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An important paper in the history of AdS/CFT:
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RECEIVED: April 8, 2002
ACCEPTED: April 8, 2002

Strings in flat space and pp waves from \" = 1 super

Yang Mills

David Berenstein, Juan Maldacena and Horatiu Nastase

® First AdS/CFT verification for non-protected observables

1-loop anomalous dim of _ | energy of closed strings
single trace operators o in a pp-wave background

A
2 <1 For length of trace L large



My talk today

Cusp anomalous dimension in
N = 6 super Chern-Simons-matter (ABJM)

A
\QS <Wcusp> = e_rcusp(¢) log(ﬁ)

Meusp(@) = —A ( ! i 1) —)\2 ( L i 1) log (cos %)2—1—(’)()\3)

Cos 5 Cos 5

(Griguolo,Marmiroli,Martelloni,Seminara 12)
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My talk today

Cusp anomalous dimension in
N = 6 super Chern-Simons-matter (ABJM)

AR

\(b <WCUSp> = e_rCUSp(¢) Iog(m

Ceusp(¢) = —A ( ! i 1) —\? ( ! 5~ 1) log (cos %)2—%(’)()\3)

Cos 5 Cos 5

(Griguolo,Marmiroli,Martelloni,Seminara 12)

® We proposed a TBA system to compute [c,sp(¢) exactly

® We reproduced the 1-loop order of s, (¢) from this TBA



Introduction and Motivations

® [cusp(@) encodes physical data of ABJM gauge theory

® In the small ¢ limit, it gives the bremsstrahlung function

eusp(®) = —¢°B(Y) \
Radiated energy: E = 27rB/dt\'/2

® B()\) is known from a localization computation

K 2 K 2
B()\) %2,:1(%’%;2;_17) A= 8 3 2(2a27211 % T)

(Lewkowycz, Maldacena 13) (Bianchi, Griguolo, Leoni, Penati,Seminara, 14)
(Bianchi, Griguolo, Mauri, Penati, Preti, Seminara, 17) (Bianchi, Preti, Vescovi 18)

Computing the same function from integrability, would provide a
direct derivation of the interpolating function h()), which
enters all integrability-based results for ABJM



Introduction and Motivations

® Integrability can be useful in d > 2 QFT as well.

® Spectrum of single trace operators is an integrable problem in
N = 4 super Yang-Mills

(Minahan, Zarembo 02) (Beisert, Staudacher 03, 05) (Beisert, Kristjansen,
Staudacher 03) (Beisert 05) (Beisert, Eden, Staudacher 06) (Gromov, Kazakov,
Vieira 09) (Gromov, Kazakov, Kozak, Vieira 09) (Arutyunov, Frolov 07, 08, 09)
(Bombardelli, Fioravanti, Tateo 09) (Cavaglia, Fioravanti, Tateo 10) (Gromov,
Kazakov, Leurent, Volin 13)

Apologies for the many omissions!

® Spectrum of single trace operators is an integrable problem in
ABJM (N = 6 Chern-Simons-matter)

(Minahan, Zarembo 08) (Gaiotto, Giombi, Yin 08) (Gromov, Vieira 08) (Ahm,
Nepomechie 08) (Gromov, Mikhaylov 08) (Bombardelli, Fioravanti, Tateo 09)
(Gromov, Levkovich-Maslyuk 09) (Gromov, Sizov 14) (Cavaglia, Fioravanti, Gromov,
Tateo 14) (Bombardelli, Cavaglia, Fioravanti, Gromov, Tateo 17)

Apologies for the many omissions!



Introduction and Motivations

® Wilson loops in N/ = 4 super Yang-Mills can be described with
integrability tools as well (Drukker, Kawamoto 06) (Drukker 12) (Correa,
Maldacena, Sever 12) (Gromov, Sever 12) (Gromov, Levkovich-Maslyuk 15) (Correa,
Leoni, Luque 18)

&® Why these ideas were not immediately and straightforwardly
extended to ABJM Wilson loops?



ABJM theory

It is an A/ = 6 Chern-Simons-matter theory (Aharony, Bergman, Jafferis,

Maldacena 08)
Holographic dual of type 1A

A ‘@m’ A.  string theory in AdS, x CP3

(when k and N large)

® Single trace operators alternate one type of matter with the
other

tr[C1C2 G C2 G C2 G C = M)

® The spectrum of single trace operators is described in terms of
integrable alternating spin chains

Z ePTIMITT) Z PTIMIIAT)

g g

Scale dimension of operators <>  Energy of spin chain states.



