Nonequilibrium Transport and Thermalization in Strongly Disordered 2D Electron Systems

Dragana Popović
National High Magnetic Field Laboratory
Florida State University, USA

dragana@magnet.fsu.edu

Collaborators

Lily J. Stanley
(NHMFL/FSU, USA; now at the Institute for Defense Analyses, USA)

Ping V. Lin
(NHMFL/FSU, USA; Zhejiang Sci-Tech Univ., China)

Jan Jaroszynski
(NHMFL/FSU, USA)

Samples: IBM T. J. Watson Research Center, USA
Thermalization in isolated quantum many-body systems

• When an isolated quantum system is prepared far out of equilibrium:

Does it reach thermal equilibrium at long times?

Thermalizing

• Ergodic; system acts as a heat bath for its subsystems (exchange of energy and particles)

• Equilibrium statistical mechanics

• Quantum information lost with time

Nonthermalizing

• Some memory of initial state retained at long times

• Integrable systems

• Many-body-localized systems

• Quantum many-body scar states

Disorder + interactions: Can localization survive?

Anderson localization

Single particle
Conductivity $\sigma = 0$

Many-body localization (MBL)

Conductivity $\sigma = 0$ at $0 < T < T_{cr}$

• No particle transport but spreading of quantum information

Dynamical phase diagram

Thermal

W_c

MBL

Disorder W

[Fig. from Abanin et al., Rev. Mod. Phys. 91, 021001 (2019)]
Effect of the range of interactions on MBL? Role of dimensionality?

• MBL: strong disorder + short-range interactions (+ highly nonequilibrium conditions)

• MBL with longer-range interactions? Longer range interactions generally favor thermalization

Thermalizes as time $t \rightarrow \infty$ and system size $L \rightarrow \infty$

• MBL in dimensions $D > 1$? (In $D=1$?)

• MBL in mixed dimensionality systems?

MBL in synthetic many-body systems

- Ultracold atoms in optical lattices
- Trapped ions
- Superconducting qubits
- Spins of NV centers in diamond

[Fig. from https://physics.aps.org/articles/v4/78]

[Choi et al., Science 352, 1547 (2016)]
MBL in a disordered 2D bosonic optical lattice

- Ultracold atoms in optical lattices
- Ground state in the absence of disorder: Mott insulator
- Track time evolution of the initial out-of-equilibrium state (density step)

Density asymmetry (imbalance) vs time for different disorder strength Δ

Imbalance persists at long times for high enough disorder \Rightarrow MBL

Transition to MBL when all characteristic energy scales are comparable

[Choi et al., Science 352, 1547 (2016)]
MBL in synthetic many-body systems

- Ultracold atoms in optical lattices
- Trapped ions
- Superconducting qubits
- Spins of NV centers in diamond

[Fig. from https://physics.aps.org/articles/v4/78]

- Systems remain isolated only up to some time; time scales: $\sim 10^{-3}$ s
- Finite-size effects

[Choi et al., Science 352, 1547 (2016)]
MBL in real, solid-state materials? MBL in Coulomb interacting systems?

- Inevitable coupling to phonons \Rightarrow MBL lost when coupled to a bath

![Graph of a-InO films](image)

- Vanishing conductivity at nonzero T?
- Other interpretations possible
 [Humbert et al., Nat. Commun. 12, 6733 (2021)]

- Other materials?
- Power-law interactions
- Nonequilibrium dynamics?

Transport in a thermally isolated, disordered 2D electron system (2DES) in Si: dynamics following a quantum quench

Effect of the Coulomb interaction range on thermalization of conductivity (interactions are 3D ⇒ mixed dimensionality system)

Results - effects of the Coulomb interaction range:
- No effect on equilibrium transport
- Striking effect on the dynamics

![Diagram showing MBL, prethermal (MBL-like), thermal (glassy) regimes with 1/r^3 and 1/r interaction ranges.](image-url)
Si MOSFET:

- **Basic building block of modern electronics:** well-developed, mature technology (device aspects well-understood, good contacts even at low T...)

