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Schrödinger group

• group of symmetries of the free Schrödinger equation 
 

                  

• Phase rotation   

• space and time translations ; rotations 

• Galilean boosts  

• Dilatation  

i
∂ψ
∂t

= − 1
2m

∇2ψ

M ψ → eiαψ

P, H Jij

K ψ(t, x) → eimv⋅x− i
2 mv2t ψ(t, x − vt)

D ψ(t, x) → λ3/2ψ(λ2t, λx)



“Proper conformal 
transformation”

 :  C ψ(t, x) → 1
(1 + αt)3/2 exp( i

2
mαx2

1 + αt )ψ ( t
1 + αt

, x
1 + αt )



Schrödinger algebra
Unitary Fermi gas, ε expansion, and nonrelativistic conformal field theories 21

Table 1 Part of the Schrödinger algebra. The values of [X , Y ] are shown below.

X \Y Pj Kj D C H
Pi 0 −iδi jM −iPi −iKi 0
Ki iδi jM 0 iKi 0 iPi
D iPj −iKj 0 −2iC 2iH
C iKj 0 2iC 0 iD
H 0 −iPj −2iH −iD 0

mass : M ≡
∫

dxρ(x) (51)

momentum : Pi ≡
∫

dx ji(x) (52)

angular momentum : Ji j ≡
∫

dx [xi j j(x)− x j ji(x)] (53)

Galilean boost : Ki ≡
∫

dxxiρ(x) (54)

dilatation : D≡
∫

dxx · j(x) (55)

special conformal : C ≡
∫

dx
x2

2
ρ(x) (56)

and the Hamiltonian:

H = ∑
σ=↑,↓

∫

dx
∂ψ†σ (x) ·∂ψσ (x)

2mσ

+
∫

dx
∫

dyψ†↑ (x)ψ
†
↓ (y)V (|x−y|)ψ↓(y)ψ↑(x). (57)

D andC are the generators of the scale transformation (x→ eλx, t→ e2λ t) and the
special conformal transformation [x→ x/(1+λ t), t → t/(1+λ t)], respectively.
In a scale invariant system such as fermions in the unitarity limit, these operators
form a closed algebra.5
Commutation relations of the above operators are summarized in Table 1. The

rest of the algebra is the commutators of M, which commutes with all other op-
erators; [M, any] = 0. The commutation relations of Ji j with other operators are
determined by their transformation properties under rotations:

[Ji j, N] = [Ji j, D] = [Ji j,C] = [Ji j, H] = 0, (58a)
[Ji j, Pk] = i(δikPj− δ jkPi), [Ji j, Kk] = i(δikKj− δ jkKi), (58b)
[Ji j, Jkl ] = i(δikJ jl+ δ jlJik− δilJ jk− δ jkJil). (58c)

5 One potential that realizes the unitarity interaction isV (r) = (π/2)2 limr0→0 θ (r0− r)/(2m↑↓r20),
where m↑↓ ≡ m↑m↓/(m↑+m↓) is the reduced mass.

SO(2,1)



Schrödinger symmetry from light-
cone reduction

• Start from a relativistic conformal algebra in 1 higher 
dimension

• Select operators that commute with the light-cone 
momentum 

• These operators form a Schrödinger algebra

•                        ...

P+ = (P0 + Pd+1)/ 2

P− → H D + M+− → D
K+

2 → C



Nonrelativistic CFTs

• are QFTs with Schrödinger symmetry

• primary operators: 

• operator dimensions 
 

    

[Ki, O(0)] = [C, O(0)] = 0

⟨O(t, x)O†(0,0)⟩ = C
tΔ exp( imx2

2t )

Y. Nishida, DTS, 2007 



Example of NRCFT

•
• NR power counting: , , 

•
• interacting CFT at  

• Does the fixed point survive at ?

