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Localization – defeating kinetic energy

Kinetic energy allows physical objects to move with various velocities

Localization → defeating kinetic energy

→ metallic materials

Strong trapping potential

However, be aware of the uncertainty effect in quantum mechanics



Localizing quantum objects

1. Suppressing KE below the scale of other competing physics

a. Thermal fluctuation

b. Intra-atomic repulsion (realistic Mott insulators)

c. Electron-lattice coupling (self-trapped polarons, other types of bosons too)

d. Short-range binding (phase separation)

2. Damaging KE itself

a. Disorder (Anderson insulators)

b. Geometric frustration

Physical consequences

a. Transport properties (electric conductivity, thermal conductivity, …)

b. Information application? (entanglement entropy)

c. Thermal properties (inability of thermalization)



Many-body effects on localization with damaged KE?

1. Disorder + interaction (many-body localization)

2. Geometric frustration + interaction ?

Development of superfluidity and higher-order ordering

Yi-Zhuang You, Zhu Chen, Xiao-Qi Sun, and Hui Zhai. Phys. Rev. Lett. 109, 265302 (2012).

Quantum geometry

D Aleksi Julku, Georg M. Bruun, and Päivi Törmä. Phys. Rev. Lett. 127, 170404 (2021).

Generation of effective KE in both cases (and many others)

Q1: How robust is the geometric frustration-induced localization?

Q2: Can local density-density interaction defeat such localization?



Homogeneous quantum Bose metal

T. Hegg, J. Hou, and Wei Ku, PNAS 118, 10.1073 (2021)



Philip Phillips et al., Science, vol. 
302, 243-247 (2003)

Ga films 

Sheet resistance→ ℎ/4𝑒2→ charge 2e

Nature 472, 458 
(2011) 

Low T→ finite resistivity

La2−xSrxCuO4

Superconducting grain models

Proposed theories

Phys. Rev. B 64, 132502 
(2001)

Ring exchange models
Phys. Rev. B 66, 054526 
(2002)

“moatband models”
Phys Rev. Lett. 87, 037004 
(2001)

Philip Phillips et al., Science, vol. 
302, 243-247 (2003)

…
…

Inapplicable in a stable phase

Pseudogap range with low doping

PRL 93, 267001 (2004)

not consistent

with ~𝑒−
Δ

𝑇

→

At low T,

Quantum resistance→ charge 2e boson

A stable Bose metal phase

→

metallic→

Not insulator

Not superconductor

Quantum Bose metal?  A long theoretical pursue



Emergent Bose liquid  – schematic of reality

Under strong enough binding:

Not too strong (phase separation or BEC limit)

Not too weak (BCS SC)

Carriers most likely as part of the pair

Small chance to be “free”

→ Properties dominated by bosonic component

→ Fermionic one-body properties strongly modified by 

bosons, a sensitive probe to EBL

Y. Yildirim and Wei Ku, Phys. Rev. X 1, 011011 (2011)



Unconventional superconductivity & its exotic normal state

d-wave SF &

2nd kind of SC gap

jamming

m→ 

p-competition

m→ 

Makoto Hashimoto et al,

Nature Physics 10, 483–495 (2014)

non-SF

quantum state

Bose metal

non-FL

pseudogap bad metal

strange metal

weak insulating

Fixed H & parameters

since 2011



Geometric frustration of checkerboard lattice

𝜏′ and 𝜏′′ compete if both positive

𝐻 = 𝜏′ ෍

𝑖,𝑖′

𝑎𝑖
+𝑎𝑖′ + 𝜏′′ ෍

𝑖,𝑖′

𝑎𝑖
+𝑎𝑖′

Y. Yildirim and Wei Ku, Phys. Rev. X 1, 011011 (2011)



Non-SF Bosonic quantum state of the cuprates?

A Bose metal ?
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1D localization via geometric frustration
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T. Hegg, J. Hou, and Wei Ku, PNAS 118, 10.1073 (2021)

Protected by local point-group symmetries

# of symmetries ~ system size !

Still respected even with local interaction



Localized one-body 2D state in a 3D system

Only T moves particles.

But, 𝑇 ȁ ۧ𝑘𝑥 = 𝜋, 𝑦, 𝑘𝑧 = 0 = −2𝜏′′ ȁ ۧ𝑘𝑥 = 𝜋, 𝑦, 𝑘𝑧 = 0

ȁ ۧ𝑘𝑥 = 𝜋, 𝑦, 𝑘𝑧 = 0 does not move in y direction.

