling: Remember In¢&, ~ ¢/?
(B o Bc)
B,

Ro = R.f In(Tp/T)Y/ VY

Data collapse break down for
1'"<0.07 K
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For T>0.07 K, the data is consistent with IRFP
with attendant Griffiths phase:zv ~ (B, — B,)™"¥ 6- & oK 3
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Conclusion:The Infinite Randomness fixed point Be (T)
a

For T<0.07 K, the data is inconsistent with
IRFP  zv(T) ~ 719

s destabilised below T « 0.07

Can we come up with a physical mechanism that

destabilises IRFP
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Dobrasaljveic and Miranda (2005)
Consider the rare-regions interacting via
random long range interaction

J13/R3

S = SRR + SRKKY
Srp = Z b1 (wn) (€ + |wal) 3i(~wn) +O(B*)

Jij
SRKKY = Rd dT¢i(T)9;(T) :
Ji; — random: Integrate out using Replicas
Shky — RMZ [ ardr'o ()05 (1108 0165 )

=~ HS decoupllng+ saddle point approximation
— Qaﬁ = Evaluate in a self consistent manner
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The General Case:

S = [ dwdi(w){x(@) }aisti(w) o
{x(w)}ais ~ [ deP(€)]e + |w|] 7}
Griffiths Phase = P(¢) ~ ¢~
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Reminder: a = d/z — &0
(non-Ohmic dissipation)

The model maps onto an effective model 1-d model with
slower than 1/r? interaction

— System above the lower-critical dimension even in
the Heisenberg case

—-Leads to the freezing of large droplets thus
pre-empting the Griffiths phase. J

» Ref: V. Dobrosavljevic and E. Miranda (2005

Impact of Qn.)enched Disorder on Phase Transitions. — p.33/54



nteraction between the droplets .
orovides another source of dissipation

Sa = / dw;(w) X (W)] 4P (W) e
[X(w)]dis:/de A |
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In the Griffiths phase £(€) From Dobrasaljveic and Miranda

Performing the integration: |w| — ‘w‘d/z—l

Rare-regions map to 1-d model with slower than 1/|7]

Interaction iEaCh rare region can independently order
:> Cut-off of Griffiths Phase i Smearing of IRFP



Interplay of long-ranged interactions

and disorder —>

Phase locked rare-regions

Each Josephson Junction undergoes transition

by itself =—=> Smearing
—> Tail to the phase diagram a

0.21
Each rare-region orders by itself

Strange metal due to correlated

hopping of Cooper pairs




¥ Griffiths phase destroyed at low enough temperatures

¥\What is the nature of the ground-state
¥How generic Is this mechanism

¥|s there an SDRG one can do to capture this phase



= What we have not talked about:

B Spin-resolve

d disorder and MIT

S Kunwar, Madhuparna Karmakar, R. Narayanan (Unpublished).

B Higgs localization in disordered systems

Vishnu P. K., Martin Puschmann, R. Narayanan and T. Vojta

B Emergent U(1) phases in clock-model and disorder
Vishnu P. K., Gaurav Khairnar, T. Vojta and R. Narayanan

B Disorder Sta

Madhuparna Karma

nilized Breached Pair Phase

Kar, Subhojit Roy, Shantanu Mukherjee and R. Narayanan

B Disorder Ino

uced Bose-Fermi cross-overs

Madhuparna Karmakar,and R. Narayanan



