An Exact Amorphous Chiral Spin Liquid

Willian Natori Institut Laue-Langevin ICTP – June 2023 arXiv:2208.08246

Imperial College London

Imperial College PhD Students

Gino Cassela

Thomas Hodson

Creators of the open-source package KOALA (Kitaev On Amorphous Lattices)

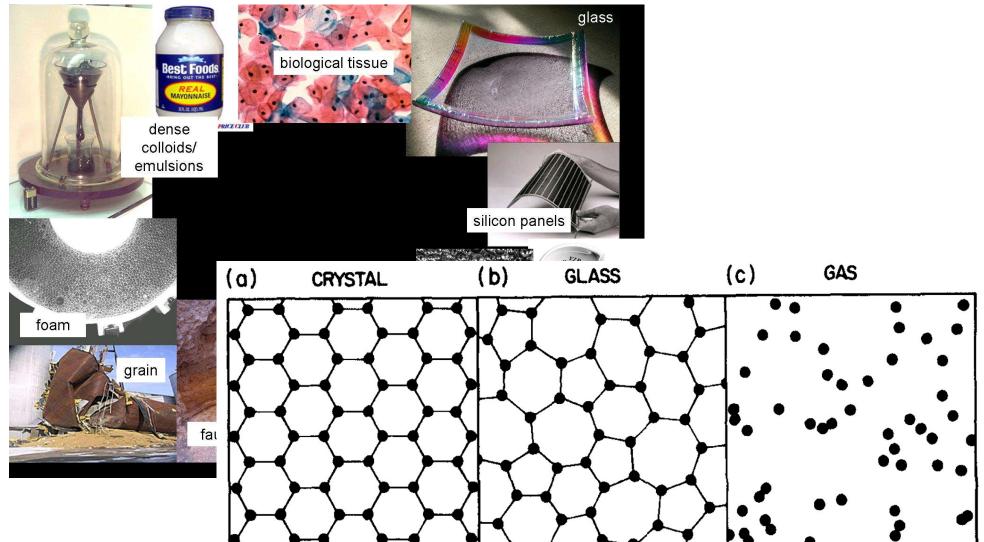
gust 3, 2022	Software Open Access
nperial-CMTH/koala: For the public xact chiral amorphous spin liquid"	cation of "An
n; dpreuo; Gino Cassella	
s release captured the package as it was when we published 'An exact chiral amorphous	spin liquid".
Preview	~
≌ koala-v1.0.zip	8 -
Imperial-CMTH-koala-cb52dcc	
• 🗋 .coveragerc	24 Bytes
o 🖿 .github	
 Workflows 	
• 🗋 ci.yml	1.6 kB

Johannes Knolle Technische Universität München

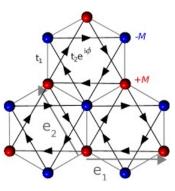
Classical MC by:

Andrey Zelenskiy Dalhousie University

Amorphous Materials



Topological amorphous materials



A Topological invariant: the Chern number

$$C = -\frac{1}{\pi} \frac{(2\pi)^2}{A_{\rm c}} \operatorname{Im} \operatorname{tr}_{\rm cell} \{ PxQy \} \qquad P = \frac{A_{\rm c}}{(2\pi)^2} \sum_{n=1}^{N_{\rm c}} \int d\mathbf{k} |\psi_{n\mathbf{k}}\rangle \langle\psi_{n\mathbf{k}}|,$$
$$= \frac{4\pi}{A_{\rm c}} \operatorname{Im} \operatorname{tr}_{\rm cell} \{ PxPy \}, \qquad Q = \frac{A_{\rm c}}{(2\pi)^2} \sum_{n'=N_{\rm c}+1}^{\infty} \int d\mathbf{k'} |\psi_{n'\mathbf{k'}}\rangle \langle\psi_{n'\mathbf{k'}}|.$$

Bianco and Resta, PRB **84**, 241106(R)