Similarities and Differences with N = 4 SYM

® An SU(2|2) underlying symmetry constraints the bulk 2 — 2
S-matrix and dispersion relation of magnons

® In ABJM two types of magnons: s @ Up

SAM = S8 (p. g, h(N)S(p, q, h(\))  S*B = S§B(p, q, h(N))S(p, g, h(N))

S: same SU(2]2) matrix part than in
N = 4 SYM (Beisert 05) = Yang-Baxter Eq. v/



Similarities and Differences with N = 4 SYM

® An SU(2|2) underlying symmetry constraints the bulk 2 — 2
S-matrix and dispersion relation of magnons

® In ABJM two types of magnons: s @ Up

SM = 5¢4(p, q, h(N)S(p, q. h(N))  SB = S§B(p, q, h(N)S(p. q, (X))

S: same SU(2]2) matrix part than in
N = 4 SYM (Beisert 05) = Yang-Baxter Eq. v/

S§\A & S§'B: dressing factors constrained by crossing symmetry

X{ — X5 +
e (xa, %) = L—2 12 o(x, %) S§B(a,x) = o(x1, x)
x| — Xy 1— s

o is the square root of the BES function appearing in N’ = 4 SYM
(Ahn, Nepomechie 08)



Similarities and Differences with N = 4 SYM

&® The dispersion relation of magnons

h(X) not fixed by symmetry
h(X) in all integrability-based results

E(p) = 3\/1+16h(\)2sin(2) {



Similarities and Differences with N = 4 SYM

&® The dispersion relation of magnons

h(X) not fixed by symmetry
h(X) in all integrability-based results

E(p) = 3\/1+16h(\)2sin(2) {

e In N =4SYM
)\ from Iocalization (Correa, Henn, Maldacena, Sever 12)
h(/\)2 = — computing B()\) . -
1672 from integrability (Gromov, Sever 12)

A windfall in A/ = 4 SYM!! Had it been different for weak and
strong coupling regimes, BMN limit would not possible!



Similarities and Differences with N = 4 SYM

&® The dispersion relation of magnons

h(X) not fixed by symmetry
h(X) in all integrability-based results

E(p) = 3\/1+16h(\)2sin(2) {

e In N =4SYM
)\ from Iocalization (Correa, Henn, Maldacena, Sever 12)
h(/\)2 = — computing B()\) . -
1672 from integrability (Gromov, Sever 12)

A windfall in N/ = 4 SYM!! Had it been different for weak and
strong coupling regimes, BMN limit would not possible!

@ In ABJM it is a non-trivial function

N4 fordkl
2 _
h(Y) _{2)\+--- for A>>1



A proposal for h(A) in ABJM

An exact integrability-based computation of the slope function is
written in terms of integrands similar to the ones appearing in
matrix model results (Gromov, Sizov 14)

Gromov and Sizov propose the identification
k(A) = 4sinh (2mh(X))
which would imply

\  sinh (2h)

11 1.4.3. F k2
o0 3F2(§,§,§,1,§,—S|nh (27Th))



A proposal for h(A) in ABJM

An exact integrability-based computation of the slope function is
written in terms of integrands similar to the ones appearing in
matrix model results (Gromov, Sizov 14)

Gromov and Sizov propose the identification
k(A) = 4sinh (2mh(X))
which would imply

inh (2h
A= IO 4 b s 2

An exact integrability-based computation of the bremsstrahlung
function would provide a direct derivation of the interpolating h(\)



Cusp anomalous dimension from integrability
Method:

© Insert a chain of fields of length L at a point in the WL
@ WL sets open boundaries: determine the reflection matrix
© Rotate one of the R?, to introduce a cusp angle

@ Incorporate finite size effects with a Thermodynamic Bethe
Ansatz

© The vacuum energy in the L — 0 limit gives the cusp
anomalous dimension

This was successfully done in N' =4 SYM
(Correa, Maldacena, Sever 12) (Drukker 12)



Wilson loop's open spin chain
® 1/2 BPS Wilson loop (Drukker, Trancanelli 09)

27i ] ) L W §
e 1 gl BTEEREE iy
W =tr(W) = (e’f ) ~iEwE A MG

M =diag(-1,1,1,1) N =2i
W is susy invariant, W is susy covariant

W =tr (eifdt L) SU(1,1[3) } SU(1]2) in common
CC?CC*°GC*°GiC% SU(22)

/%—(C162C162C162C162)—%— — M

® Magnon impurities can reflect on the boundary. Bootstrapping
with the SU(1]2) symmetry, the reflection matrix is constrained

10 0 0

A(B 0 1 0 0

RA(B)(p) = RO( )(P) 0 0 e—ip/2 0
00 0 —eP?



