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≡1-loop anomalous dim of
single trace operators
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λ

L2
≪ 1 For length of trace L large
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My talk today

Cusp anomalous dimension in
N = 6 super Chern-Simons-matter (ABJM)
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(Griguolo,Marmiroli,Martelloni,Seminara 12)

We proposed a TBA system to compute Γcusp(ϕ) exactly

We reproduced the 1-loop order of Γcusp(ϕ) from this TBA
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Introduction and Motivations

Γcusp(ϕ) encodes physical data of ABJM gauge theory

In the small ϕ limit, it gives the bremsstrahlung function

Γcusp(ϕ) ≃ −ϕ2B(λ)

Radiated energy: E = 2πB

∫
dtv̇2

 

B(λ) is known from a localization computation

B(λ) =
κ

64π
2F1(

1
2 ,

1
2 ; 2;−

κ2

16) λ =
κ

8π
3F2(

1
2 ,

1
2 ,

1
2 ; 1;

3
2 ;−

κ2

16)

(Lewkowycz, Maldacena 13) (Bianchi, Griguolo, Leoni, Penati,Seminara, 14)

(Bianchi, Griguolo, Mauri, Penati, Preti, Seminara, 17) (Bianchi, Preti, Vescovi 18)

Computing the same function from integrability, would provide a
direct derivation of the interpolating function h(λ), which
enters all integrability-based results for ABJM



Introduction and Motivations

Integrability can be useful in d > 2 QFT as well.

Spectrum of single trace operators is an integrable problem in
N = 4 super Yang-Mills
(Minahan, Zarembo 02) (Beisert, Staudacher 03, 05) (Beisert, Kristjansen,

Staudacher 03) (Beisert 05) (Beisert, Eden, Staudacher 06) (Gromov, Kazakov,

Vieira 09) (Gromov, Kazakov, Kozak, Vieira 09) (Arutyunov, Frolov 07, 08, 09)

(Bombardelli, Fioravanti, Tateo 09) (Cavaglia, Fioravanti, Tateo 10) (Gromov,

Kazakov, Leurent, Volin 13)

Apologies for the many omissions!

Spectrum of single trace operators is an integrable problem in
ABJM (N = 6 Chern-Simons-matter)
(Minahan, Zarembo 08) (Gaiotto, Giombi, Yin 08) (Gromov, Vieira 08) (Ahm,

Nepomechie 08) (Gromov, Mikhaylov 08) (Bombardelli, Fioravanti, Tateo 09)

(Gromov, Levkovich-Maslyuk 09) (Gromov, Sizov 14) (Cavaglià, Fioravanti, Gromov,

Tateo 14) (Bombardelli, Cavaglià, Fioravanti, Gromov, Tateo 17)

Apologies for the many omissions!



Introduction and Motivations

Wilson loops in N = 4 super Yang-Mills can be described with
integrability tools as well (Drukker, Kawamoto 06) (Drukker 12) (Correa,

Maldacena, Sever 12) (Gromov, Sever 12) (Gromov, Levkovich-Maslyuk 15) (Correa,

Leoni, Luque 18)

Why these ideas were not immediately and straightforwardly
extended to ABJM Wilson loops?



ABJM theory

It is an N = 6 Chern-Simons-matter theory (Aharony, Bergman, Jafferis,

Maldacena 08)

U(N)k U(N)-kAµ Âµ

C̄ I , ψJ

CI , ψ̄
J

Holographic dual of type IIA

string theory in AdS4 × CP3

(when k and N large)

Single trace operators alternate one type of matter with the
other

tr[C1C̄
2C1C̄

2C1C̄
2C1C̄

2] ≡ |↑↑↑↑↑↑↑↑⟩

The spectrum of single trace operators is described in terms of
integrable alternating spin chains

|p⟩A =
∑
n

e ipn|↑↑↑↑↓↑↑↑⟩ |p⟩B =
∑
n

e ipn|↑↑↑↑↑↓↑↑⟩
|←→| |←→|

n n

Scale dimension of operators ↔ Energy of spin chain states.



Similarities and Differences with N = 4 SYM

An SU(2|2) underlying symmetry constraints the bulk 2→ 2
S-matrix and dispersion relation of magnons

In ABJM two types of magnons: �A ⊕�B

SAA = SAA
0 (p, q, h(λ))Ŝ(p, q, h(λ)) SAB = SAB

0 (p, q, h(λ))Ŝ(p, q, h(λ))

Ŝ : same SU(2|2) matrix part than in

N = 4 SYM (Beisert 05) ⇒ Yang-Baxter Eq.