Application: topological phases in amorphous semiconductors

H_W

Marsal, Varjas, and Grushin

PNAS 117, 30260

$$WT = \sum_{i,j\neq j'}^{z} V_{jj'}^{(i)} |i,j\rangle\langle i,j'| + \sum_{i\neq i',j}^{z} W_{ii'}^{(j)} |i,j\rangle\langle i',j|.$$

$$V \to V e^{i\phi}$$

Real space Chern marker:

$$\mathcal{C}(\mathbf{r}) = 2\pi \mathrm{Im} \left\langle \mathbf{r} \right| \left[\hat{Q}\hat{x}, \hat{P}\hat{y} \right] \left| \mathbf{r} \right\rangle$$

$$C = \frac{1}{A_{\rm sys}} {\rm Tr} \mathcal{C} \left(\mathbf{r} \right)$$

What about topologically non-trivial strongly correlated phases?

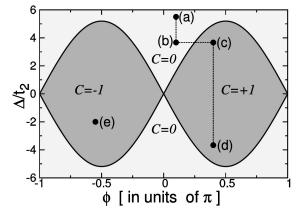
3

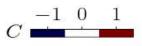
2

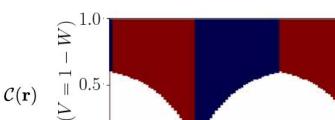
1

0

≥ _{0.0} ↓





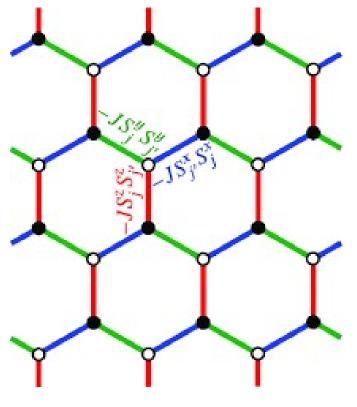


 $\pi/3$

 $2\pi/3$

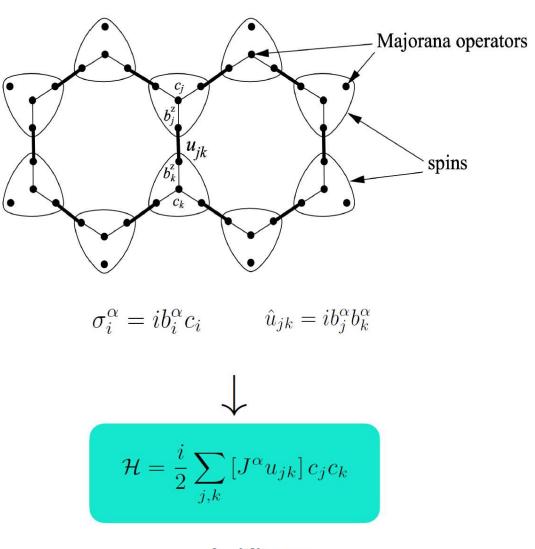
 ϕ

 π



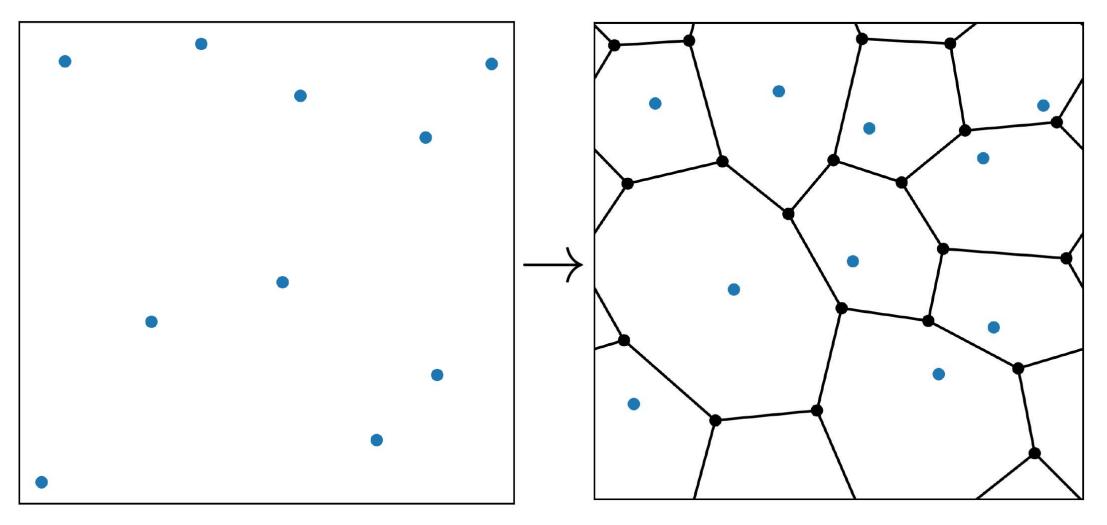
$$\mathcal{H} = -\sum_{\langle j,k\rangle_{\alpha}} J^{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha},$$

