Nonequilibrium Transport and Thermalization in Strongly Disordered 2D Electron Systems

Dragana Popović

National High Magnetic Field Laboratory Florida State University, USA

dragana@magnet.fsu.edu

Support: DMR-1307075, DMR-1707785, DMR-2104193 and NHMFL (NSF and the State of Florida)

Collaborators

Lily J. Stanley (NHMFL/FSU, USA; now at the Institute for Defense Analyses, USA)

Ping V. Lin (NHMFL/FSU, USA; Zhejiang Sci-Tech Univ., China)

Jan Jaroszynski (NHMFL/FSU, USA)

Samples: IBM T. J. Watson Research Center, USA

Thermalization in isolated quantum many-body systems

• When an isolated quantum system is prepared far out of equilibrium:

Does it **reach thermal equilibrium** at long times?

Thermalizing

- Ergodic; system acts as a heat bath for its subsystems (exchange of energy and particles)
- Equilibrium statistical mechanics
- Quantum information lost with time

Nonthermalizing

- Some memory of initial state retained at long times
- Integrable systems
- Many-body-localized systems
- Quantum many-body scar states

[Polkovnikov *et al.*, Rev. Mod. Phys. 83, 863 (2011); Nandkishore & Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015); Mori *et al.*, J. Phys. B: At. Mol. Opt. Phys. 51, 112001 (2018); Abanin *et al.*, Rev. Mod. Phys. 91, 021001 (2019); Gopalakrishnan & Parameswaran, Phys. Rep. 862, 1 (2020); ...]

Disorder + interactions: Can localization survive?

[Figs. from Abanin et al., Rev. Mod. Phys. 91, 021001 (2019)]

No particle transport but spreading of quantum information

Effect of the range of interactions on MBL? Role of dimensionality?

- MBL: strong disorder + short-range interactions
 (+ highly nonequilibrium conditions)
- MBL with longer-range interactions? Longer range interactions generally favor thermalization

- MBL in dimensions D > 1? (In D=1?)
- MBL in mixed dimensionality systems?

[Gornyi *et al.*, Phys. Rev. Lett. 95, 206603 (2005); Basko *et al.*, Ann. Phys. 321, 1126 (2006); Nandkishore & Sondhi, Phys. Rev. X 7, 041021 (2017); Tikhonov & Mirlin, Phys. Rev. B 97, 214205 (2018); Gopalakrishnan & Huse, Phys. Rev. B 99, 134305 (2019); Sajna & Polkovnikov, Phys. Rev. A 102, 033338 (2020)...]

MBL in synthetic many-body systems

 Ultracold atoms in optical lattices

[Choi et al., Science 352, 1547 (2016)]

- Trapped ions
- Superconducting qubits
- Spins of NV centers in diamond

[Fig. from https://physics.aps.org/articles/v4/78]

MBL in a disordered 2D bosonic optical lattice

Ultracold atoms in optical lattices

[Choi et al., Science 352, 1547 (2016)]

- Ground state in the absence of disorder: Mott insulator
- Track time evolution of the initial out-of-equilibrium state (density step)

Density asymmetry (imbalance) vs time

Imbalance persists at long times for high enough disorder \Rightarrow **MBL**

Transition to MBL when all characteristic energy scales are comparable

MBL in synthetic many-body systems

 Ultracold atoms in optical lattices

[Choi et al., Science 352, 1547 (2016)]

- Trapped ions
- Superconducting qubits
- Spins of NV centers in diamond

[Fig. from https://physics.aps.org/articles/v4/78]

- Systems remain isolated only up to some time; time scales: ~ 10⁻³ s
- Finite-size effects

MBL in real, solid-state materials? MBL in Coulomb interacting systems?

• Inevitable coupling to phonons \Rightarrow MBL lost when coupled to a bath

[Fig. from Ovadia *et al.*, Sci. Rep. 5, 13503 (2015); see also: Tamir *et al.*, Phys. Rev. B 99, 035135 (2019); Ovadyahu, Phys. Lett. 108, 156602 (2012); Ovadyahu, Phys. Rev. B 91, 035113 (2015)]

- Vanishing conductivity at nonzero T?
- Other interpretations possible [Humbert et al., Nat. Commun. 12, 6733 (2021)]
 - Other materials?
 - Power-law interactions
 - Nonequilibrium dynamics?