- Discovery of 2D behavior of electrons in 1966!
 [Fowler, Fang, Howard, Stiles, PRL 16, 901 (1966)]

MOSFET (metal-oxide-semiconductor field-effect transistor) – **capacitor**!

Electric field effect: conductivity $\sigma(V_g)$

Vary density n_s using V_g

$$n_s = C_{ox} \left(V_g - V_T \right)/e$$

- **Total density** in a 2DES changes quickly, within the device time constant $\tau = RC$ (~5 ns at most, for our devices)
Two-dimensional electron system in Si MOSFETs: An excellent candidate for observing MBL

Si MOSFET:
- Electron density n_s varied easily up to three orders of magnitude by changing gate voltage V_g

\Rightarrow a) Can be prepared far out of equilibrium
b) Can study *thermalization dynamics across the quantum metal-insulator transition* (MIT)

- **Weak electron-phonon coupling at low T**
 ($T \lesssim 1.6$ K for our samples in the regime of interest)

\Rightarrow Heat transfer by *electron diffusion through contacts* and leads

Coupling further reduced by placing samples and leads in *vacuum*

MOSFET (metal-oxide-semiconductor field-effect transistor) – capacitor!

Si: $T_{\text{Debye}} = 645$ K

Two-dimensional electron system in Si MOSFETs: An excellent candidate for observing MBL

Si MOSFET:

- **Screening the Coulomb interaction** within the 2DES by reducing the oxide thickness d_{ox} (distance from the gate)

 Coulomb interaction in the presence of the gate

 $\sim |1/r - 1/(r^2 + 4d_{ox}^2)^{1/2}|$

 Coulomb interaction of an electron with an image charge of another electron in a 2DES

 At large distances $r \gg 2d_{ox}$, interaction $\sim 1/r^3$

 Realized at low enough densities, such that the mean electron separation

 $$2a = 2(\pi n_s)^{-1/2} \gg 2d_{ox}$$

 [Widom & Tao, PRB 38, 10787 (1988); Ho et al., PRB 80, 155412 (2009); Skinner & Shklovskii, PRB 82, 155111 (2010); Skinner & Fogler, Phys. Rev. B 82, 201306(R) (2010); Fregoso & Sá de Melo, PRB 87, 125109 (2013)]
2D electron system (2DES) in Si: Our samples

- We focus on the case of **strong disorder** (smooth random potential due to Na\(^+\) ions in the oxide; frozen below ~150-200 K); \(\mu_{\text{peak}} \approx 0.05 - 0.06 \text{ m}^2/\text{Vs}\)

Long-range Coulomb interaction

- **Thick oxide:**
 - \(d_{\text{ox}} = 50 \text{ nm}\)
 - \(5.3 \lesssim d_{\text{ox}}/a \lesssim 8.0\)

- **Coulomb interaction:**
 \[\sim 1/r\]

 Mean carrier separation:
 \[2a = (\pi n_s)^{-1/2}\]

Screened Coulomb interaction ("short-range")

- **Thin oxide:**
 - \(d_{\text{ox}} = 6.9 \text{ nm}\)
 - \(0.7 \lesssim d_{\text{ox}}/a \lesssim 1.5\)

 For \(d_{\text{ox}}/a \ll 1\), screened Coulomb interaction:
 \[\sim 1/r^3\]
2D electron system (2DES) in Si: Our samples

- We focus on the case of **strong disorder** (smooth random potential due to Na\(^+\) ions in the oxide; frozen below \(\sim 150-200 \text{ K}\)); \(\mu_{\text{peak}} \approx 0.05 - 0.06 \text{ m}^2/\text{Vs}\)

Long-range Coulomb interaction

- **Thick oxide:**
 - \(d_{\text{ox}} = 50 \text{ nm}\)
 - \(5.3 \lesssim d_{\text{ox}}/a \lesssim 8.0\)

- **Coulomb interaction:**
 \[\sim 1/r \]
 Mean carrier separation:
 \[2a = (\pi n_s)^{-1/2} \]

Screened Coulomb interaction (“short-range”)