Matrix part is analogous to the one for

Giant Graviton open boundaries

in =4 SYM and in ABJM [SU(2|1)]

(Hofman, Maldacena 06) (Chen, Ouyang, Wu 18)
= Boundary Yang-Baxter Eq. v/

® So far, everything looked great. However, at this point, the
project stalled for years

&® Why?



Matrix part is analogous to the one for

Giant Graviton open boundaries

in =4 SYM and in ABJM [SU(2|1)]

(Hofman, Maldacena 06) (Chen, Ouyang, Wu 18)
= Boundary Yang-Baxter Eq. v/

® So far, everything looked great. However, at this point, the
project stalled for years

&® Why?

In my case, | lacked the precise weak coupling spin chain picture,
which is needed to pin down the correct the dressing factors R()q
and RE to fully determine the reflection matrix



Determining the Dressing Factors

® Combining particle4-antiparticle we can
form an SU(2|2) singlet

® lts reflection on the boundaries must be trivial
= Boundary crossing condition (Hofman, Maldacena 06)

spectral parameters

ST U D
X F X x— — h(X)

R A N

RIP)) (RS (P) = | = <

(R@) (& ®) = (- ) 75 -
It resembles the boundary crossing conditions for Wilson loop in
N =4SYM — we can use the N'=4 SYM dressing factor to

solve the ABJM crossing condition



Determining the Dressing Factors

Ry(p) = * rA/B<p)[ : (H ")] §

Jbdry(p)a(pa —P) 1+ (g

N=4 SYM dressing factor
(p) = X6 =ix(x7)

Obdry
. > inh[27h z—i—l .
) iP(x) = §|z|:1 L 1 lOg{s%[rh(z(Jr;)Z)]} if |x|>1
ix(x) = : .
i®(x) + log { SMMETRCE] it |x| <1
2rh(x+1)

(Drukker 12) (Correa, Maldacena, Sever 12)

® At strong coupling, the scattering phase of magnons is related
to the time delay of sine-Gordon solitons (during the reflection).
This is a classical string theory computation in AdS, x S,
completely identical to the one in AdSs x S°.

1/2
Already captured by [ : } = rY/B(p) ~ O(1) for A > 1



Determining the Dressing Factors

® We are left with
Loxt

A Br=\ __
r(p)r=(p) = T

Many ways of solving this. We look for the solution consistent with
weak coupling behaviours



Determining the Dressing Factors

® We are left with
Loxt

A Br=\ __
r(p)r=(p) = T

Many ways of solving this. We look for the solution consistent with
weak coupling behaviours

&® For this is crucial to have the correct spin chain description at
weak coupling. Which one is the insertion O to be interpreted as

BPS reference state?

R T Y

(Ge) o
+( 5 ey ) Not BPS



Determining the Dressing Factors

® We are left with
Loxt

A Br=\ __
r(p)r=(p) = T

Many ways of solving this. We look for the solution consistent with
weak coupling behaviours

&® For this is crucial to have the correct spin chain description at
weak coupling. Which one is the insertion O to be interpreted as

BPS reference state?

W EX =Myt = 50 = 60 — i[O, ]

a2 193\
( 0 CG



Determining the Dressing Factors

® We are left with
X% + xt

A Br=\ _
r(p)r (p)_x%_{_X,

Many ways of solving this. We look for the solution consistent with
weak coupling behaviours

&® For this is crucial to have the correct spin chain description at
weak coupling. Which one is the insertion O to be interpreted as

BPS reference state?

W et 50 50— 0N

< 0 (ClCz)eCI > BPS vacuum state
0 0



Determining the Dressing Factors

® SU(2) sector for type B magnons

FV¥E Y _ _
HE = )° ;(1 —Poni1) ﬂclcicbc%lc?cl e

[W(p)) =D (e + R(p) ™) In) = RF(p)=eP+0O(\)
n=0

® SU(2) sector for type A magnons @

L _ _ _
HA = (427 Bo)do.c;+0° Y (1-Prny1)  —HGC?GCGCG -
rd NERE
@ bulk terms order \?"~

@ bdry terms start at order A = a state w/ energy Eg = A+ - - -

Perturbative resolution = R{'(p) = —1 + O(\?)



Determining the Dressing Factors

® All-loop proposal

B( ) X A( ) x~ [ xT+ X% @ crossing equation v~
r°(p) = — r(p)=— | —F
x*t xt \x=+ o @ weak & strong results v

® The type A state with energy order \ appears to be a boundary
bound state

@® The additional factor in r(p) has a pole as x~ — i, whose
energy is
Epole = A+ O(N?)