$$W_p = \prod_{\langle jk\rangle_\gamma \in p} \sigma_j^\gamma \sigma_k^\gamma$$

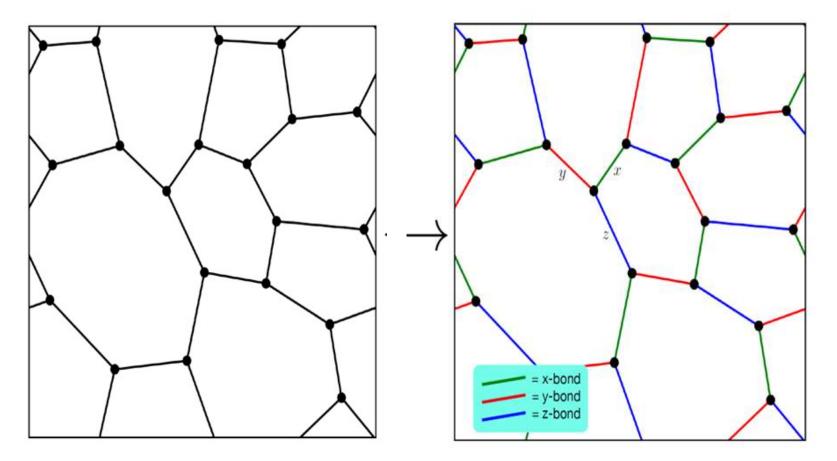


A. Kitaev, Ann. Phys. 321, 2 (2006)

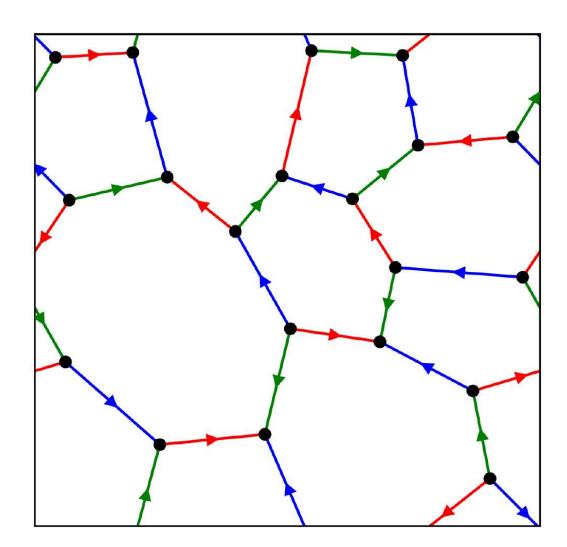
Voronoi Tessellation



Bond-Coloring Problem

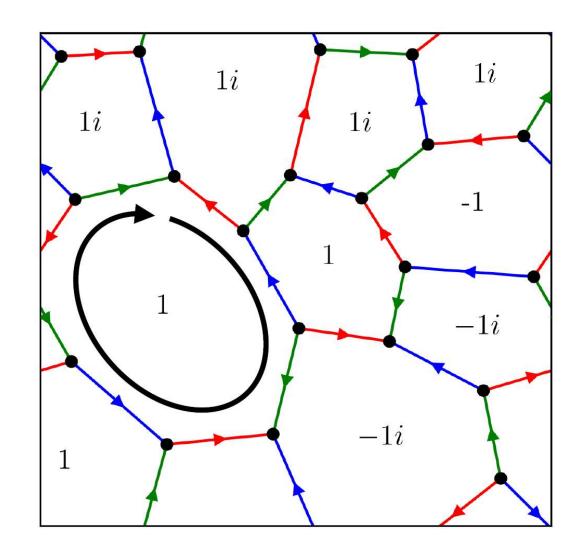


$$egin{aligned} \mathcal{H} &= rac{i}{2} \sum_{j,k} \left[J^lpha u_{jk}
ight] c_j c_k \ \hat{u}_{jk} &= i b_j^lpha b_k^lpha \ u_{jk} &= \pm 1 \ u_{jk} &= -u_{kj} \end{aligned}$$



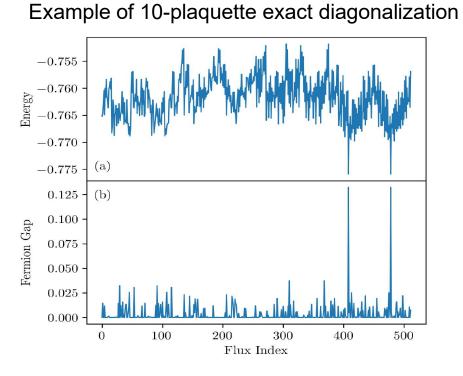
$$W_p = \prod_{\langle jk \rangle_{\gamma} \in p} \sigma_j^{\gamma} \sigma_k^{\gamma}$$