• yes, this is the so-called “unitarity fermion”

S = ∫ dt ddx (iψ†∂tψ − 1
2 |∇ψ |2 − λψ†

↑ψ†
↓ψ↓ψ↑)

[E] = 2 [p] = 1 [ψ] = d
2

β(λ) = ϵλ+ 1
2π λ2

λ* = − 2πϵ

d = 3

*yr,



“Unitarity regime”

• Take a potential of a certain shape, e.g., 
    for ,   for 

• fine-tune the depth so that there is one “bound state” 
at zero energy 
 

         

• Then let :  “unitarity regime” s-wave scattering 
saturates unitarity

V(r) = − V0 r < r0 0 r > r0

V0 = π2ℏ2

8m
1
r2
0

r0 → 0

r

V(r)

r

V(r)



Scattering length and 
unitarity regime

• This situation corresponds to low-energy resonant 
scattering in quantum mechanics

• s-wave scattering amplitude given by scattering 
length  and effective range : 
 

     

• Unitarity regime:  
                          

• no dimensionful length scale

a r0

f(k) = 1
−ik + 1

a + 1
2 kr2

0

a → ∞
r0 → 0



• The unitarity regime can be understood directly, 
without taking the limit r0 → 0



Unitarity fermions: QM

• Wave function of  spin-up and  spin-down 
fermions 

•  antisymmetric under exchanging two ’s or ’s

• When one spin-up and one spin-down fermions 
approach each other: 
 

    ,   

•

m n
ψ(x1, …, xm; y1, …, yn)

ψ x y

ψ(x, y) = C
|x − y |

+ b(x, y) b(x, x) = 0

H = − 1
2 ∑

a

∂2

∂x2a
− 1

2 ∑
a

∂2

∂y2a

8⑧
I



Charge-2 local operator

• Second-quantized formulation of QM: 
 
     

• Limit  does not exist: 
 
       

• but one can define 
        

• then 
      
   = finite

⟨0 |ψ↑(x)ψ↓(y) |Ψ⟩ = Ψ(x, y)

y → x

⟨0 |ψ↑(x)ψ↓(x) |Ψ⟩ = Ψ(x, x) = ∞

O2(x) = lim
y→x

|x − y |ψ↑(x)ψ↓(y)

⟨0 |O2(x) |Ψ⟩ = lim
y→x

|x − y |Ψ(x, y)



Dimension of O2

•
•
• In free theory: 

• Situation is reminiscent of holography: two 
boundary CFT with different dimensions of a 
scalar operators:  
 
   here effectively # of spacetime dim is 5 

O2(x) = lim
y→x

|x − y |ψ↑(x)ψ↓(y)

Δ[O2] = 2Δ[ψ] − 1 = 2
Δ[ψψ] = 3

Δ+ + Δ− = d



Charge-3 operator
• Need to know hort distance behavior of 

• 3-body problem solved by Efimov ~ 1970 
 
       
                   

• Charge-3 operator 
 
   

•

Ψ(x1, x2; y)

Ψ(x1, x2; y) ∼ R−0.2273

R2 = |x1 − x2 |2 + |x1 − y |2 + |x2 − y |2

O3(x) = lim
x2→x

lim
y→x

R0.2273ψ↑(x)ψ↑(x2)ψ↓(y)

Δ[O3] = 4.2727



NRCFT in real world

• 2 neutrons almost form a bound state

• Scattering length between 2 neutrons anomalously 
large:  ,  

• Neutrons are approximately described by a 
NRCFT in the energy range between 

 and 

• With a consequence for nuclear reactions

a ≈ − 19 fm r0 ≈ 2.75 fm

ℏ2/ma2 ∼ 0.1 MeV ℏ2/mr2
0 ∼ 5 MeV

n n



Nuclear reactions

• Many nuclear reactions with emissions of neutrons:

• 3H + 3H → 4He + 2n

• 7Li + 7Li → 11C + 3n

• 4He + 8He → 8Be + 4n

• In some kinematic regime these reactions occur in two 
steps

H.-W. Hammer and DTS, 2103.12610



“UnNuclear physics”

5

In the regime E0 � E ⌧ E0, ignoring the energy dependence of all other factors, we can

write
d�

dE
⇠ (E0 � E)�� 5

2 . (16)

Thus, a characteristic feature of processes involving an unnucleus is the power-law depen-

dence of the di↵erential cross section on the recoil energy near the end point.