- **Thin oxide:**
 - \(d_{\text{ox}} = 6.9 \text{ nm}\)
 - \(0.7 \lesssim d_{\text{ox}}/a \lesssim 1.5\)

- For \(d_{\text{ox}}/a \ll 1\), screened Coulomb interaction:
 \[\sim 1/r^3 \]

- Thermalization in \(\text{In}_x\text{O films}\) (Anderson insulators) and screening with the nearby metallic plane: \(d/a \sim 1.5 - 2.5\) (samples in liquid \(^4\text{He}\))
 \[\Rightarrow\] No effect on the equilibration time

2D electron system in Si: Our samples

Sample dimensions:
Length L [µm] \times width W [µm]
$\sigma = G/(W/L)$, G is conductance

- Measured devices on several chips in each set of MOSFETs

Conductivity σ vs electron density n_s in thin-oxide MOSFETs at $T=4.2$ K

$\mu_{\text{peak}} \approx 0.05 - 0.06$ m2/Vs \Rightarrow strong disorder

Mobility $\mu = \sigma/en_s$ vs n_s

Drude: $\sigma = (2e^2/h) \left(k_F l \right)$

(k_F - Fermi wavevector, l – mean free path)
Equilibrium transport in a strongly disordered 2DES: Same temperature dependence of the conductivity

Long-range Coulomb interaction

Screened ("short-range") Coulomb interaction

2D MIT

\(n_c (10^{11} \text{ cm}^{-2}) \)

(5.0 ± 0.3)

\(n_s (10^{11} \text{ cm}^{-2}) \)

(4.2 ± 0.2)

Phase diagram of a strongly disordered 2DES in Si: Equilibrium transport

\[\frac{d\sigma}{dT} > 0 \quad k_F \ l < 1 \]

\[\frac{d\sigma}{dT} < 0 \quad k_F \ l > 1 \]

Insulating \(\sigma(T=0)=0 \)

Metallic (Non-Fermi Liquid) \(\sigma(T=0)\neq0 \)

Metallic (FL? NFL?)

Exponential localization

“Bad” metal: \(\sigma(n_s, T)=\sigma(n_s, T=0)+b(n_s) T^{3/2} \)

Reviews in book chapters:
D. P. in
Equilibrium transport:

Scaling near the 2D MIT is the same

- Critical exponents are the same
- 2D MIT is disorder-dominated

\[
\sigma(n_s, T) = \sigma_c(T) f(T/T_0)
\]

\[
\sigma_c(T) = \sigma(n_s = n_c) \propto T^x
\]

\[z_v = (2.1 \pm 0.1)\]

\[z_v = (2.0 \pm 0.1)\]

Energy scales

- Fermi energy (temperature) \(T_F \) [K] = 7.31 \(n_s \) [10^{11} \text{ cm}^{-2}]

- Critical density for the MIT: \(n_c \) (10^{11} \text{ cm}^{-2}) \approx 5.0 \Leftrightarrow T_F \approx 35 \text{ K}

- Onset of localization at \(n_c \): disorder \(W \sim T_F (n_c) \Leftrightarrow W \sim 35 \text{ K}

- Coulomb energy \(E_C \):

 Thick oxide:

 \[r_s = \frac{E_C}{E_F} \propto n_s^{-1/2} \approx 4 \]

 Thin oxide:

 Screening by the gate: \(r_s \ll 1 \) \((E_C \approx E_F) \)

 [Widom & Tao, Phys. Rev. B 38, 10787 (1988)]

- **All energy scales** \((W, E_F, \text{ and } E_C) \) are comparable
Quench dynamics in a disordered 2DES: Relaxations of σ after a large, rapid change of n_s

Experimental protocol

- Sample is warmed up to ~7-20 K to “reset” the sample
- At ~7-20 K, the gate voltage is set to some V_g^{i} where $k_F l \geq 1$
- The sample is cooled to the measurement T and allowed to equilibrate ($\Leftrightarrow \sigma$ saturates)
- Then V_g, i.e. n_s is quickly (<3 s) changed to a lower, final value
- σ is measured continuously throughout the process