$$W_p \to \phi_p = \prod_{(j,k) \in \partial p} -iu_{jk}$$

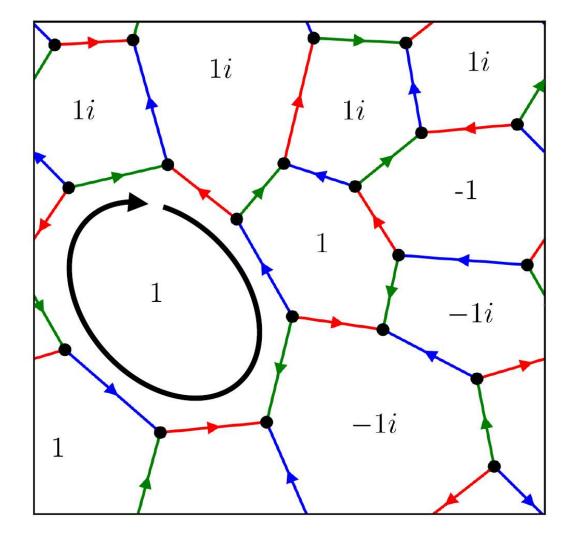
even plaquette: ϕ_p real odd plaquette: ϕ_p imaginary



$$\#$$
Flux sectors $\sim 2^{n_p-1}$

10 plaquettes = 512 flux sectors — half a minute 16 plaquettes = 32,000 — half an hour 25 plaquettes = 16,000,000 — two weeks



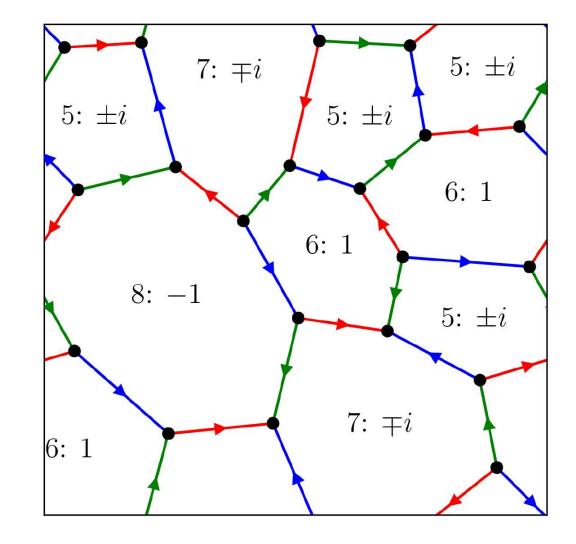


"Lieb's Theorem" for Amorphous Lattices

- Use a 16-plaquette amorphous realization as the unit cell.
- Diagonalize the periodic lattice for every ~32000 flux sectors
- Find the flux sector ground state