SAA
0 & SAB

0 : dressing factors constrained by crossing symmetry

SAA
0 (x1, x2) =

x+1 − x−2
x−1 − x+2

1− 1
x+1 x−2

1− 1
x−1 x+2

σ(x1, x2) SAB
0 (x1, x2) = σ(x1, x2)

σ is the square root of the BES function appearing in N = 4 SYM
(Ahn, Nepomechie 08)
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Similarities and Differences with N = 4 SYM

The dispersion relation of magnons

E (p) = 1
2

√
1 + 16h(λ)2 sin2(p2 )

{
h(λ) not fixed by symmetry
h(λ) in all integrability-based results

In N = 4 SYM

h(λ)2 =
λ

16π2
computing B(λ)

from localization (Correa, Henn, Maldacena, Sever 12)

from integrability (Gromov, Sever 12)

A windfall in N = 4 SYM!! Had it been different for weak and
strong coupling regimes, BMN limit would not possible!

In ABJM it is a non-trivial function

h(λ)2 =

{
λ2 + · · · for λ≪ 1
2λ+ · · · for λ≫ 1
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A proposal for h(λ) in ABJM

An exact integrability-based computation of the slope function is
written in terms of integrands similar to the ones appearing in
matrix model results (Gromov, Sizov 14)

Gromov and Sizov propose the identification

κ(λ) ≡ 4 sinh (2πh(λ))

which would imply

λ =
sinh (2πh)

2π
3F2(

1
2 ,

1
2 ,

1
2 ; 1;

3
2 ;− sinh2 (2πh))

An exact integrability-based computation of the bremsstrahlung
function would provide a direct derivation of the interpolating h(λ)
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Cusp anomalous dimension from integrability

Method:

1 Insert a chain of fields of length L at a point in the WL

2 WL sets open boundaries: determine the reflection matrix

3 Rotate one of the Ra
b to introduce a cusp angle

4 Incorporate finite size effects with a Thermodynamic Bethe
Ansatz

5 The vacuum energy in the L→ 0 limit gives the cusp
anomalous dimension

This was successfully done in N = 4 SYM
(Correa, Maldacena, Sever 12) (Drukker 12)



Wilson loop’s open spin chain
1/2 BPS Wilson loop (Drukker, Trancanelli 09)

W = tr(W) =
(
e i

∫
dt L
)

W is susy invariant, W is susy covariant

W = tr
(
e i

∫
dt L
)

SU(1, 1|3)

C1C̄
2C1C̄

2C1C̄
2C1C̄

2 SU(2|2)

}
SU(1|2) in common

−→−−(C1C̄
2C1C̄

2C1C̄
2C1C̄

2)−→−− ←→

Magnon impurities can reflect on the boundary. Bootstrapping
with the SU(1|2) symmetry, the reflection matrix is constrained

RA(B)(p) = R
A(B)
0 (p)


1 0 0 0
0 1 0 0
0 0 e−ip/2 0
0 0 0 −e ip/2





Matrix part is analogous to the one for
Giant Graviton open boundaries
in N = 4 SYM and in ABJM [SU(2|1)]
(Hofman, Maldacena 06) (Chen, Ouyang, Wu 18)

⇒ Boundary Yang-Baxter Eq.

So far, everything looked great. However, at this point, the
project stalled for years

Why?

In my case, I lacked the precise weak coupling spin chain picture,
which is needed to pin down the correct the dressing factors RA

0

and RB
0 to fully determine the reflection matrix
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Determining the Dressing Factors

Combining particle+antiparticle we can
form an SU(2|2) singlet

Its reflection on the boundaries must be trivial
⇒ Boundary crossing condition (Hofman, Maldacena 06)

spectral parameters

x+ + 1
x+

− x− − 1
x−

= i
h(λ)

x+

x−
= e ip

(
RA
0 (p)

)2 (
RB
0 (p̄)

)2
=

(
1
x+ + x+

1
x− + x−

)2
1

σ2 (p,−p̄)

It resembles the boundary crossing conditions for Wilson loop in
N = 4 SYM → we can use the N = 4 SYM dressing factor to
solve the ABJM crossing condition



Determining the Dressing Factors

R
A/B
0 (p) = +

− rA/B(p)

[
1

σbdry(p)σ(p,−p)

