

Structural disorder and magnetic properties of geometrically frustrated magnets

Rafael Sá de Freitas

Dep. Física dos Materiais e Mecânica IF - USP

Magnetic Frustration

Geometrical Frustration

Bond Frustration

Magnetic Frustration

ঠ্ণ

Pyrochlore Lattice

Pyrochlore Oxides

Н				A ³⁺													He
Li	Be			B ⁴⁺		A ₂ B ₂ O ₇ B C N O									F	Ne	
Na	Mg											AI	Si	Ρ	S	CI	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Pyrochlore Oxides

Н				A ³⁺					-								He
Li	Be			B ⁴⁺		A ₂ B ₂ O ₇ B C N O F									F	Ne	
Na	Mg											AI	Si	Ρ	S	CI	Ar
К	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba		Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Ho	Er	Tm	Yb	Lu
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Pyrochlore Magnetism

111 **O**48f O_{8b}

 $A_2 Ti_2 O_7$

CEF ANISOTROPY

 $Gd \longrightarrow isotropic (Heisenberg)$ $Tb, Ho, Dy \longrightarrow easy-axis (Ising)$ $Er, Yb \longrightarrow easy-plane (xy)$

Strong Anisotropy

- Ferromagnetic Interaction $J_{FM} \sim 2K$
- Spin Ices: Dy₂Ti₂O₇, Ho₂Ti₂O₇

"2 in-2 out" Ice Rules

M. J. Harris et al. Phys. Rev. Lett. 79, 2554 (1997)

J. D. Bernal and R. H. Fowler J. Chem. Phys. 1, 515 (1933)

Pauling's estimation for ice:

	ſ		٦
$S_0 = K_B$	$ln \langle 2^N \rangle$	$ 6 ^{N/2}$	ł
о В	l	[16]	J

 $S_0 = 0.5 R ln 1.5$

L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).

USF

Spin Ice: A Coulomb Spin Liquid (or glass)

Spin Dynamics \implies Motion of Monopoles Monopoles increasingly sparse upon cooling.

Cooperative and Memory Effects No Evident Intrinsic Disorder

Structural magnetic glass

C. Castelnovo et al., Nature 451, 42 (2008)

ঠ্ণ

DOI: 10.1103/PhysRevResearch.4.033159 - PNAS 119, e2117453119 (2022)

Pyrochlore Oxides

Н				A ³⁺														
Li	Be			B^{4+}			A_2	$B_2($	\mathcal{J}_7	В	С	N	0	F	Ne			
Na	Mg											AI	Si	Ρ	S	CI	Ar	
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og	
		la	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Th	Dv	Но	Fr	Tm	Yh	1.0		
		Ac	Th	Pa		Np	Pu	Am	Cm	Bk	Cf	Fs	Em	Md	No	l r		
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		

Continuum of spin excitations which condense into sharp coherent spin waves in a small applied magnetic field

magnetic order not found in many neutrons experiments

Extreme sensitivity to small amounts of disorder due to variation on 1% level in stoichiometry

ঠ্ণ

Physical Review X, 1(2):021002, 2011

PRB 95, 094422. DOI:10.1103/PhysRevB.95.094422

PNAS 117 (44) 27245-27254. DOI:10.1073/pnas.2008791117

Papers on magnetism $Yb_2Ti_2O_7$: 50+ $Yb_2Zr_2O_7$: 0

Chemical composition x is analogous to pressure, can be used to tune material properties

Synthesis of Yb₂Zr_xTi_{2-x}O₇

Solid-State Reaction

Sol-Gel Method

Adapted from DOI: 10.1039/D0RA07884K

Adapted from DOI:10.1016/j.petlm.2017.03.001

Yb₂Zr_xTi_{2-x}O₇Morphology

x = 1.5 (1500°C)

Mixed Zr/Ti --> increased porosity

End members (x=0 and x=2) \rightarrow more crystalline

X-Ray Diffraction

Rietveld Refinement: Yb₂Zr_xTi_{2-x}O₇

\$}s

Long-Range vs Local Order

IFUSP

Raman Spectroscopy

S IFUSP

ঠ্ণ

Magnetic Data

AC Magnetic Susceptibility

Antiferromagnetic correlations

Possible spin-liquid ground state

X-Ray Diffraction

Sol-gel sample Defect Fluorite Structure

Refined crystallographic parameters for Tb₂Zr₂O₇.

Crystal system	Cubic
Space Group	Fm3m
a (Å)	5.233(2)
Tb	4a (0,0,0)
Occupancy	0.499(4)
Zr	4a (0,0,0)
Occupancy	0.499(5)
0	8c (0.25,0.25,0.25)
Occupancy	0.92(2)
Number of variables	21
R _{wp} (%)	14.3
R_{\exp} (%)	6.6
χ ²	4.6

AC Magnetic Susceptibility

USP

Concluding remarks

- Structural disorder increases with Zr content
- Pyrochlore \rightarrow Defect Fluorite $\rightarrow \delta$ -Phase
- Magnetic ordering suppressed by structural disorder
- Increase disorder/frustration \rightarrow possible spin liquid in Yb₂Zr₂O₇
- Spin-glass-like transition in Tb₂Zr₂O₇
- Considerabe spin dynamics remains down to 100 mK

USP: J. G. A. Ramon, P. L. O. Silva, F. Lieberich

Thanks

UFABC/CNPEM: D. Nanclares

Oak Ridge National Lab: J.S. Gardner

University of Oxford: V. Peçanha-Antonio