Similarly, the current operator 𝐽𝑦 ȁ ۧ𝑘𝑥 = 𝜋, 𝑦, 𝑘𝑧 = 0 = 0

ȁ ۧ𝑘𝑥 = 𝜋, 𝑦, 𝑘𝑧 = 0 does not flow in y direction.

Interaction 𝑈σ𝑖 𝑎𝑖
+𝑎𝑖

+𝑎𝑖𝑎𝑖 does not move the particle.

𝐻 = 𝑇 + 𝑈 = 𝜏′ ෍

𝑖,𝑖′

𝑎𝑖
+𝑎𝑖′ + 𝜏′′ ෍
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𝑎𝑖
+𝑎𝑖′ + 𝑈෍

𝑖
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+

+-

-

+

+
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-
𝑹 = 𝑋, 𝑌, 𝑍



Path integral demonstration of the Green’s function

ȁ ۧ𝑚 = ȁ ۧ𝑘𝑥 = 𝜋, 𝑦, 𝑘𝑧 = 0 = Τȁ ۧ1 − ȁ ۧ2 + ȁ ۧ3 − ȁ ۧ4 + ȁ ۧ5 − ȁ ۧ6 + ⋯ 𝑀

𝑀 𝐺 𝑗,𝑚; 𝑡, 𝑡′ = 𝐺 𝑗, 1; 𝑡, 𝑡′ − 𝐺 𝑗, 2; 𝑡, 𝑡′ + 𝐺 𝑗, 3; 𝑡, 𝑡′ −⋯
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contributions always cancel  geometric frustration
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Path integral demonstration of the Green’s function

ȁ ۧ𝑚 = Τȁ ۧ1 − ȁ ۧ2 + ȁ ۧ3 − ȁ ۧ4 + ȁ ۧ5 − ȁ ۧ6 𝑀

𝑀 𝐺 𝑗,𝑚; 𝑡, 𝑡′ = 𝐺 𝑗, 1; 𝑡, 𝑡′ − 𝐺 𝑗, 2; 𝑡, 𝑡′ + 𝐺 𝑗, 3; 𝑡, 𝑡′ −⋯
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𝑥1
𝑥2

𝑥𝑗

𝑡′ 𝑡

𝑥1
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𝑥𝑗

−

contributions always cancel

(as long as T is not seriously challenged by Pauli exclusion or U)

𝐺 𝑗,𝑚; 𝑡, 𝑡′ = 0 for all 𝑗 outside the plane.

𝑥1
𝑥2

𝑥1
𝑥2



1D localized many-body eigenstates

In diagonal representation,

𝐻 = 𝜏′σ 𝑖,𝑖′ 𝑎𝑖
+𝑎𝑖′ + 𝜏′′σ 𝑖,𝑖′ 𝑎𝑖

+𝑎𝑖′ + 𝑈σ𝑖 𝑎𝑖
+𝑎𝑖

+𝑎𝑖𝑎𝑖 is simply

= σ𝑖 𝜖𝑖𝑏𝑖
+𝑏𝑖 + σ𝑖𝑗 𝜖𝑖𝑗𝑏𝑖

+𝑏𝑗
+𝑏𝑗𝑏𝑖 + σ𝑖𝑗𝑘 𝜖𝑖𝑗𝑘𝑏𝑖

+𝑏𝑗
+𝑏𝑘

+𝑏𝑘𝑏𝑗𝑏𝑖 +⋯ (N-body term)

with eigenstates ȁ ۧ𝑛1, 𝑛2, … = Π𝑖 𝑏𝑖
+ 𝑛𝑖ȁ ۧ0 (Σ𝑖 𝑛𝑖 = 𝑁), where

𝑏𝑖
+ = 𝑈+𝑎𝑖

+𝑈

= σ𝑗 𝑣𝑖
𝑗
𝑎𝑗
+ + σ𝑗𝑘𝑘′ 𝑣𝑖

𝑗𝑘𝑘′
𝑎𝑗
+𝑎𝑘

+𝑎𝑘′ + σ𝑗𝑘𝑙𝑘′𝑙′ 𝑣𝑖
𝑗𝑘𝑙𝑘′𝑙′

𝑎𝑗
+𝑎𝑘

+𝑎𝑙
+𝑎𝑙′𝑎𝑘′ +⋯

gives the many-body wave function of each particle.

(𝑈+ is found by demanding the diagonal representation.)



