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Band topology and hybrid Wannier states

Z. Song et al, PRL 123, 036401 (2019); J. Kang and OV PRB 2020  



Coulomb interaction is non-perturbative within the narrow bands: 
strong coupling

𝐻𝑘𝑖𝑛 𝑉𝑖𝑛𝑡 =
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න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)≪(renormalized)

OV and Jian Kang PRL2020



Spin-valley U(4) symmetry in the strong coupling limit
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independent spin rotations
within each valley

rotations between the valleys!

Bultinck et al PRX 2020, Bernevig et al 2020 TBG series
J. Kang and OV, PRL2019 and OV and J.Kang PRL2020
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𝐻𝑘𝑖𝑛

Coulomb interaction is non-perturbative within the narrow bands: 
strong coupling

𝑉𝑖𝑛𝑡 =
1

2
න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)≪(renormalized)

OV and Jian Kang PRL2020

Charge neutrality point: any many-body state that is annihilated by 
𝛿𝜌(𝒓) is a ground state

Even integer filling: ground states are many-body eigenstates of 𝛿𝜌(𝒓)

Odd integer filling: if sublattice is perfectly polarized (i.e. chiral limit) 
Chern states are ground states

Generalized (gapped) spin-valley ferromagnets are favored by 
the projected Coulomb interactions

Kang and OV PRL2019; Bultinck et al PRX2020, Bernevig et al  2020TBG series 



STM reveals a gap at the charge neutrality point  
without hBN substrate alignment in the ultra-low 
strain device regions

Nuckolls et al, Yazdani 2303.00024 



Itineracy at strong coupling



Exact single particle excitation spectrum at CNP in the strong coupling limit

OV and Jian Kang, PRL 2020; Bernevig, Biao Lian, Regnault et al  2020TBG series
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Exact single particle excitation spectrum at integer filling in the strong 
coupling
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Exact single particle excitation spectrum at integer filling in the strong 
coupling: chiral limit Τ𝑤0

𝑤1 = 0

ℰℎ𝑜𝑙𝑒 𝒌 = ℰ(𝐹) 𝒌 − ℰ𝜈
(𝐻)

𝒌 ℰ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝒌 = ℰ(𝐹) 𝒌 + ℰ𝜈
(𝐻)
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``heavy’’ fermions
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J Kang, BA Bernevig, and OV PRL 127, 266402 (2021), OV and J Kang PRB 104, 075143 (2021)



How do the strong coupling excitations
Landau quantize?

(the density operator is charge neutral, therefore it is not immediately clear how the vector potential enters)



(non-interacting) minimal continuum model in magnetic field B

𝐻𝐵𝑀(𝒑) → 𝐻𝐵𝑀(𝒑 −
𝑒

𝑐
𝑨)

Bistritzer and MacDonald PRB 84, 035440 (2011) 
Hejazi, Liu, Balents PRB 100, 035115 (2019)

existing strategy: minimally substitute and expand in LLs



We need to find a projector onto the narrow bands at finite B-field

X. Wang and OV PRB 106, L121111 (2022)

𝑉𝑖𝑛𝑡 =
1

2
න𝑑𝒓𝑑𝒓′ 𝑉 𝒓 − 𝒓′ 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)

• Solving the BM model in LL basis is a bit 
problematic at low B because of the high 
number of LLs that needs to be kept

• Need a new method (that works even if the 
narrow bands are topological at B=0)

Bistritzer and MacDonald PRB 84, 035440 (2011) 
Hejazi, Liu, Balents PRB 100, 035115 (2019)



Key insight: use B=0 hybrid Wannier states to generate the finite B basis

• for the hybrid Wannier state centered at and near the 
origin, the Landau gauge vector potential 𝑨 = (0, 𝐵𝑥)
can be treated perturbatively, because the region in 
real space where 𝑨 is large gets suppressed by the 
exponential localization of the hybrid Wannier state. 