IV. MULTI-NEUTRON FINAL STATES AS UNNUCLEI

So far the search for relativistic unparticles has been unsuccessful [2–4]. In nuclear

physics, however, there are natural approximate unnuclei due to the fortuitous occurrence of

fine tuning in several nuclear systems. In particular, neutrons have a large s-wave scattering

length: a ⇡ �19 fm, compared to the e↵ective range r0 ⇡ 2.8 fm. A system of neutrons

can be considered as an unnucleus if the relative momentum between any two neutrons in

the system is between ~/a and ~/r0. If this is the case, they are described by a well known

nonrelativistic conformal field theory—the theory of fermions at unitarity.

B

A

A

n

n

n

1

2

FIG. 2. A nuclear reaction with three neutrons in the final state.

Thus, the real-world realizations of the reaction pictured in Fig. 1 are reactions with a few

neutrons in the final state. A typical reaction with three final-state neutrons is schematically

depicted in Fig. 2. The di↵erential cross section d�/dE considered above is now an inclusive

cross section, where the momenta of the neutrons are left unmeasured. Reactions of this

type are abundant in nuclear physics. Some examples are

3H+ 3H ! 4He + 2n , (17)
7Li + 7Li ! 11C + 3n , (18)

4He + 8He ! 8Be + 4n . (19)

The final-state neutrons can be considered as forming an unnucleus when the kinetic energy

of the system of neutrons in its center-of-mass frame (neutron kinetic energy) is between

"0 = ~2/ma2 ⇠ 0.1 MeV and ~2/mr20 ⇠ 5 MeV. Only in this kinematic regime, our predic-

tion (16) for d�/dE applies. Physically, in this regime the neutrons travel together and keep

interacting with each other until the distance between them becomes larger than a. If the

total kinetic energy of the final scattering products Ekin is much larger than ~2/mr20, then

0

P(A1 + A2 → B + 3n) = P(A1 + A2 → B + 0)P(0 → 3n)

When energy scale of primary reaction is larger than 

 = unnucleus (nonrelativistic version of Georgi’s unparticle)

0 → 3n

0

-E
-



Rates of unnuclear processes

•  

• Near end point: 

dσ
dE

∼ |ℳ |2 E × Im G0(Etot − E, p)

dσ
dE

∼ (E0 − E)Δ− 5
2

4

B

UA

A
2

1 U
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FIG. 1. A nuclear reaction with an unnucleus U (represented by the shaded region) in the final

state.

where A1 and A2 are some initial particles, B is a particle and U is the unnucleus. For

simplicity, we assume all particles involved in the reaction are nonrelativistic, though our

main conclusion requires that only U is. We work in the center-of-mass frame. The total

kinetic energy available to final products is

Ekin = (MA1 +MA2 � MB � MU)c
2 +

p2A1

MA1

+
p2A2

MA2

. (11)

Unless U is a particle, the energy spectrum of B is continuous. Let E and p be the energy

of the particle B, E = p2/2mB. We are interested in the di↵erential cross section d�/dE.

We can think about a term in the e↵ective Lagrangian

Lint = g U †B†A1A2 + h.c. (12)

where g is some coupling constant. The di↵erential cross section can be computed to be

d�

dE
⇠ |M|2

p
E ImGU(Ekin�E,p). (13)

For the Lagrangian (12) M = g, but in principle M can contain dependence on the momenta

of the incoming and outgoing particles. The statement of Eq. (13) is that the cross section

can be factorized into two parts, one (encoded by M) corresponding to the primary process

A1+A2 ! B+U , the other (encoded by ImGU) corresponding to the final-state interaction

between the constituents of U . Such a factorization requires that the energy scale of the

primary scattering process is much larger than that of the interaction between the neutrons

and is the essence of the Watson-Migdal approach to final-state interaction [6, 7].