Outline

- Transport in a thermally isolated, disordered 2D electron system (2DES) in Si: dynamics following a quantum quench
- Effect of the Coulomb interaction range on thermalization of conductivity (interactions are 3D ⇒ mixed dimensionality system)
- Results effects of the Coulomb interaction range:
 - No effect on equilibrium transport
 - Striking effect on the dynamics

Two-dimensional electron system in Si MOSFETs: An excellent candidate for observing MBL

Si MOSFET:

- **Basic building block of modern electronics:** well-developed, mature technology (device aspects well-understood, good contacts even at low *T*...)
- Discovery of 2D behavior of electrons in 1966! [Fowler, Fang, Howard, Stiles, PRL 16, 901 (1966)]

MOSFET (metal-oxide-semiconductor field-effect transistor) – **capacitor!**

Electric field effect: conductivity σ(V_g)

Vary density $n_{\rm s}$ using $V_{\rm g}$

 $n_{\rm s} = C_{\rm ox} (V_{\rm g} - V_{\rm T})/e$

Total density in a 2DES changes quickly, within the device time constant $\tau = RC$ (~5 ns at most, for our devices)

Two-dimensional electron system in Si MOSFETs: An excellent candidate for observing MBL

Si MOSFET:

- Electron **density** n_s **varied easily** up to three orders of magnitude by changing gate voltage V_q
- ⇒ a) Can be prepared far out of equilibrium
 b) Can study thermalization dynamics across the quantum metal-insulator transition (MIT)

- Weak electron-phonon coupling at low T

($T \lesssim 1.6$ K for our samples in the regime of interest)

⇒ Heat transfer by electron diffusion through contacts and leads

Coupling further reduced by placing samples and leads in **vacuum**

MOSFET (metal-oxide-semiconductor field-effect transistor) – **capacitor**!

Si: $T_{\text{Debye}} = 645 \text{ K}$

[Zieve *et al.,* Phys. Rev. B 57, 2443 (1998); Altshuler *et al.*, Physica E 9, 209 (2001)]

Two-dimensional electron system in Si MOSFETs: An excellent candidate for observing MBL

Si MOSFET:

- Screening the Coulomb interaction within the 2DES by reducing the oxide thickness d_{ox} (distance from the gate)

Coulomb interaction in the presence of the gate

$$\sim |1/r - 1/(r^2 + 4d_{ox}^2)^{1/2}|$$

Coulomb interaction of an electron with an image charge of another electron in a 2DES

Realized at low enough densities, such that the mean electron separation

$$2a = 2(\pi n_{\rm s})^{-1/2} \gg 2d_{ox}$$

[Widom & Tao, PRB 38, 10787 (1988); Ho et al., PRB 80, 155412 (2009); Skinner & Shklovskii, PRB 82, 155111 (2010); Skinner & Fogler, Phys. Rev. B 82, 201306(R) (2010); Fregoso & Sá de Melo, PRB 87, 125109 (2013)]

2D electron system (2DES) in Si: Our samples

• We focus on the case of **strong disorder** (smooth random potential due to Na⁺ ions in the oxide; frozen below ~150-200 K); $\mu_{\text{peak}} \approx 0.05 - 0.06 \text{ m}^2/\text{Vs}$

Long-range Coulomb interaction

- Thick oxide:
 - ► *d*_{ox} = 50 nm
 - ► 5.3 $\lesssim d_{ox}/a \le 8.0$
- Coulomb interaction:

~1/*r*

Mean carrier separation: $2a = (\pi n_s)^{-1/2}$

The two sets of devices are otherwise identical

Screened Coulomb interaction ("short-range")

Thin oxide:

- ► *d*_{ox} = 6.9 nm
- ▶ $0.7 \lesssim d_{\rm ox}/a \lesssim 1.5$
- For $\frac{d_{ox}}{a} \ll 1$, screened Coulomb interaction:

 $\sim 1/r^{3}$

2D electron system (2DES) in Si: Our samples

• We focus on the case of **strong disorder** (smooth random potential due to Na⁺ ions in the oxide; frozen below ~150-200 K); $\mu_{\text{peak}} \approx 0.05 - 0.06 \text{ m}^2/\text{Vs}$

Long-range Coulomb interaction

- Thick oxide:
 - ► *d*_{ox} = 50 nm
 - ► 5.3 $\lesssim d_{ox}/a \leq 8.0$
- Coulomb interaction:

~1/*r*

Mean carrier separation: $2a = (\pi n_s)^{-1/2}$

Screened Coulomb interaction ("short-range")

• Thin oxide:

- ► *d*_{ox} = 6.9 nm
- ▶ $0.7 \lesssim d_{\rm ox}/a \lesssim 1.5$
- For $\frac{d_{ox}}{a} \ll 1$, screened Coulomb interaction:

 $\sim 1/r^{3}$

Thermalization in In_xO films (Anderson insulators) and screening with the nearby metallic plane: d/a ~ 1.5 - 2.5 (samples in liquid ⁴He)
 ⇒ No effect on the equilibration time
[Ovadyahu, Phys. Rev. B 99, 184201 (2019)]

 $\overrightarrow{\mathsf{M}}$

2D electron system in Si: Our samples

Measured devices on several chips
 in each set of MOSFETs

Conductivity σ vs electron density n_s in thin-oxide MOSFETs at *T*=4.2 K

 $\mu_{\text{peak}} \approx 0.05 - 0.06 \text{ m}^2/\text{Vs} \Rightarrow \text{strong disorder}$

Drude: $\sigma = (2e^2/h) (k_F l)$

(k_F -Fermi wavevector, l – mean free path)

Equilibrium transport in a strongly disordered 2DES: Same temperature dependence of the conductivity

[S. Bogdanovich & D. Popović, Phys. Rev. Lett. 88, 236401 (2002)] [P. V. Lin & D. Popović, Phys. Rev. Lett. 114, 166401 (2015)]

Phase diagram of a strongly disordered 2DES in Si: Equilibrium transport

Equilibrium transport: Scaling near the 2D MIT is the same

[P. V. Lin & D. Popović, Phys. Rev. Lett. 114, 166401 (2015)]

Energy scales

- Fermi energy (temperature) T_F [K] =7.31 n_s [10¹¹ cm⁻²]
- Critical density for the MIT: $n_c (10^{11} \text{ cm}^{-2}) \sim 5.0 \iff T_F \sim 35 \text{ K}$
- Onset of localization at n_c : disorder $W \sim T_F(n_c) \Leftrightarrow W \sim 35 \text{ K}$
- Coulomb energy *E*_C:

 $r_{\rm s} = E_{\rm C} / E_{\rm F} \propto n_{\rm s}^{-1/2} \sim 4$

Thick oxide:

Thin oxide:

Screening by the gate: $r_s \lesssim 1$ ($E_c \sim E_F$)

[Widom & Tao, Phys. Rev. B 38, 10787 (1988)]

 All energy scales (W, E_F, and E_C) are comparable

Quench dynamics in a disordered 2DES: Relaxations of σ after a large, rapid change of n_s

Experimental protocol

- Sample is warmed up to ~7-20 K to "reset" the sample
- At ~7-20 K, the gate voltage is set to some $V_{\rm g}^{\rm i}$ where $k_F l \ge 1$
- The sample is cooled to the measurement *T* and allowed to equilibrate (⇔ σ saturates)
- Then Vg, i.e. n_s is quickly (<3 s) changed to a lower, final value
- σ is measured continuously throughout the process

• Large perturbation: $\Delta E_{\rm F} \sim E_{\rm F}$ $(k_{\rm B}T \ll E_{\rm F})$

Quench dynamics in a high-disorder 2DES: Relaxations of σ after a large, rapid change of n_s

Dynamical scaling at intermediate times:

 $\sigma(t,T)/\sigma_0 \propto t^{\alpha(n)} \exp\{-[t/\tau(n_s,T)]^{\beta(n)}\}$ $\alpha(n_s) < 0.4, 0.2 < \beta(n_s) < 0.45$ Broad distribution of relaxation times

 $\sigma/\sigma_0 \propto t^{-\alpha}$ as $T \rightarrow 0$

- Overshooting of equilibrium
- σ moves away from σ_0 at intermediate times
- Slow, nonexponential relaxation of σ at intermediate times (before the minimum)

Quench dynamics in a high-disorder 2DES: Relaxations of σ after a large, rapid change of n_s

- Different T data collapse for times after the minimum
- The system reaches
 "equilibrium" after a long
 enough time t
- Approach to "equilibrium" exponential in time

*E*_A ≈ 57 K

[Jaroszyński & Popović, Phys. Rev. Lett. 96, 037403 (2006); also, Jaroszyński & Popović, Phys. Rev. Lett. 99, 046405 (2007); Jaroszyński & Popović, Phys. Rev. Lett. 99, 216401 (2007)]

