Applied Nonrelativistic Conformal Field Theory

Dam Thanh Son (University of Chicago) Holography@25, ICTP-SAIFR June 15, 2023

Plan

- Nonrelativistic conformal symmetry
- Nonrelativistic CFTs
- Fermions at unitarity
- Neutrons and "UnNuclear Physics"

Refs.:Y. Nishida, DTS 2007 H.-W. Hammer, DTS 2103.12610 S.D. Chowdhury, R. Mishra, DTS to appear

Schrödinger group

• group of symmetries of the free Schrödinger equation

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi$$

- Phase rotation $M \ \psi \rightarrow e^{i\alpha} \psi$
- space and time translations \mathbf{P}, H ; rotations J_{ii}
- Galilean boosts $\mathbf{K} \psi(t, \mathbf{x}) \rightarrow e^{im\mathbf{v}\cdot\mathbf{x} \frac{i}{2}mv^2t} \psi(t, \mathbf{x} \mathbf{v}t)$
- Dilatation $D \psi(t, \mathbf{x}) \rightarrow \lambda^{3/2} \psi(\lambda^2 t, \lambda \mathbf{x})$

"Proper conformal transformation"

$$C: \psi(t, \mathbf{x}) \to \frac{1}{(1 + \alpha t)^{3/2}} \exp\left(\frac{i}{2} \frac{m\alpha x^2}{1 + \alpha t}\right) \psi\left(\frac{t}{1 + \alpha t}, \frac{\mathbf{x}}{1 + \alpha t}\right)$$

Schrödinger algebra

$X \setminus Y$	P_j	K_{j}	D	С	Н
P_i	0	$-i\delta_{ij}M$	$-iP_i$	$-iK_i$	0
K _i	$i\delta_{ij}M$	0	iK _i	0	iP_i
D	iP_j	$-iK_j$	0	-2iC	2iH
С	iK_j	0	2iC	0	iD
Н	0	$-iP_j$	-2iH	-iD	0

SO(2,1)

Schrödinger symmetry from lightcone reduction

- Start from a relativistic conformal algebra in 1 higher dimension
- Select operators that commute with the light-cone momentum $P^+ = (P^0 + P^{d+1})/\sqrt{2}$
- These operators form a Schrödinger algebra

•
$$P^- \to H$$
 $D + M^{+-} \to D$ $\frac{K^+}{2} \to C \dots$

Nonrelativistic CFTs

Y. Nishida, DTS, 2007

- are QFTs with Schrödinger symmetry
- primary operators: $[K_i, O(0)] = [C, O(0)] = 0$
- operator dimensions

$$\langle O(t, \mathbf{x}) O^{\dagger}(0, \mathbf{0}) \rangle = \frac{C}{t^{\Delta}} \exp\left(\frac{imx^2}{2t}\right)$$

Example of NRCFT

•
$$S = \int dt \, d^d \mathbf{x} \left(i \psi^{\dagger} \partial_t \psi - \frac{1}{2} |\nabla \psi|^2 - \lambda \psi^{\dagger}_{\uparrow} \psi^{\dagger}_{\downarrow} \psi_{\downarrow} \psi_{\uparrow} \right)$$

• NR power counting: $[E] = 2, [p] = 1, [\psi] = \frac{d}{2}$

 λ_{\star}

•
$$\beta(\lambda) = \epsilon \lambda + \frac{1}{2\pi} \lambda^2$$

- interacting CFT at $\lambda_* = -2\pi\epsilon$
- Does the fixed point survive at d = 3?
 - yes, this is the so-called "unitarity fermion"

- Take a potential of a certain shape, e.g., $V(r) = -V_0$ for $r < r_0$, 0 for $r > r_0$
- fine-tune the depth so that there is one "bound state" at zero energy

$$V_0 = \frac{\pi^2 \hbar^2}{8m} \frac{1}{r_0^2}$$

• Then let $r_0 \rightarrow 0$: "unitarity regime" s-wave scattering saturates unitarity

Scattering length and unitarity regime

- This situation corresponds to low-energy resonant scattering in quantum mechanics
- s-wave scattering amplitude given by scattering length a and effective range r_0 :

$$f(k) = \frac{1}{-ik + \frac{1}{a} + \frac{1}{2}kr_0^2}$$

- Unitarity regime: $a \to \infty$ $r_0 \to 0$
 - no dimensionful length scale

• The unitarity regime can be understood directly, without taking the limit $r_0 \rightarrow 0$

Unitarity fermions: QM

- Wave function of *m* spin-up and *n* spin-down fermions $\psi(\mathbf{x}_1, \dots, \mathbf{x}_m; \mathbf{y}_1, \dots, \mathbf{y}_n)$
- ψ antisymmetric under exchanging two x's or y's
- When one spin-up and one spin-down fermions approach each other:

$$\psi(\mathbf{x}, \mathbf{y}) = \frac{C}{|\mathbf{x} - \mathbf{y}|} + b(\mathbf{x}, \mathbf{y}), \quad b(\mathbf{x}, \mathbf{x}) = 0$$
$$H = -\frac{1}{2} \sum_{a} \frac{\partial^{2}}{\partial \mathbf{x}_{a}^{2}} - \frac{1}{2} \sum_{a} \frac{\partial^{2}}{\partial \mathbf{y}_{a}^{2}}$$

Charge-2 local operator

• Second-quantized formulation of QM:

 $\langle 0 | \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y}) | \Psi \rangle = \Psi(\mathbf{x}, \mathbf{y})$

• Limit $y \to x$ does not exist:

$$\langle 0 | \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{x}) | \Psi \rangle = \Psi(\mathbf{x}, \mathbf{x}) = \infty$$