According to Eq. (9),

ImGU(Ekin�E,p) ⇠
✓
Ekin � E � p2

2MU

◆�� 5
2

=


Ekin �

✓
1 +

MB

MU

◆
E

��� 5
2

. (14)

Denote the maximal value of the recoil energy received by the particle B as

E0 =

✓
1 +

MB

MU

◆�1

Ekin. (15)

Etot = E + E0

(E, p)

(E0 − E)Δ− 5
2

(Etot−E, −p)

-

A.
⑧

=>

B =x(u]



Nuclear reactions

• 3H + 3H → 4He + 2n

• 7Li + 7Li → 11C + 3n

• 4He + 8He → 8Be + 4n

• recall our prediction:

•
• and regime of validity: kinetic energy of neutrons in their 

c.o.m. frame between  

dσ
dE

∼ (E0 − E)α

ℏ2/ma2 ∼ 0.1 MeV
ℏ2/mr2

0 ∼ 5 MeV

α = − 0.5
α = 1.77
α = 2.5 − 2.6

Watson-Migdal 1950’s
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calculation (circles) and the plane wave impulse approximation (squares). We have converted

0 0.5 1 1.5 2 2.5
E

3n
 [MeV]

0

0.2

0.4

0.6

d
Γ

/d
E

γ [
1
0

1
5
/(

fm
s)

] c E
3n

3

c E
3n

1.77

c E
3n

1.77
 + d  E

3n

2.17

3
H(π

-
,γ)3n

0 0.5 1 1.5 2 2.5
E

3n
 [MeV]

0

0.5

1

1.5

d
Γ

/d
E

ν
 [

(M
e

V
s)

-1
] c E

3n

3

c E
3n

1.77

c E
3n

1.77
 + d  E

3n

2.17

3
H(µ

-
,ν

µ
)3n

FIG. 4. Center-of-mass energy spectrum of three neutrons in the reaction
3
H(⇡�, �)3n (left panel)

and
3
H(µ�, ⌫µ)3n (right panel). The circles/squares give the full/plane wave calculations by Golak

et al. [23, 24]. Di↵erent fits are explained in the legend and in the main text.

the calculated photon spectra to three-neutron spectra for convenience. As expected, the

free neutron behavior, E3 (dashed line), can describe the full calculation (circles) only at the

lowest energies. However, the plane wave impulse approximation (squares) can be described

up to about 2.5 MeV. The full calculation including final state interaction displays clear

unnucleus behavior, E1.77 (solid line) for energies also up to about 2.5 MeV, where it starts

to deviate from the prediction. This is somewhat smaller than the value 5 MeV expected from

the scattering length. We suspect that this is due to the wave function of the triton, which

has finite extent, making the reaction a less than ideal “point source” of the neutrons and

causing the factorization formula (13) to break down earlier than expected. The description

cannot be significantly improved by including the next state which behaves as E2.17 (dash-

dotted line). Analogous behavior is exhibited by the theoretical spectra for the reaction
3H(µ�, ⌫µ)3n calculated by Golak et al. [24] using the same interaction model (see right

panel of Fig. 4). In this reaction, the energy scale of the primary scattering process is

slightly smaller such that the corrections to factorization are larger.

A four-neutron spectrum was recently measured by Kisamori et al. in the reaction
4He(8He,8Be)4n [25], but the number of events is too low to extract evidence of unnu-

cleus behavior. It may, however, be possible to extract such behavior from the spectra of a

new experiment using the reaction 8He(p, p↵)4n, which are currently being analyzed [18].

Comparison with “experiment”

π− + 3H → γ + 3n
Golak et al. PRC 98, 054001 (2018)

E
↓
N

-

C

k
L



Away from conformality
• Finite scattering length and effective range can be 

included as perturbation from fixed point 
 

• Contribution to  can be computed using 
conformal perturbation theory 
S.D. Chowdhury, R. Mishra, DTS to be published

• Gives the corrections to the conformal behavior as 
one approaches the two ends of the energy 
conformal window 
 

                       

L = LCFT + 1
a

O†
2 O2 − r0O†

2 (i∂t+ 1
4 ∇2)O2

⟨O3O†
3 ⟩

dσ
dE

∼ ωα(1 + c1

a0 mω
+ c2r0 mω) c2 = 0



Conclusion

• NR conformal field theories have Schrödinger symmetry

• Example: fermions at unitarity

• Approximately realized by neutrons in nuclear physics

• Leads to a power-law behavior of differential cross 
sections of certain processes near threshold

• Nonrelativistic conformal perturbation theory can be 
developed and used 



Thank you