Phase diagram of a strongly disordered 2DES in Si: Dynamics with long-range Coulomb interaction

Long-range Coulomb + disorder ⇒ **Frustration**

Quench dynamics in a strongly disordered 2DES

Same experimental protocol for both sets of samples; samples and leads in vacuum

- Sample is warmed up to ~7-20 K to "reset" the sample
- At ~7-20 K, the gate voltage is set to some V_{g}^{i} where $k_{F}l \ge 1$
- The sample is **cooled to the measurement** *T* and allowed to equilibrate
- Then Vg, i.e. n_s is quickly (<3 s) changed to a lower, final value</p>
- σ is measured continuously throughout the process
- Large perturbation: $\Delta E_{\rm F} \sim E_{\rm F}$ $(k_{\rm B}T \ll E_{\rm F})$

Short-range case: "Equilibrium" conductivity after n_s change and after cooling is the same

Quench dynamics in a disordered 2DES: Anomalously slow relaxations

Thick-oxide MOSFETs:

• Thermalization at long times:

 $\tau_{\sigma} \propto \exp{(E_{A}/T)}$

• As $T \rightarrow 0, \tau_{\sigma} \rightarrow \infty$

(glass transition at T=0)

[Jaroszyński & Popović, Phys. Rev. Lett. 96, 037403 (2006); also Jaroszyński & Popović, PRL 99, 046405 (2007) and PRL 99, 216401 (2007)]

Thin-oxide MOSFETs:

Differences from the long-range case:

- σ does not go farther away from equilibrium with time for a given *T*; negligible relaxation
- No evidence of glassiness
- Thermalization time:
 - $\tau_{\sigma} \sim 10^4 \text{ s}$, similar for all *T* and $n_{\rm s}$
 - Observable when $k_F l < 1$

Quench dynamics with a short-range interaction: Relaxations at different electron densities

Quench dynamics with a short-range interaction: Initial amplitude of the relaxations at low *T*

Metal-insulator transition

Approach to equilibrium in the short-range case: Exponential relaxations at long times

Conductance relaxations $\Delta G(t) \propto \exp\left(-\frac{t}{\tau_{\sigma}}\right)$ Fit a wide range of n_{s} and T

 \Rightarrow Extract τ_{σ}

Quench dynamics with a short-range interaction: Thermalization time

Thermal coupling to the environment sets the time scale for thermalization!

Effect of thermal coupling to the environment on thermalization time

Short-range Coulomb interaction

Long-range Coulomb interaction:

Glassy dynamics unchanged even at $T > 4.2 \text{ K} \Rightarrow$ insensitive to thermal coupling to environment

- T < 2 K: weak electron-phonon coupling
- a) Samples in vacuum: τ_{eq} ~ 10⁴ s
 weak thermal coupling to environment
- b) Samples in ⁴He vapor: τ_{eq} ~ 10³ s
 intermediate thermal coupling to environment
- T > 2 K: cooling via phonons dominant
 Strong thermal coupling to environment:
 τ_{eq} < 200 s (at 4.2 K in both vacuum and liquid ⁴He)

Exponential dependence of thermalization time on the coupling strength: MBL-like dynamics

Quench dynamics and thermalization: Direct observation of MBL-like dynamics

Effect of interaction range in a 2DES for a fixed disorder strength:

- No difference in dc transport properties
- Striking difference in nonequilibrium dynamics! (when $k_F l < 1$; bad conductor)

Quench dynamics and thermalization: Direct observation of MBL-like dynamics

Effect of interaction range in a 2DES for a fixed disorder strength:

Power-law interactions: ~ $1/r^{\alpha}$

[Theory: Yao et al., PRL 113, 243002 (2014); Burin, PRB 92, 104428 (2015); Gutman et al., PRB 93, 245427 (2016)...]

• Our results provide constraints for theory and motivate further work

Summary and outlook

- **Strongly disordered 2D electron system in a Si MOSFET:**
 - > Slow dynamics when $k_F l < 1$
 - > No glassy dynamics with screened Coulomb interaction ($\sim 1/r^3$)
 - New, solid-state platform for studies of thermalization and MBL-like dynamics; time scales: hours!
 - Building blocks for quantum information science?

[L. J. Stanley *et al.,* arXiv:2110.11473; under revision]