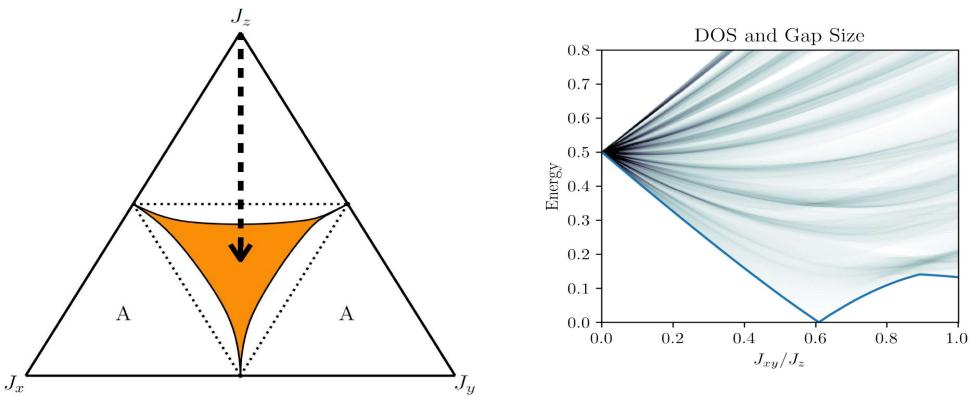
Ground state flux-sector depends only on the number of sides of the plaquettes:

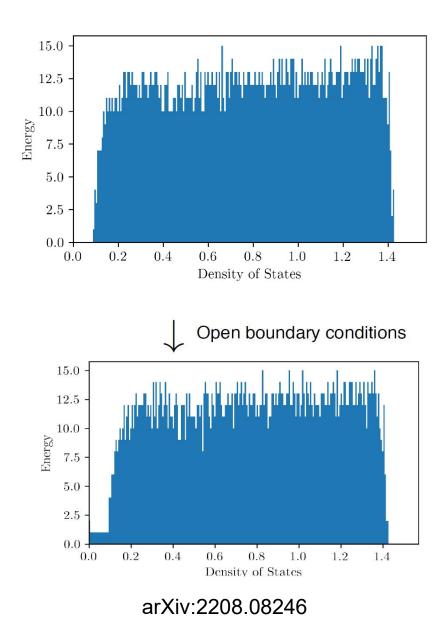
$$\phi_{\rm g.s.} = -(\pm i)^{n_{\rm sides}}$$



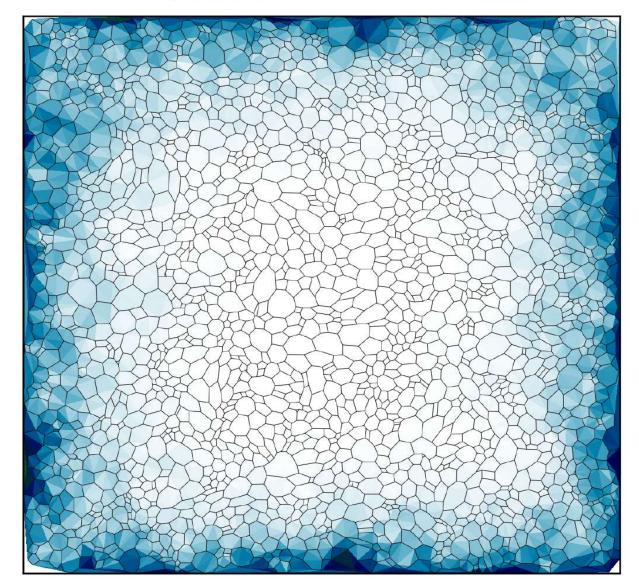
$$\mathcal{H} = -\sum_{\langle j,k\rangle_{\alpha}} J^{\alpha} \sigma_{j}^{\alpha} \sigma_{k}^{\alpha},$$