• the discrete translation symmetry along the 
𝑦 −direction used in constructing the hybrid Wannier
state is preserved by such 𝑨

• Generate the entire basis from the B=0 hybrid WS 
centered near origin by projecting onto irreps of MTG

X. Wang and OV PRB 106, L121111 (2022)
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Magnetic translation group and projection onto its irreps

X. Wang and OV PRB 106, L121111 (2022)
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TBG band topology and hybrid Wannier states

Z. Song et al, PRL 123, 036401 (2019); J. Kang and OV PRB 2020  



2𝑞 orhonormal states

overlap gap
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Overlap matrix eigenvalue index
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Exact single particle excitation spectrum at CNP in the strong coupling limit 
at small B-field
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• Landau quantization even in strong 
coupling

• Imbalance in the sublattice 
polarization reflects the topology 
of the bands (blue is subl. A)

• Finite B-field causes splitting 
between the LLs even in the chiral 
limit due to broken C2T

X. Wang and OV PRB 106, L121111 (2022)



Exact single particle excitation 
spectrum at n=2 in the strong 
coupling limit at small B-field
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• Naturally explains why Landau 
fans point away from the CNP

X. Wang and OV PRB 106, L121111 (2022)

Cao et al, Pablo Jarillo-Herrero Nature 2018





Topological heavy fermions (non-interacting Hamiltonian) 

Song and Bernevig PRL2022



Song and Bernevig PRL2022

``one shot’’ Hartree-Fock self-consistent Hartree-Fock
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Topological heavy fermions in magnetic field

Keshav Singh, B.A. Bernevig et al, OV arXiv:2305.08171
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Keshav Singh, B.A. Bernevig et al, OV arXiv:2305.08171

Topological heavy fermions in magnetic field

ℰ± = ±
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2

16
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Recovering the non-interacting topological heavy fermions in magnetic field (for 𝑀=0)

Keshav Singh, B.A. Bernevig et al, OV arXiv:2305.08171
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Although it is tempting to make a comparison with the 
transport data on the device with the gap at CNP, we are 
not ready to reach any conclusions yet, in part because of 
the absence of local strain characterization. 

Nuckolls et al, Yazdani 2303.00024 

In this regard, it would be highly desirable to 
have the low B Landau level spectroscopy in 
ultra-low strain device regions where STM 
reveals a gap at the charge neutrality point  
without hBN substrate alignment.



Summary

Itineracy at the strong coupling and a new approach to the Hofstadter problem 



Beyond the minimal continuum model: towards a more accurate description of 
electronic structure

Near degeneracy among many phases can cause sensitivity to terms in the minimal 
continuum model which were neglected.

This motivates development of a more accurate continuum theory from microscopic model.

We derived the effective continuum model for graphene bilayers by systematically expanding 
in real space gradients of the slow fermion fields and the atomic displacements
allowing for an arbitrary inhomogeneous smooth lattice deformation, including a twist. 

OV and Jian Kang, PRB 107 075123 (2023)
Jian Kang and OV, PRB 107 075408 (2023)



intralayer interlayer

1st order terms: ∇𝜓, ∇𝑈 ∼ 𝑂(200𝑚𝑒𝑉) contact 𝑤0,1 ∼ 𝑂(100𝑚𝑒𝑉)

2nd order terms: ∇𝜓 2, ∇𝑈∇𝜓, ∇𝑈 2 ∇𝜓,∇𝑈

Beyond the minimal continuum model: towards a more accurate description of 
electronic structure

Set up a gradient expansion of the slow fermion envelope functions 𝜓 and the atomic 
displacement field 𝑈 (in Eulerian coordinates as in Balents SciPost Phys. 7, 048 (2019))

OV and Jian Kang, PRB 107, 075123 (2023)
Jian Kang and OV, PRB 107, 075408 (2023)

Smaller than 1st order by ∼ 𝐾 𝑎𝜃[𝑟𝑎𝑑] = 4𝜋𝜃[𝑟𝑎𝑑]/3 = 0.08 i.e. narrow bandwidth 



Beyond the minimal continuum model: towards a more accurate description of 
electronic structure

Jian Kang and OV, PRB 107, 075408 (2023)



Minimal and next-to-leading order continuum model: spectrum 

Jian Kang and OV, PRB 107, 075408 (2023)



Jian Kang and OV, PRB 107, 075408 (2023)