• but one can define

$$O_2(\mathbf{x}) = \lim_{\mathbf{y} \to \mathbf{x}} |\mathbf{x} - \mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})$$

• then

$$\langle 0 | O_2(\mathbf{x}) | \Psi \rangle = \lim_{\mathbf{y} \to \mathbf{x}} | \mathbf{x} - \mathbf{y} | \Psi(\mathbf{x}, \mathbf{y}) = \text{finite}$$

Dimension of O_2

- $O_2(\mathbf{x}) = \lim_{\mathbf{y} \to \mathbf{x}} |\mathbf{x} \mathbf{y}| \psi_{\uparrow}(\mathbf{x}) \psi_{\downarrow}(\mathbf{y})$
- $\Delta[O_2] = 2\Delta[\psi] 1 = 2$
- In free theory: $\Delta[\psi\psi] = 3$
- Situation is reminiscent of holography: two boundary CFT with different dimensions of a scalar operators: $\Delta_+ + \Delta_- = d$

here effectively # of spacetime dim is 5

Charge-3 operator

- Need to know hort distance behavior of $\Psi(\mathbf{x}_1, \mathbf{x}_2; \mathbf{y})$
- 3-body problem solved by Efimov ~ 1970

$$\Psi(\mathbf{x}_1, \mathbf{x}_2; \mathbf{y}) \sim R^{-0.2273}$$

$$R^2 = |\mathbf{x}_1 - \mathbf{x}_2|^2 + |\mathbf{x}_1 - \mathbf{y}|^2 + |\mathbf{x}_2 - \mathbf{y}|^2$$

• Charge-3 operator

$$O_3(\mathbf{x}) = \lim_{\mathbf{x}_2 \to \mathbf{x}} \lim_{\mathbf{y} \to \mathbf{x}} R^{0.2273} \psi_{\uparrow}(\mathbf{x}) \psi_{\uparrow}(\mathbf{x}_2) \psi_{\downarrow}(\mathbf{y})$$

• $\Delta[O_3] = 4.2727$

NRCFT in real world

- 2 neutrons almost form a bound state
- Scattering length between 2 neutrons anomalously large: $a \approx -19$ fm, $r_0 \approx 2.75$ fm
- Neutrons are approximately described by a NRCFT in the energy range between $\hbar^2/ma^2 \sim 0.1$ MeV and $\hbar^2/mr_0^2 \sim 5$ MeV
- With a consequence for nuclear reactions

Nuclear reactions

H.-W. Hammer and DTS, 2103.12610

- Many nuclear reactions with emissions of neutrons:
 - ${}^{3}H + {}^{3}H \rightarrow {}^{4}He + 2n$
 - $^{7}\text{Li} + ^{7}\text{Li} \rightarrow ^{11}\text{C} + 3\text{n}$
 - ${}^{4}\text{He} + {}^{8}\text{He} \rightarrow {}^{8}\text{Be} + 4n$
- In some kinematic regime these reactions occur in two steps

"UnNuclear physics"

$P(A_1 + A_2 \rightarrow B + 3n) = P(A_1 + A_2 \rightarrow B + \mathcal{U})P(\mathcal{U} \rightarrow 3n)$ \swarrow When energy scale of primary reaction is larger than $\mathcal{U} \rightarrow 3n$

 \mathcal{U} = unnucleus (nonrelativistic version of Georgi's unparticle)

Rates of unnuclear processes

• Near end point: $\frac{d\sigma}{dE} \sim (E_0 - E)^{\Delta - \frac{5}{2}}$ $\Delta = \Delta [\mathcal{U}]$

Nuclear reactions

- ${}^{3}H + {}^{3}H \rightarrow {}^{4}He + 2n$
- $^{7}\text{Li} + ^{7}\text{Li} \rightarrow ^{11}\text{C} + 3\text{n}$ $^{4}\text{He} + ^{8}\text{He} \rightarrow ^{8}\text{Be} + 4\text{n}$

$$\alpha = -0.5$$
 Watson-Migdal 1950's
 $\alpha = 1.77$
 $\alpha = 2.5 - 2.6$

• recall our prediction:

•
$$\frac{d\sigma}{dE} \sim (E_0 - E)^{\alpha}$$

• and regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^2/ma^2 \sim 0.1$ MeV $\hbar^2/mr_0^2 \sim 5 \text{ MeV}$

Comparison with "experiment"

Golak et al. PRC 98, 054001 (2018)

Away from conformality

• Finite scattering length and effective range can be included as perturbation from fixed point

$$L = L_{\text{CFT}} + \frac{1}{a}O_2^{\dagger}O_2 - r_0O_2^{\dagger}\left(i\partial_t + \frac{1}{4}\nabla^2\right)O_2$$

- Contribution to $\langle O_3 O_3^{\dagger} \rangle$ can be computed using conformal perturbation theory S.D. Chowdhury, R. Mishra, DTS to be published
- Gives the corrections to the conformal behavior as one approaches the two ends of the energy conformal window

$$\frac{d\sigma}{dE} \sim \omega^{\alpha} \left(1 + \frac{c_1}{a_0 \sqrt{m\omega}} + c_2 r_0 \sqrt{m\omega} \right) \qquad c_2 = 0$$

Conclusion

- NR conformal field theories have Schrödinger symmetry
- Example: fermions at unitarity
- Approximately realized by neutrons in nuclear physics
- Leads to a power-law behavior of differential cross sections of certain processes near threshold
- Nonrelativistic conformal perturbation theory can be developed and used

Thank you