Recap: we found a solution of the boundary crossing
condition that reproduces strong and weak coupling results



Cusp anomalous dimension from integrability

Method:
@ Insert a chain of fields of length L at a point in the WL
@ WL sets open boundaries: determine the reflection matrix
© Rotate one of the R?, to introduce a cusp angle

— @ Incorporate finite size effects with a Thermodynamic Bethe
Ansatz

— @ The vacuum energy in the L — 0 limit gives the cusp
anomalous dimension



Boundary TBA schematically
L

L — : . p < iE .
=5 ‘B 5 I Physical strip { E o ip } Mirror theory

(LHB) - Tl‘open[e BH;T’%I:] = <B[|e7LHClOSEd|Br>



Boundary TBA schematically
L

1 . . p < iE .
+=8 ‘B gm I Physical strip { Eoip } Mirror theory

5
Z(L7 /B) - Tropen[e_BH;ﬁ%r:] = <Bl|eiLHclosed|Br>

e Analytic continuation of R(p) gives the probability of emitting
pairs of particles from the boundary state (Ghoshal, Zamolodchivov 93)

B =0 ([ SPR@a 20 ) —e ([ 2232) 10

with K*P(p) = [R™1(p)];,C?® p has mirror kinematics



Boundary TBA schematically
L

1 . . p < iE .
+=8 ‘B gm I Physical strip { Eoip } Mirror theory

5
Z(L7 /B) - Tropen[e_BH;ﬁ%r:] = <Bl|eiLHclosed|Br>

e Analytic continuation of R(p) gives the probability of emitting
pairs of particles from the boundary state (Ghoshal, Zamolodchivov 93)

B =0 ([ SPR@a 20 ) —e ([ 2232) 10

with K*P(p) = [R™1(p)];,C?® p has mirror kinematics

e In the 8 — oo limit,
(i) Partition function — the ground state energy Zypen ~ e P&(L)
(ii) Bethe Ansatz in the mirror theory becomes exact



Boundary TBA schematically

A TBA analysis shows that the vacuum energy is

1 (o9}
E(L) = —— dp log(1l+ Y,
o(1) 27(2@:/0 plog(1 + Yo)
Y are solutions to certain integral equations. Schematically
log Yg = log [ Tr(KoKg)| — 2LEq + Kg.q * log(1 + Ygr)
The asymptotic solution, giving the leading finite size correction, is

Yo ~ Yo = e 2LEeTr(KoKq)



Boundary TBA schematically

A TBA analysis shows that the vacuum energy is

1 (o9}
E(L) = —— dp log(1l+ Y,
o(1) 2%:/0 plog(1 + Yo)
Y are solutions to certain integral equations. Schematically
log Yg = log [ Tr(KoKg)| — 2LEq + Kg.q * log(1 + Ygr)
The asymptotic solution, giving the leading finite size correction, is

Yo ~ Yo = e 2LEeTr(KoKq)

In many systems, after substracting the asymptotic Y-functions,
TBA eqgs for periodic and open boundary conditions look the same

YQ 1+YQ/
| — | =Ko.o *|
og (YQ> Q,Q * 0g<1—|—Y’Q>




TBA |n ABJ M (Gromov, Kazakov, Vieira) (Bombardelli, Fioravanti, Tateo)

(Gromov, Levkovich-Maslyuk) (Cavaglia, Fioravanti, Gromov, Tateo)

(Bombardelli, Cavaglia, Fioravanti, Gromov, Tateo)

@ Many Y-functions, one for each type of mirror particle

Ya”o, YaI,IO7 for a >0,

Ya,ly Yl,s fora>0& s >0,
o——0 Y.
22

(O3N@)
O—O0—0—-0—=

O
OO OO0

from (Gromov, Kazakov, Vieira)



TBA |n ABJ M (Gromov, Kazakov, Vieira) (Bombardelli, Fioravanti, Tateo)

(Gromov, Levkovich-Maslyuk) (Cavaglia, Fioravanti, Gromov, Tateo)

(Bombardelli, Cavaglia, Fioravanti, Gromov, Tateo)

@ Many Y-functions, one for each type of mirror particle

Ya’70, Y;fo, for a >0,

Ya,l; Yl,s fora>0& s >0,
o0 Y.
22

O O
O—-O0-0-0—=

.
o)
0000

from (Gromov, Kazakov, Vieira)