(
1 + 1

(x−)2

1 + 1
(x+)2

)]
︸ ︷︷ ︸

N=4 SYM dressing factor

1
2

σbdry(p) = e iχ(x
+)−iχ(x−)

iχ(x) =


iΦ(x) =

∮
|z|=1

dz
2πi

1
x−z log

{
sinh[2πh(z+ 1

z
)]

2πh(z+ 1
z )

}
if |x | > 1

iΦ(x) + log

{
sinh[2πh(x+ 1

x
)]

2πh(x+ 1
x )

}
if |x | < 1

(Drukker 12) (Correa, Maldacena, Sever 12)

At strong coupling, the scattering phase of magnons is related
to the time delay of sine-Gordon solitons (during the reflection).
This is a classical string theory computation in AdS2 × S2,
completely identical to the one in AdS5 × S5.

Already captured by
[
· · ·
]1/2

⇒ rA/B(p) ∼ O(1) for λ≫ 1



Determining the Dressing Factors

We are left with

rA(p)rB(p̄) =
1
x+ + x+

1
x− + x−

Many ways of solving this. We look for the solution consistent with
weak coupling behaviours

For this is crucial to have the correct spin chain description at
weak coupling. Which one is the insertion O to be interpreted as
BPS reference state?

W susy−→ e−iΛWe iΛ ⇒ δcovO := δO − i [O,Λ]

−→−
(

(C1C̄
2)ℓ 0

0 (C̄ 2C1)
ℓ

)
−→− Not BPS
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0 C̄ 2C1

)ℓ

−→−
BPS, but it looks like
a p = 0 magnon state



Determining the Dressing Factors

We are left with

rA(p)rB(p̄) =
1
x+ + x+

1
x− + x−

Many ways of solving this. We look for the solution consistent with
weak coupling behaviours

For this is crucial to have the correct spin chain description at
weak coupling. Which one is the insertion O to be interpreted as
BPS reference state?

W susy−→ e−iΛWe iΛ ⇒ δcovO := δO − i [O,Λ]

−→−
(

0 (C1C̄
2)ℓC1

0 0

)
−→− BPS vacuum state



Determining the Dressing Factors

SU(2) sector for type B magnons

HB = λ2
∑
n=0

(1− Pn,n+1) →−(C1C̄
3C̄ 3C̄ 3C1C̄

2C1C̄
2C1 · · ·

|ψ(p)⟩ =
∑
n=0

(
e−ipn + R(p) e ipn

)
|n⟩ ⇒ RB

0 (p) = e−ip +O(λ2)

SU(2) sector for type A magnons

HA = (λ+λ2 β0)δ0,C3+λ
2
∑
n=0

(1−Pn,n+1) →−(C3C3C3C̄
2C1C̄

2C1C̄
2C1 · · ·

bulk terms order λ2

bdry terms start at order λ ⇒ a state w/ energy E0 = λ+ · · ·

Perturbative resolution ⇒ RA
0 (p) = −1 +O(λ2)



Determining the Dressing Factors

All-loop proposal

rB(p) =
x−

x+
rA(p) =

x−

x+

(
x+ + 1

x+

x− + 1
x−

)
crossing equation

weak & strong results

The type A state with energy order λ appears to be a boundary
bound state

The additional factor in rA(p) has a pole as x− → i , whose
energy is

Epole = λ+O(λ2)

Recap: we found a solution of the boundary crossing
condition that reproduces strong and weak coupling results



Cusp anomalous dimension from integrability

Method:

1 Insert a chain of fields of length L at a point in the WL

2 WL sets open boundaries: determine the reflection matrix

3 Rotate one of the Ra
b to introduce a cusp angle

4 Incorporate finite size effects with a Thermodynamic Bethe
Ansatz

5 The vacuum energy in the L→ 0 limit gives the cusp
anomalous dimension

→

→



Boundary TBA schematically
L

1
T = β ↔ L

β

|Bright⟩

|B left⟩

Physical strip

{
p ↔ i Ẽ
E ↔ i p̃

}
Mirror theory

Z (L, β) = Tropen[e
−βHopen

Bl ,Br ] = ⟨Bl |e−LHclosed |Br ⟩

• Analytic continuation of R(p) gives the probability of emitting
pairs of particles from the boundary state (Ghoshal, Zamolodchivov 93)

|B⟩ = exp

(∫ ∞

0

dp̃

2π
K a,b(p̃)a†a(−p̃)a

†
b(p̃)

)
|0⟩ = exp

(∫ ∞

0

dp̃

2π

)
|0⟩

with K a,b(p̃) =
[
R−1(p̃)