- Large perturbation: $\Delta E_F \sim E_F$
 ($k_B T \ll E_F$)

Initial $n_s(10^{11}\text{cm}^{-2}) = 20.26$; $k_F l \sim 1$

Final $n_s(10^{11}\text{cm}^{-2}) = 4.74 \geq n_c$
Quench dynamics in a high-disorder 2DES: Relaxations of σ after a large, rapid change of n_s

- Overshooting of equilibrium
- σ moves away from σ_0 at intermediate times
- Slow, nonexponential relaxation of σ at intermediate times (before the minimum)

Dynamical scaling at intermediate times:

$$\sigma(t, T)/\sigma_0 \propto t^{\alpha(n)} \exp\{-[t/\tau(n_s, T)]^{\beta(n)}\}$$

$\alpha(n_s) < 0.4, 0.2 < \beta(n_s) < 0.45$

Broad distribution of relaxation times

$$\sigma/\sigma_0 \propto t^{-\alpha} \text{ as } T \rightarrow 0$$
Quench dynamics in a high-disorder 2DES: Relaxations of σ after a large, rapid change of n_s

- Different T data collapse for times after the minimum.
- The system reaches “equilibrium” after a long enough time t.
- Approach to “equilibrium” exponential in time.

Long times (approach to “equilibrium”):

- Thermalization at long times:
 \[\tau_{\sigma} \propto \exp \left(\frac{E_A}{T} \right) \]
- As $T \to 0$, $\tau_{\sigma} \to \infty$
 (glass transition at $T_g=0$)

$E_A \approx 57$ K

Phase diagram of a strongly disordered 2DES in Si: Dynamics with long-range Coulomb interaction

Glassy Behavior (for $n_s < n_g$)

- **Insulating**
 - $\sigma(T=0) = 0$

- **Metallic** (Non-Fermi Liquid)
 - $\sigma(T=0) \neq 0$

- **Metallic** (FL? NFL?)
 - $k_F l < 1$
 - $d\sigma/dT > 0$

- **Metallic**
 - $k_F l > 1$
 - $d\sigma/dT < 0$

- **Exponential localization; Glassy insulator**

- **“Bad” metal**:
 - $\sigma(n_s, T) = \sigma(n_s, T=0) + b(n_s) T^{3/2}$

- Intermediate, glassy phase

$T=0$ glass transition for $n_s < n_g$

- $n_g \approx 7.5 \times 10^{11} \text{cm}^{-2}$
- $n_c \approx 5.0 \times 10^{11} \text{cm}^{-2}$

Reviews in book chapters:

Quench dynamics in a strongly disordered 2DES

Same experimental protocol for both sets of samples; samples and leads in vacuum

- Sample is warmed up to ~7-20 K to “reset” the sample
- At ~7-20 K, the gate voltage is set to some V_g where $k_F l \geq 1$
- The sample is cooled to the measurement T and allowed to equilibrate
- Then V_g, i.e. n_s is quickly (<3 s) changed to a lower, final value
- σ is measured continuously throughout the process

Initial $n_s(10^{11}\text{cm}^{-2}) = 32.2$; $k_F l > 1$

Final $n_s(10^{11}\text{cm}^{-2}) = 8.44 \geq n_c$; $T=0.92$ K

$n_c \approx 4.2 \times 10^{11}\text{cm}^{-2}$

- Large perturbation: $\Delta E_F \sim E_F$ ($k_B T \ll E_F$)
Short-range case: “Equilibrium” conductivity after n_s change and after cooling is the same.