Deviations from 1 measure the p-h asymmetry 
of the narrow band wavefunctions

Berry curvature distribution further
away from chiral limit

Minimal and next-to-leading order continuum model: wavefunctions 



Topological heavy fermions in magnetic field

Keshav Singh, B.A. Bernevig et al, OV arXiv:2305.08171
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Topological heavy fermions in magnetic field

Keshav Singh, B.A. Bernevig et al, OV arXiv:2305.08171
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Strong coupling limit magic angle

Parameter choices: 
𝑤1
𝑣𝐹𝑘𝜃

= 0.586,
𝑤0

𝑤1
= 0.7, 𝑉𝑞 =

2𝜋

𝜖𝑟𝑞
tanh

𝑞𝜉

2
, 𝜉 = 𝐿𝑚, 𝜖𝑟 = 15

Dropping small angle rotation of Pauli matrices

Hartree Fock density matrix: 𝑃𝛼𝛽 𝑘 ≡ 𝑑𝛼𝑘
+ 𝑑𝛽𝑘 , where 𝛼, 𝛽 labels valley, spin, and 2q bands



Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

(s,t) = (0,0)
Density matrix in BM eigen basis;
U(4) valley spin rotation symmetry 

Δ ≈ 13.23meV



(s,t) = (0,1)
Density matrix in strong coupling basis

Δ ≈ 5.05meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

Quantum Hall ferromagnetism at 

At low densities, Hartree-Fock spectrum corresponds to populating lowest energy strong coupling spectrum



(s,t) = (0,2) Density matrix in strong coupling basis

Δ ≈ 7.36meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

At low densities, Hartree-Fock spectrum corresponds to populating lowest energy strong coupling spectrum



(s,t) = (0,3)

Density matrix in strong coupling basis

Δ ≈ 8.26meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

At higher densities, Hartree-Fock reorganizes the wavefunctions from CNP

Spectrum indicative of a first order phase transition near

Heavy part of the spectrum gets brought down in energy instead of light ones



(s,t) = (0,4) Density matrix in strong coupling basis

Δ ≈ 5.92meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

At higher densities, Hartree-Fock reorganizes the wavefunctions from CNP



(s,t) = (2,0) Density matrix in BM eigen basis;
U(4) valley spin rotation symmetry 

Δ ≈ 4.72meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

Heavy-light dichotomy at 



(s,t) = (2,1)

Δ ≈ 16.44meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

At low densities, Hartree-Fock spectrum corresponds to populating lowest energy strong coupling spectrum

Density matrix in strong coupling basis



(s,t) = (2,2) Density matrix in strong coupling basis

Δ ≈ 1.92meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

At low densities, Hartree-Fock spectrum corresponds to populating lowest energy strong coupling spectrum



Density matrix in sublattice x valley 𝜏𝑧 eigenbasis;
U(4) valley spin rotation symmetry 

Δ ≈ 12.44meV

Strong coupling limit and finite field Hartree Fock at flux 
𝜙

𝜙0
=

1

4
:

A highly energetically competitive state at (s,t) = (2,2) is maximum Chern polarization

HF energy (chern): ≈ −4.36meV per u.c.
HF energy (flavor): ≈ −4.54meV per u.c.

Can tip the energetic favor with w0/w1, screening length etc.



Hartree Fock spectral gaps on various Streda lines  at flux 1/4



Analytic construction of exact zero modes at 𝑩 ≠ 0 in the chiral limit: 
anomaly and the index theorem

𝐻𝐵𝑀 =
𝑣𝐹𝜎 ∙ (𝒑 −

𝑒

𝑐
𝑨) 𝑇(𝒓)𝑒𝑖𝒒1∙𝒓

𝑒−𝑖𝒒1∙𝒓𝑇†(𝒓) 𝑣𝐹𝜎 ∙ (𝒑 + 𝒒1 −
𝑒

𝑐
𝑨)

𝑨 =
1

2
𝐵(−𝑦, 𝑥)Laughlin gauge:

𝐴𝑡𝑜𝑝
𝐵𝑡𝑜𝑝
𝐴𝑏𝑜𝑡
𝐵𝑏𝑜𝑡

⟶

𝐴𝑡𝑜𝑝
𝐴𝑏𝑜𝑡
𝐵𝑡𝑜𝑝
𝐵𝑏𝑜𝑡

𝐻𝐵𝑀 ⟶ 0 𝐷†

𝐷 0
Let then

𝐷 =

−𝑖𝑣𝐹 2
𝜕

𝜕 ҧ𝑧
+

𝑧

2ℓ𝐵
2 𝑤1𝑈(𝒓)𝑒

𝑖𝒒1∙𝒓

𝑤1𝑈(−𝒓)𝑒
−𝑖𝒒1∙𝒓 −𝑖𝑣𝐹 2

𝜕

𝜕 ҧ𝑧
+ 𝑘𝜃 +

𝑧

2ℓ𝐵
2

𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
2 Ψ𝐾𝑚

𝑩=0(𝒓)

0

𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
2 Ψ𝐾𝑚

′
𝑩=0(𝒓)

0

Γ

𝐾𝑚

𝐾𝑚
′

Unlike at 𝑩 = 0, there 
is no normalizable
state on B-sublattice

Popov and Milekhin PRB2021, Sheffer and Stern PRB2021; X. Wang and OV arXiv:2112.08620



Analytic construction of exact zero modes at 𝑩 ≠ 0 in the chiral limit: 
anomaly and the index theorem

𝑨 =
1

2
𝐵(−𝑦, 𝑥)Laughlin gauge:

𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
2 Ψ𝐾𝑚

𝐵=0(𝒓)

0

𝑓(𝑧)𝑒− ҧ𝑧𝑧/4ℓ𝐵
2 Ψ𝐾𝑚

′
𝐵=0(𝒓)

0

Γ

𝐾𝑚

𝐾𝑚
′

𝑩 = 0 zero energy states at 𝐾𝑚and 𝐾𝑚
′ have an opposite 

parity under 𝑃𝐶2𝑦𝑇

Letting 𝑓 𝑧 = 1, 𝑧, 𝑧2, … , 𝑧𝑁−1 we therefore prove 
linear independence of 2Landau levels worth of exact 
zero energy states living on A sublattice

So for each 𝑘1 ∈ (0,1) and 𝑘2 ∈ (0,
1

𝑞
) we have 2𝑝 zero 

modes

Because 𝐻𝐵𝑀 , 𝜎𝑧 = 0, by index theorem we must have

𝑇𝑟 𝜎𝑧 = 𝑛+ − 𝑛− = 2𝑝

At 𝑩 = 0, 𝑇𝑟 𝜎𝑧 = 0.
Therefore 𝑇𝑟 𝜎𝑧 is discontinuous at 𝑩 = 0

Popov and Milekhin PRB2021, Sheffer and Stern PRB2021; X. Wang and OV arXiv:2112.08620



Exact single particle excitation spectrum at CNP in the strong coupling limit 
at small B-field at a single 𝑘1, 𝑘2



Evolution of the dispersion with interaction at 𝜈 = −4
from weak to intermediate coupling

𝑉𝑞 =
2𝜋𝑒2

𝜖𝑟

tanh(
𝑞𝜉
2
)

𝑞

𝜉 = 𝐿𝑚

𝜃 = 1.38∘



𝜈 = −4

𝑉𝑞 =
2𝜋𝑒2

𝜖𝑟

tanh(
𝑞𝜉
2
)

𝑞
, 𝜉 = 𝐿𝑚𝜃 = 1.38∘

X. Wang and OV unpublished



Correlated electron physics in the narrow bands: RG perspective

OV and J. Kang PRL2020

Stage 1: 
Coulomb interaction and interlayer tunneling are perturbative

Stage 2: 
Coulomb interaction perturbative, interlayer tunneling non-perturbative

Final step:
Coulomb interaction non-perturbative: strong coupling



Exact (neutral) collective modes in the strong coupling limit at CNP

OV and Jian Kang, PRL 2020



Justification for the strong coupling approach 

Jian Kang and OV (unpublished)

``exchange’’ J

charge gap
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