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Schrodinger group

group of symmetries of the free Schrodinger equation
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space and time translations P, H; rotations ]l-j
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Galilean boosts K y(¢, X) — eV * 2™ T y(t, X — Vi)

Dilatation D w(t, X) — 1°*w(1°t, 1X)



“Proper conformal
transformation”
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Schrodinger algebra
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Schrodinger symmetry from light-
cone reduction

® Start from a relativistic conformal algebra in 1 higher
dimension

® Select operators that commute with the light-cone
momentum P* = (PY + Pd+1)/\/§

® These operators form a Schrodinger algebra
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Nonrelativistic CFTs

Y. Nishida, DTS, 2007

® are QFTs with Schrodinger symmetry
® primary operators: [K.,, O(0)] = [C, O(0)] =0
® operator dimensions
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Example of NRCFT
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interacting CFT at 4. = — 27e f\ \\

Does the fixed point survive at d = 3!?
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® yes, this is the so-called “unitarity fermion”
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Unitarity regime
V(l") 4 V(r)A
] r :I r
Take a potential of a certain shape, e.g.,
V(r) == Vyforr <r, Oforr>r,

fine-tune the depth so that there is one “bound state”
at zero energy
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Then let 1, = 0: “unitarity regime” s-wave scattering
saturates unitarity



Scattering length and
unitarity regime
This situation corresponds to low-energy resonant

scattering in quantum mechanics

s-wave scattering amplitude given by scattering
length a and effective range ry:

J(k) =

_; L, 1.0
ik a+2kr0

Unitarity regime:a — o0
ro — 0

® no dimensionful length scale



® The unitarity regime can be understood directly,
without taking the limit ry — 0



Unitarity fermions: QM

Wave function of m spin-up and n spin-down
fermions w(X{, ..., X5 Y5 ---> ¥,,)

Y antisymmetric under exchanging two X’s or y’s

When one spin-up and one spin-down fermions

approach each other: ¢4
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Charge-2 local operator

Second-quantized formulation of QM:

(O] W (X, (Y) | ¥) =¥(x,y)

Limit y = X does not exist:

(0] () (%) | ) = P(x, %) = o0

but one can define
O,(x) = lim | x — y [y, (X)y (¥)

y—X

then

(0]0,(x)|¥) =1lim |x —y|P(x,y) = finite

y—X



Dimension of O,

O,(x) = lim |X —y| Wi (X (Y)

y—X
AlO,] =2Ay] -1 =2
In free theory: Alyy] = 3

Situation is reminiscent of holography: two
boundary CFT with different dimensions of a

scalar operators: A, + A_=d

here effectively # of spacetime dim is 5



Charge-3 operator

Need to know hort distance behavior of
Y(x(,X,;¥)

3-body problem solved by Efimov ~ 1970

(X, X5 y) ~ R7027
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R2=|X1_X2| + %=y "+ |x,—y]

Charge-3 operator

O;(x) = lim lim RO'22731//T(X)1//T(X2)1//¢(Y)

X,—X y—X

A[O;] = 4.2727



NRCFT in real world

2 neutrons almost form a bound state

Scattering length between 2 neutrons anomalously
large: a % — 19 fm, 1y = 2.75 fm

Neutrons are approximately described by a
NRCFT in the energy range between

h?/ma* ~ 0.1 MeV and hz/mrg ~ 5 MeV

With a consequence for nuclear reactions



Nuclear reactions

H.-W. Hammer and DTS, 2103.12610

® Many nuclear reactions with emissions of neutrons:
® 3H + 3H — 4He + 2n
® /Li+7Li = 11C + 3n
® ‘He + SHe — 8Be + 4n

® |n some kinematic regime these reactions occur in two
steps



“UnNuclear physics”
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When energy scale of primary reaction is larger than % — 3n

Z = unnucleus (nonrelativistic version of Georgi’s unparticle)



Rates of unnuclear processes
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Nuclear reactions

® 3H + 3H — 4He + 2n Watson-Migdal 1950’

e /Li+7Li = 11C+ 3n
® ‘He + 8He — 8Be + 4n

® recall our prediction:

do (E. — E)"

*ae

® and regime of validity: kinetic energy of neutrons in their
c.o.m. frame between A%/ma’* ~ 0.1 MeV

hz/mrg ~ 5 MeV



Comparison with “experiment”

Golak et al. PRC 98,054001 (2018)
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Away from conformality

® Finite scattering length and effective range can be
included as perturbation from fixed point

1
_ —0T0. — +.0T(i0+ L2
L= Lopr+ a0202 100, (i0+5V?) 0,

e Contribution to (030;) can be computed using

conformal perturbation theory
S5.D. Chowdhury, R. Mishra, DTS to be published

® Gives the corrections to the conformal behavior as

one approaches the two ends of the energy
conformal window

do . < C )
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dE ay\/ mw




Conclusion

NR conformal field theories have Schrodinger symmetry
Example: fermions at unitarity
Approximately realized by neutrons in nuclear physics

Leads to a power-law behavior of differential cross
sections of certain processes near threshold

Nonrelativistic conformal perturbation theory can be
developed and used
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