Since 𝑈+ is found by demanding the diagonal representation, it must respect all 

symmetries of H:  𝑈, 𝑆 = 0 for all 𝑆 that satisfies 𝐻, 𝑆 = 0.

The odd parity of 𝑎𝑚
+ ,  𝑃𝑥𝑎𝑚+ 𝑃𝑥 = − 𝑎𝑚+ would gives

𝑏𝑚
+ = 𝑈+𝑎𝑚

+𝑈 odd parity as well, while 𝑎𝑗
+

is obviously even.

So, 𝑎𝑗𝑏𝑚
+ = − 𝑎𝑗𝑏𝑚

+ = 0

𝑏𝑚
+ cannot move out even one step due to local point symmetry.

All other destination went through the first j and suffer from the

same interference.

1D localized many-body eigenstates



Lack of in-plane superfluidity → quantum Bose metal !

First theoretical uniform Bose metal

Sink

Source

𝐿𝑥 ≫ 𝑎
𝐿
𝑦
≫
𝑎

𝑎

T. Hegg, J. Hou, and Wei Ku, PNAS 118, 10.1073 (2021)



Bose metal has 4-fold anisotropy

Lower along a slab, as in 
observations

Fermi arcs suggest the opposite?!

Fermionic scattering off of Bose 
metal accounts for both!!

T. Yoshida et al., 

PRL, 91, 027001 (2003)

J. Wu et al., Nature, 547, 432-435 (2017)

Exp. verification



Charged
Superfluid

p-wave

Damaging geometric frustration

via pressure or strain  → 2nd SC dome!

d-wave

QCP

Prediction: a 2nd SC dome upon obstruction of frustration

T. Hegg, J. Hou, and Wei Ku, PNAS 118, 10.1073 (2021)



Probing quantum Bose metal with electrons:

inescapable non-Fermi liquid scattering rate 

and pseudogap formation

X Yue, A Hegg, X Li, and Wei Ku,

New J. Phys. 25, 053007 (2023)



Probing the “probe” in emergent Bose liquid

Under strong enough binding:

Not too strong (phase separation or BEC limit)

Not too weak (BCS SC)

Carriers most likely as part of the pair

Small chance to be “free”

→ Properties dominated by bosonic component

→ Fermionic one-body properties strongly modified by 

bosons, a sensitive probe to EBL

Y. Yildirim and Wei Ku, Phys. Rev. X 1, 011011 (2011)



An unusual bosonic field with incomplete coherence

Partially incoherent scatting !    key to the pseudogap & non-FL

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



Non-Fermi liquid scattering rate

Zero frequency + zero temperature 

+ No impurity

Non-zero scattering

Non-Fermi liquid scattering at 

zeroth order!

Real boson

Linear dependence 

to the next order 

without singularities

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



Pseudogap formation

Gap-like but finite spectral weight

Pseudogap!

No need for quantum 

critical fluctuation or 

near phase boundary

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



Fermi arc & nodal-antinodal dichotomy

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



kF offset of pseudogap

Fermi vector

≠
“Bending back” momentum

Hashimoto M, et al. Nature 

Physics, 2010, 6(6): 414-418.

Shadow band

Back bending band and band center 

develop dispersion

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



Filling of pseudogap against temperature

Gap scale

Spectral weight scale

Effective coupling strength

DOS of the coupled lines

+

Effective coupling strength

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



Pseudogap edge asymmetry vs symmetry

X Yue, A Hegg, X Li, Wei Ku, New J. Phys. 25, 053007 (2023)



Many-body localization in homogeneous 

systems via geometric frustration

X Zhang, X Li, Z Fan, and Wei Ku, in preparation



Geometric frustration of Kagome lattice
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Localized one-body state

Only T moves particles.

But, 𝑇 ȁ ۧ𝑅,𝑚 = 3 = −2𝑡 ȁ ۧ𝑅,𝑚 = 3

ȁ ۧ𝑅,𝑚 = 3 does not move.

Similarly, the current operator J ȁ ۧ𝑅,𝑚 = 3 = 𝟎

ȁ ۧ𝑅,𝑚 = 3 does not flow.

Interaction 𝑈σ𝑖 𝑎𝑖
+𝑎𝑖

+𝑎𝑖𝑎𝑖 does not move the particle.