]a
d
Cd ,b p̃ has mirror kinematics

• In the β →∞ limit,
(i) Partition function → the ground state energy Zopen ∼ e−βE0(L)

(ii) Bethe Ansatz in the mirror theory becomes exact
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E ↔ i p̃

}
Mirror theory

Z (L, β) = Tropen[e
−βHopen

Bl ,Br ] = ⟨Bl |e−LHclosed |Br ⟩

• Analytic continuation of R(p) gives the probability of emitting
pairs of particles from the boundary state (Ghoshal, Zamolodchivov 93)

|B⟩ = exp

(∫ ∞

0

dp̃

2π
K a,b(p̃)a†a(−p̃)a

†
b(p̃)

)
|0⟩ = exp

(∫ ∞

0

dp̃

2π

)
|0⟩

with K a,b(p̃) =
[
R−1(p̃)

]a
d
Cd ,b p̃ has mirror kinematics

• In the β →∞ limit,
(i) Partition function → the ground state energy Zopen ∼ e−βE0(L)

(ii) Bethe Ansatz in the mirror theory becomes exact



Boundary TBA schematically
L

1
T = β ↔ L

β

|Bright⟩

|B left⟩

Physical strip

{
p ↔ i Ẽ
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Boundary TBA schematically
A TBA analysis shows that the vacuum energy is

E0(L) = −
1

2π

∑
Q

∫ ∞

0
dp̃ log(1 + YQ)

YQ are solutions to certain integral equations. Schematically

logYQ = log
[
Tr(KQK̄Q)

]
− 2LẼQ + KQ,Q′ ∗ log(1 + YQ′)

The asymptotic solution, giving the leading finite size correction, is

YQ ≈ YQ = e−2LẼQTr(KQK̄Q)

In many systems, after substracting the asymptotic Y-functions,
TBA eqs for periodic and open boundary conditions look the same

log

(
YQ

YQ

)
= KQ,Q′ ∗ log

(
1 + YQ′

1 + Y′
Q

)
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TBA in ABJM
(Gromov, Kazakov, Vieira) (Bombardelli, Fioravanti, Tateo)

(Gromov, Levkovich-Maslyuk) (Cavaglià, Fioravanti, Gromov, Tateo)

(Bombardelli, Cavaglià, Fioravanti, Gromov, Tateo)

Many Y-functions, one for each type of mirror particle

Y I
a,0, Y

II
a,0, for a > 0,

Ya,1, Y1,s for a > 0 & s > 0,
Y2,2

from (Gromov, Kazakov, Vieira)

We shall assume that the TBA system for the ABJM Wilson
loop is the same as for the periodic ABJM, after
substracting the asymptotic solution
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(Bombardelli, Cavaglià, Fioravanti, Gromov, Tateo)

Many Y-functions, one for each type of mirror particle

Y I
a,0, Y

II
a,0, for a > 0,

Ya,1, Y1,s for a > 0 & s > 0,
Y2,2

from (Gromov, Kazakov, Vieira)

We shall assume that the TBA system for the ABJM Wilson
loop is the same as for the periodic ABJM, after
substracting the asymptotic solution



log

(
Y1,1

Y1,1

)
= Km−1 ⋆ log

(
1 + Ȳ1,m

1 + Ym,1

1 + Ym,1

1 + Ȳ1,m

)
+ R(01)

1m ⋆ log(1 + Y I
m,0) + R(01)

1m ⋆ log(1 + Y II
m,0)

log

(
Ȳ2,2

Ȳ2,2

)
= Km−1 ⋆ log

(
1 + Ȳ1,m

1 + Ym,1

1 + Ym,1

1 + Ȳ1,m

)
+ B(01)

1m ⋆ log(1 + Y I
m,0) + B(01)

1m ⋆ log(1 + Y II
m,0)

log

(
Ȳ1,n

Ȳ1,n

)
= −Kn−1,m−1 ⋆ log

(
1 + Ȳ1,m

1 + Ȳ1,m

)
− Kn−1 ⊛ log

(
1 + Y1,1

1 + Y1,1

)

log

(
Yn,1

Yn,1

)
= −Kn−1,m−1 ⋆ log

(
1 + Ym,1

1 + Ym,1

)
− Kn−1 ⊛ log

(
1 + Y1,1

1 + Y1,1

)
+

+
(
R(01)

nm + B(01)
n−2,m

)
⋆ log(1 + Y I

m,0) +
(
R(01)