$$W_p = \prod \sigma_j^\alpha \sigma_k^\alpha$$

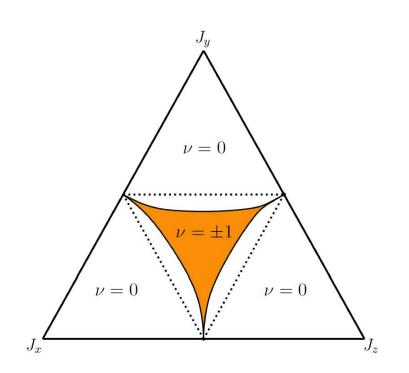


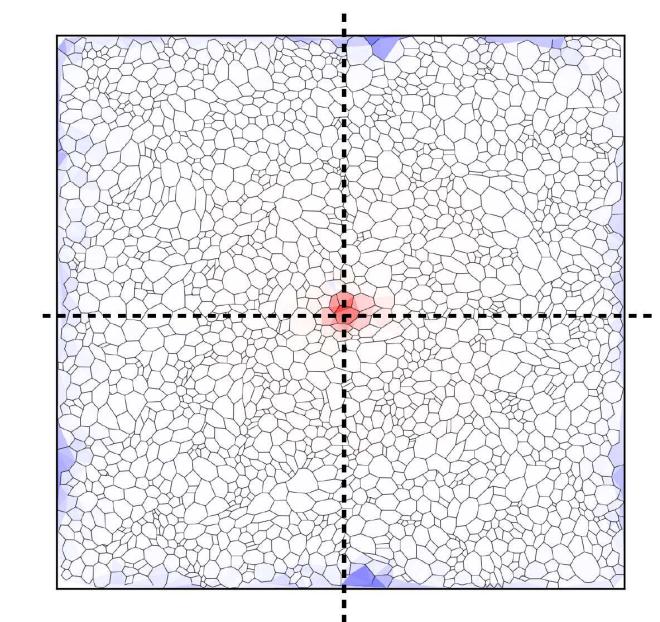


$|\langle \mathbf{r} | \psi \rangle|$ for edge mode



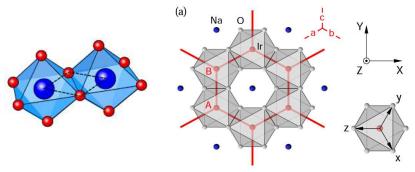
$$\nu(\mathbf{R}) = 4\pi \operatorname{Im} \operatorname{Tr}_{\operatorname{Bulk}} \left(P \theta_{R_x} P \theta_{R_y} P \right)$$



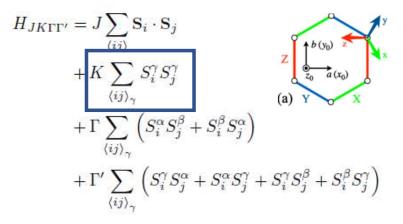


Possible implementations:

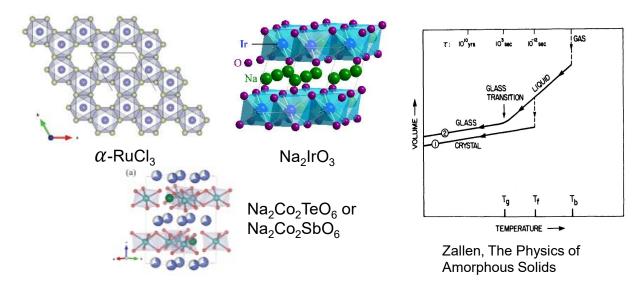
Layered honeycomb Mott insulators:



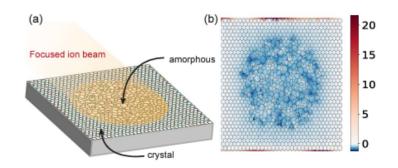
Nearest-neighbor exchanges allowed by symmetry is a four parameter model



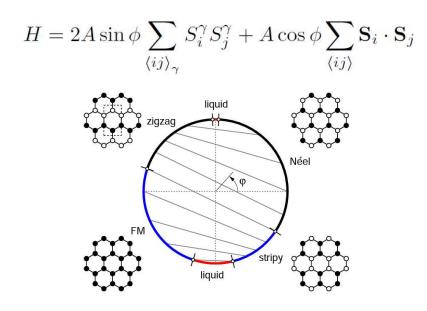
1_ Turn crystalline Kitaev materials into glass



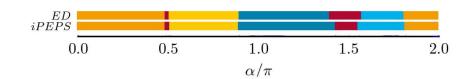
2_ Focused Ion Beam (Grushin and Repellin, PRL 130 186702)



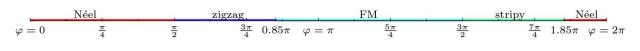
Results on the honeycomb lattice:



Phase diagram of 24-site cluster ED Chaloupka, Jackelli, Khaliullin, PRL **110**, 097204 DMRG phase diagram (Gohlke et al., PRL 119, 157203):

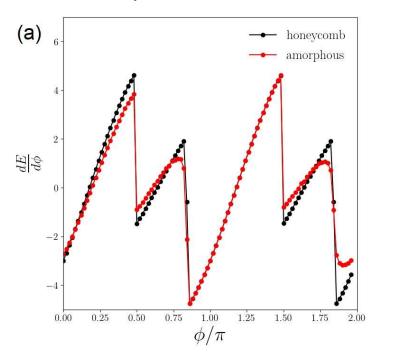


Classical MC (Janssen, Andrade and Vojta, PRL 117, 277202):

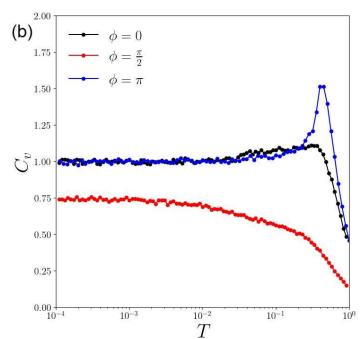


$$H = 2A\sin\phi \sum_{\langle ij \rangle_{\gamma}} S_i^{\gamma} S_j^{\gamma} + A\cos\phi \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

Phase transitions on the same points as the honeycomb lattice:

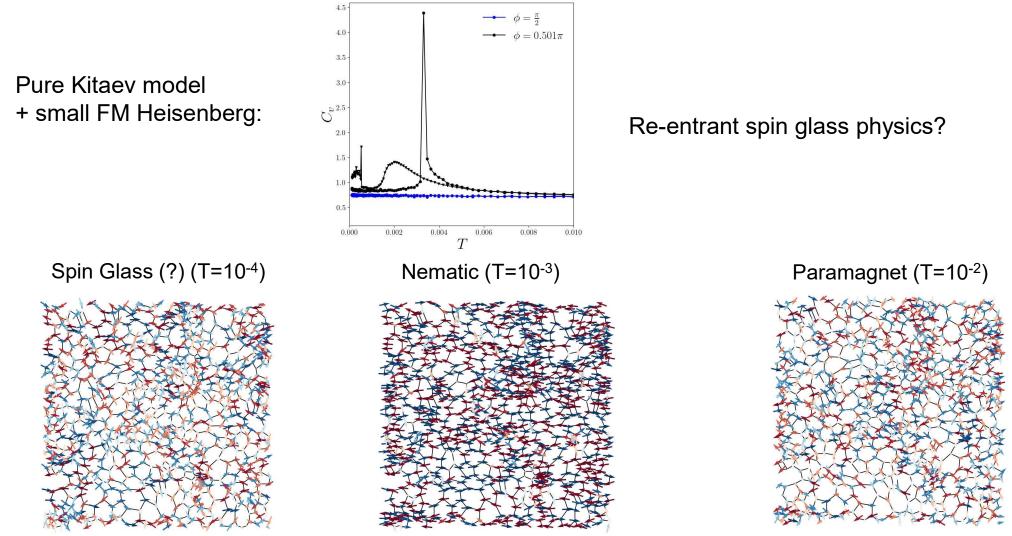


Specific Heat of the pure Kitaev and Heisenberg models:



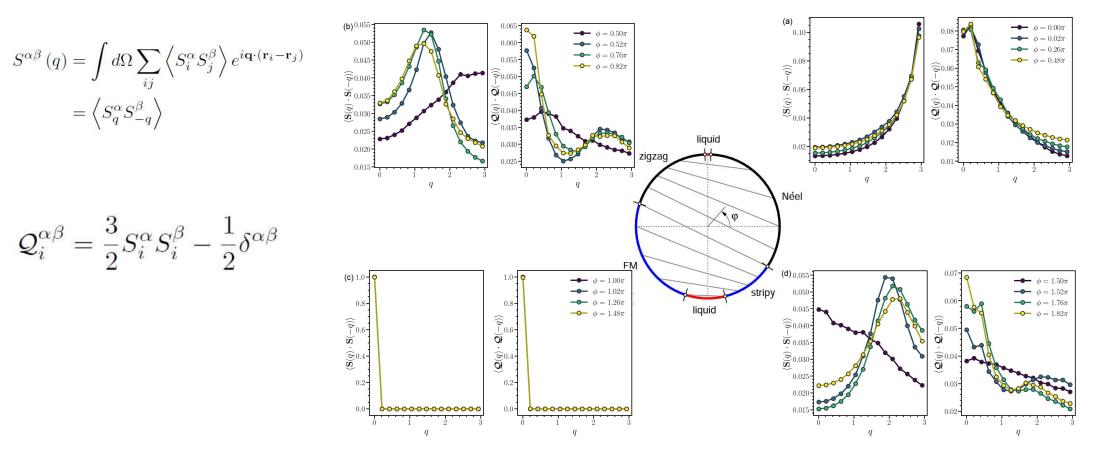
- Exponentially large number of zero-modes implies that C_v < 1 for T=0 (Baskaran, Sen, Shankar, PRB **78** 115116)
- Absence of perfect overlap in the two Heisenberg models.

A. Zelenszkiy, WMHN et al., in preparation



A. Zelenszkiy, **WMHN** et al., in preparation

Spin and Nematic Static Correlation Functions



Outlook

1_ Spin Glass?

PHYSICAL REVIEW B 90, 205112 (2014)

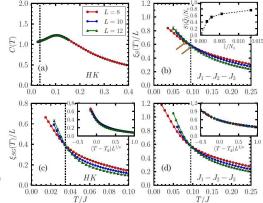
Magnetism in spin models for depleted honeycomb-lattice iridates: Spin-glass order towards percolation

Eric C. Andrade

Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany and Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz 271, Bl. II, 01140-070 São Paulo, SP, Brazil

Matthias Vojta

Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany (Received 24 September 2013; revised manuscript received 16 October 2014; published 7 November 2014)



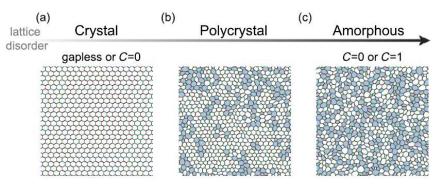
On depleted honeycomb, **interlayer coupling is required to observe SG**. Are we observing:

• A disordered ground state that becomes SG if we include interlayer interactions?

or

A glassy phase emerging from the glass structure?

2_ Relationship between orders in amorphous and regular lattices



Grushin and Repellin, PRL 130, 186702

- Is there a phase transition between the ordered crystalline and amorphous phases, or are they adiabatically connected?
- How to include quantum fluctuations to these orders?

Thanks!

Voronoi Iteration