We shall assume that the TBA system for the ABJM Wilson
loop is the same as for the periodic ABJM, after
substracting the asymptotic solution



(01)
im

1+ Viml4+Ym

i
—_— *log(1+ Y, o)
14+ Ym1 1+ Y1 ™0

= Kp_1*log ( > + Rg%) * log(1 + Y,In,o) + R

1+ Vi m 14+ Yy
1+ Yp1 14+ Y,

lo; Vl’" = — * loj ﬂ — ® lo, 1+ Yl’l
g ?17’7 n—1,m—1 g l+71,m n—1 g 14 Y1,

) + B wtog(1+ V) o) + B wiog(1 + Y )

= Km—1 * log (

14+ Ym1 1+VYs
= —K,_ _1 % lo —= | — K,_1 ® lo > +
n—1,m—1 g<1+Ym)1 n—1 g 1+Y171

+ (RO +BY, ) *log(1 + Vi 0) + (R + B, ) wlog(1 + Y o)

n—2,m

= ’F,,Un * log(1 + Y,:,,’O) + Tmln * log(1 + Y,Inl’o) +

1+ Y 1+ Yy,
0 oog (10L) 4 (R0 1609 ) s (102 )

1+ Y11 1+ Y1
Y”
log <YZ’0> = T % log(L+ Y ) + T xlog(1+ Y, o) +
n,0
10) 1+Y1 (10) | 12(10) L4 VYma
+RUD @ log [ 1L ) 4+ (RUO 4 5 ¥ log [ ———m1
m ¢ <1+Y1,1 ( i """_2) € 1+ Y1

where the asymptotic solutions Y, s are obtained from the ABJM
T-system and a Liischer computation



Asymptotic solution
2L u
P [ ol x(u) + 5t = 4
YaO = YaO = Tax + .
’ ’ %) ’ fl a]:f(u:tlg)

@ The T-functions are

. ule! 21 by uld]
T.1=2(-1) [bo,a (1 + ) T2 > Ny

bO,s = sin2 % P.'E%i-) ( 2C052 d)) b/75 = b07/b0757/ b0,0 =1

@ ¢(u) can be fixed by comparison with a Liischer correction
Yio(a) = e 2LE@ T [Ryy(q) CRY (-3)C 7]

Viu(a) — e LT[Ry (o) C R ()€

C: conj. matrix R? = S~Y(¢)RS(¢) S(¢): rot. matrix



® After fixing p(u)
. zt+ + 1 1/2
Yio =Y = (—1)"" e CL25E <+> og }(a)o 2 (—3) Tan
=

which have to be replaced in

1 &[> 1 &[>
[)=—— dglog[l + Y/ — — I
Y | datoeit+ ¥4 2 | datogt+ 2o

® Asqg—0
Yén+1,0 = Yéanrl,O = O(qo) @
16 b2 nh2 h 4L+2
Yho=Yho= 2 (1) w0 1]

q° n

Only Y30 contribute to the leading asymptotic solution



Using

n

[o¢]
| datos [1 + B ()] amby ph (8)2
0

The leading finite size correction becomes

= b P(Ol)( cos @)
2042 0.n 2422 ¢
Eo( —2h2LF Z T = —2h 2sin® g (k+ 12

2L + 1 is number of fields in the insertion. Thus, the cusp
anomalous dimension is obtained by setting 2L +1 =10

e ) = 2 sin 53 PO (— cos ) = ( - 1)
k=0

Cos 5

This matches exactly the 1-loop result using h(\) = A + O(\?)



Conclusions and Future Directions

&® Another example of integrability being useful in d > 2

® ABJM cusp anomalous dimension from a BTBA system. It
reproduces the 1-loop ['cysp and would provide the all-loop result

&® This is the first step towards a direct derivation of the

interpolating function h(\) appearing in all the integrability-based
computations in ABJM

® This would require to solve the BTBA in the small angle limit
(Feusp = —9?B(N))

% % %k

®



Conclusions and Future Directions

&® Another example of integrability being useful in d > 2

® ABJM cusp anomalous dimension from a BTBA system. It
reproduces the 1-loop ['cysp and would provide the all-loop result

&® This is the first step towards a direct derivation of the
interpolating function h(\) appearing in all the integrability-based
computations in ABJM

® This would require to solve the BTBA in the small angle limit

(Feusp = —¢*B(N))
* %k %

® By going to higher orders and larger sectors in the perturbative
spin chain = one could further test the proposed dressing factors

® By iterating the BTBA eqgs and comparing with the 2-loop
result of M'cysp = one could further test the proposed BTBA



Thanks for your attention!