nm + B(01)
n−2,m

)
⋆ log(1 + Y II

m,0)

log

 Y I
n,0

YI
n,0

 = T ∥
nm ⋆ log(1 + Y I

m,0) + T ⊥
nm ⋆ log(1 + Y II

m,0) +

+R(10)
n1 ⊛ log

(
1 + Y1,1

1 + Y1,1

)
+
(
R(10)

nm + B(10)
n,m−2

)
⋆ log

(
1 + Ym,1

1 + Ym,1

)

log

 Y II
n,0

YII
n,0

 = T ∥
nm ⋆ log(1 + Y II

m,0) + T ⊥
nm ⋆ log(1 + Y I

m,0) +

+R(10)
n1 ⊛ log

(
1 + Y1,1

1 + Y1,1

)
+
(
R(10)

nm + B(10)
n,m−2

)
⋆ log

(
1 + Ym,1

1 + Ym,1

)

where the asymptotic solutions Ya,s are obtained from the ABJM
T-system and a Lüscher computation



Asymptotic solution

YI
a,0 = YII

a,0 =

(
z [−a]

z [+a]

)2L
φ[−a]

φ[+a]
Ta,1

x(u) + 1
x(u) =

u
h

f [±a] = f (u ± i a2 )

The T-functions are

Ta,1 = 2(−1)a
[
b0,a

(
1 +

u[a]

u[−a]

)
+ 2

a−1∑
k=1

bk,au
[a]

u[a−2k]

]

b0,s = sin2 ϕ
2 P

(0,1)
s−1

(
1− 2 cos2 ϕ

2

)
bl ,s = b0,lb0,s−l b0,0 = 1

φ(u) can be fixed by comparison with a Lüscher correction

YI
a,0(q) = e−2L Ẽa(q)Tr

[
RA,a(q) C Rϕ

A,a(−q̄) C
−1
]

YII
a,0(q) = e−2L Ẽa(q)Tr

[
RB,a(q) C Rϕ

B,a(−q̄) C
−1
]

C: conj. matrix Rϕ = S−1(ϕ)RS(ϕ) S(ϕ): rot. matrix



After fixing φ(u)

YI
a,0 = YII

a,0 = (−1)a+1e−(2L+2)Ẽa(q)

(
z+ + 1

z+

z− + 1
z−

)1/2

σ
1/2
B (q)σ

1/2
B (−q̄)Ta,1

which have to be replaced in

E0(L) = −
1

4π

∞∑
a=1

∫ ∞

0

dq log[1 + Y I
a,0]−

1

4π

∞∑
a=1

∫ ∞

0

dq log[1 + Y II
a,0]

As q → 0

YI
2n+1,0 = YII

2n+1,0 = O(q0)

YI
2n,0 = YII

2n,0 =
16 b20,nh

2

q2

(
h

n

)4L+2

+O(q0)

Only Yα
2n,0 contribute to the leading asymptotic solution



Using ∫ ∞

0
dq log

[
1 +

16 b20,nh
2

q2

(
h
n

)4L+2
]
≃ 4πb0,nh

(
h
n

)2L+1

The leading finite size correction becomes

E0(L) ≃ −2h2L+2
∞∑
n=1

b0,n
n2L+1

= −2h2L+2 sin2 ϕ
2

∞∑
k=0

P
(0,1)
k (− cosϕ)

(k + 1)2L+1

2L+ 1 is number of fields in the insertion. Thus, the cusp
anomalous dimension is obtained by setting 2L+ 1 = 0

Γcusp(ϕ) = −2h sin2
ϕ

2

∞∑
k=0

P
(0,1)
k (− cosϕ) = −h

(
1

cos ϕ
2

− 1

)

This matches exactly the 1-loop result using h(λ) = λ+O(λ2)



Conclusions and Future Directions

Another example of integrability being useful in d > 2

ABJM cusp anomalous dimension from a BTBA system. It
reproduces the 1-loop Γcusp and would provide the all-loop result

This is the first step towards a direct derivation of the
interpolating function h(λ) appearing in all the integrability-based
computations in ABJM

This would require to solve the BTBA in the small angle limit
(Γcusp ≃ −ϕ2B(λ))

* * *

By going to higher orders and larger sectors in the perturbative
spin chain ⇒ one could further test the proposed dressing factors

By iterating the BTBA eqs and comparing with the 2-loop
result of Γcusp ⇒ one could further test the proposed BTBA
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Thanks for your attention!