$n_s^f (10^{11}\text{cm}^{-2}) = 5.94$

$T = 0.46 \text{ K}$
Quench dynamics in a disordered 2DES: Anomalously slow relaxations

Thick-oxide MOSFETs:
- Thermalization at long times:
 \[\tau_\sigma \propto \exp \left(\frac{E_A}{T} \right) \]
- As \(T \to 0 \), \(\tau_\sigma \to \infty \)
 (glass transition at \(T=0 \))

Thin-oxide MOSFETs:
- \(\sigma \) does not go farther away from equilibrium with time for a given \(T \); negligible relaxation
- No evidence of glassiness
- Thermalization time:
 \[\tau_\sigma \sim 10^4 \text{ s}, \text{ similar for all } T \text{ and } n_s \]
- Observable when \(k_F l < 1 \)
Quench dynamics with a short-range interaction: Relaxations at different electron densities

No relaxations when $k_F l > 1$
Relaxations appear when $k_F l \sim 1$

Metallic side: overshooting but weak time dependence at intermediate times

Insulating side: large noise; no relaxation at intermediate times

Just above the MIT: large noise

$n_c (10^{11} \text{ cm}^{-2}) = (4.2 \pm 0.2)$
Quench dynamics with a short-range interaction: Initial amplitude of the relaxations at low T

- Initial amplitude σ/σ_0 at 10 s
- Deviations from σ_0 become observable on the metallic side of the MIT, when $k_F l < 1$
- As n_s is reduced, deviations from σ_0 become more pronounced and peak just above the MIT; nonmonotonic dependence on density

Metal-insulator transition
Approach to equilibrium in the short-range case: Exponential relaxations at long times

- Conductance relaxations
 \[\Delta G(t) \propto \exp\left(-\frac{t}{\tau_\sigma}\right) \]
- Fit a wide range of \(n_s \) and \(T \)
 \[\Rightarrow \text{Extract } \tau_\sigma \]
Quench dynamics with a short-range interaction: Thermalization time

- Long: $\tau_\sigma \sim 10^4$ s
- No dependence on density or temperature

What is the origin of this slow dynamics?
Thermal coupling to the environment sets the time scale for thermalization!

Short-range Coulomb interaction

Stronger coupling to the bath when in 4He vapor

τ$_\sigma$ reduced by an order of magnitude!

Prethermal, MBL-like
Effect of thermal coupling to the environment on thermalization time

Short-range Coulomb interaction

- $T < 2 \text{ K}$: weak electron-phonon coupling
 - a) Samples in vacuum: $\tau_{eq} \sim 10^4 \text{ s}$
 - weak thermal coupling to environment
 - b) Samples in ^4He vapor: $\tau_{eq} \sim 10^3 \text{ s}$
 - intermediate thermal coupling to environment

- $T > 2 \text{ K}$: cooling via phonons dominant
 - Strong thermal coupling to environment:
 - $\tau_{eq} < 200 \text{ s}$ (at 4.2 K in both vacuum and liquid ^4He)

Long-range Coulomb interaction:

Glassy dynamics unchanged even at $T > 4.2 \text{ K}$ ⇒ insensitive to thermal coupling to environment

Exponential dependence of thermalization time on the coupling strength:

MBL-like dynamics
Quench dynamics and thermalization: Direct observation of MBL-like dynamics

Effect of interaction range in a 2DES for a fixed disorder strength:

- No difference in dc transport properties
- **Striking difference in nonequilibrium dynamics!** (when $k_F l < 1$; bad conductor)

- Screened Coulomb interaction leads to a **prethermal, MBL-like** regime at intermediate times
- Time scale: hours!

[L. J. Stanley et al., arXiv:2110.11473; under revision]
Quench dynamics and thermalization:
Direct observation of MBL-like dynamics

Effect of interaction range in a 2DES for a fixed disorder strength:

Power-law interactions: $\sim 1/r^\alpha$

- Our results provide constraints for theory and motivate further work

[Theory: Yao et al., PRL 113, 243002 (2014); Burin, PRB 92, 104428 (2015); Gutman et al., PRB 93, 245427 (2016)…]
Summary and outlook

• Strongly disordered 2D electron system in a Si MOSFET:
 ➢ Slow dynamics when $k_F l < 1$
 ➢ No glassy dynamics with screened Coulomb interaction ($\sim 1/r^3$)
 ➢ New, solid-state platform for studies of thermalization and MBL-like dynamics; time scales: hours!
 ➢ Building blocks for quantum information science?

[L. J. Stanley et al., arXiv:2110.11473; under revision]