𝐻 = 𝑇 + 𝑈 = 𝑡 ෍

𝑖,𝑖′

𝑎𝑖
+𝑎𝑖′ + 𝑈෍

𝑖

𝑎𝑖
+𝑎𝑖

+𝑎𝑖𝑎𝑖

𝑡

𝑡 𝑡

+
-

？



Path integral demonstration of the Green’s function

ȁ ۧ𝑅,𝑚 = 3 = Τȁ ۧ1 − ȁ ۧ2 + ȁ ۧ3 − ȁ ۧ4 + ȁ ۧ5 − ȁ ۧ6 6

6 𝐺 𝑗,𝑚 = 3; 𝑡, 𝑡′ = 𝐺 𝑗, 1; 𝑡, 𝑡′ − 𝐺 𝑗, 2; 𝑡, 𝑡′ + 𝐺 𝑗, 3; 𝑡, 𝑡′ −⋯
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contributions always cancel
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Path integral demonstration of the Green’s function

ȁ ۧ𝑅,𝑚 = 3 = Τȁ ۧ1 − ȁ ۧ2 + ȁ ۧ3 − ȁ ۧ4 + ȁ ۧ5 − ȁ ۧ6 6

6 𝐺 𝑗,𝑚 = 3; 𝑡, 𝑡′ = 𝐺 𝑗, 1; 𝑡, 𝑡′ − 𝐺 𝑗, 2; 𝑡, 𝑡′ + 𝐺 𝑗, 3; 𝑡, 𝑡′ −⋯
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𝑥𝑗
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−

contributions always cancel

𝐺 𝑗,𝑚 = 3; 𝑡, 𝑡′ = 0

𝑥1
𝑥2

𝑥1
𝑥2



Localized many-body eigenstates

In diagonal representation,

𝐻 = 𝑡 σ 𝑖,𝑖′ 𝑎𝑖
+𝑎𝑖′ + 𝑈σ𝑖 𝑎𝑖

+𝑎𝑖
+𝑎𝑖𝑎𝑖 is simply

= σ𝑖 𝜖𝑖𝑏𝑖
+𝑏𝑖 + σ𝑖𝑗 𝜖𝑖𝑗𝑏𝑖

+𝑏𝑗
+𝑏𝑗𝑏𝑖 + σ𝑖𝑗𝑘 𝜖𝑖𝑗𝑘𝑏𝑖

+𝑏𝑗
+𝑏𝑘

+𝑏𝑘𝑏𝑗𝑏𝑖 +⋯ (N-body term)

with eigenstates ȁ ۧ𝑛1, 𝑛2, … = Π𝑖 𝑏𝑖
+ 𝑛𝑖ȁ ۧ0 (Σ𝑖 𝑛𝑖 = 𝑁), where

𝑏𝑖
+ = 𝑈+𝑎𝑖

+𝑈

= σ𝑗 𝑣𝑖
𝑗
𝑎𝑗
+ + σ𝑗𝑘𝑘′ 𝑣𝑖

𝑗𝑘𝑘′
𝑎𝑗
+𝑎𝑘

+𝑎𝑘′ + σ𝑗𝑘𝑙𝑘′𝑙′ 𝑣𝑖
𝑗𝑘𝑙𝑘′𝑙′

𝑎𝑗
+𝑎𝑘

+𝑎𝑙
+𝑎𝑙′𝑎𝑘′ +⋯

gives the many-body wave function of each particle.

(𝑈+ is found by demanding the diagonal representation.)



Since 𝑈+ is found by demanding the diagonal representation, it must respect all 

symmetries of H:  𝑈, 𝑆 = 0 for all 𝑆 that satisfies 𝐻, 𝑆 = 0.

The odd parity of 𝑎𝑚=3
+ ,  𝑃𝑥𝑎𝑚=3

+ 𝑃𝑥 = − 𝑎𝑚=3
+

would gives

𝑏𝑚=3
+ = 𝑈+𝑎𝑚=3

+ 𝑈 odd parity as well, while 𝑎𝑗
+

is obviously even.

So, 𝑎𝑗𝑏𝑚=3
+ = − 𝑎𝑗𝑏𝑚=3

+ = 0

𝑏𝑚=3
+ cannot move out even one step due to local point symmetry.

All other destination went through the first j and suffer from the

same interference.

𝑡

𝑡 𝑡

+
-

？

Localized many-body eigenstates



Geometric frustration induced many-body localization

The one-body Green’s function for the localized subspace remains localized.

Flat band survives moderate interaction.

No phase stiffness possible for superfluidity

U(1) symmetry cannot be broken unless geometric frustration is broken first 

(by breaking spatial symmetry, for example.)

Many-body localization realized

In many way similar to the “many-body scar”

Implications on transport, entanglement entropy, and thermalization.
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