
1

I. DERIVATION OF MASTER EQUATION FOR CHIRAL WAVEGUIDE

Here the goal is to derive the master equation for the chiral waveguide within the Born-Markov approximation,
which was presented in the lectures but left as an exercise. In case you are interested in learning more, this discussion
closely follows Section 3 of Ref. [1]. This Born-Markov calculation to integrate out some “bath” degrees of freedom (in
our case, the photons) to arrive at an open system description of a system is one of the paradigmatic calculations of
quantum optics theory.

First, we write the Hamiltonian as

H =

∫ ∞

−∞
dk cka+k ak +

∑
i

ω0σ
i
ee︸ ︷︷ ︸

H0

−
√

Γ1Dc

2π

∑
i

∫
dk

(
σi
egake

ikzi + h.c.
)

︸ ︷︷ ︸
V

. (1)

The terms in H0 represent free photons with a dispersion relation ωk = ck and atoms with a transition frequency of
ω0 between the ground and excited states. V represents the interaction between photons and each atom at position
zi.

We first transform from the Schrodinger picture, where the total atom-photon density matrix evolves as dρ
dt =

−i[H, ρ], to the interaction picture, in which the density matrix becomes stationary under evolution of H0 alone.
Concretely, ρI and VI in the interaction picture are related to their Schrodinger counterparts by

ρI(t) = eiH0tρ(t)e−iH0t (2)

and similarly for VI . Evaluating VI explicitly, one finds

VI(t) = −
√

Γ1Dc

2π

∑
i

∫
dk

(
σi
egake

ikziei(ω0−ωk)t + h, c
)
. (3)

The physical effect of moving to an interaction picture, when we integrate out the photons, is to assume that the
emitted photons are centered around the frequency ω0.

In the interaction picture,

dρI
dt

= −i [VI(t), ρI(t)] . (4)

Problem 1. Show that formal integration of the above equation starting from initial time t = 0 gives rise to the
integro-differential equation

dρI
dt

= −i[VI(t), ρI(0)]−
∫ t

0

dτ [VI(t), [VI(t− τ), ρI(t− τ)]]. (5)

end

We assume the initial state is factorizable, with the field starting in vacuum, ρI(t = 0) = ρa ⊗ |0⟩⟨0|. We also want
to perform a partial trace over the field (which we label ”f”), to give an equation for the atomic density matrix alone,
ρa.

dρa
dt

= Trf
dρI(t)

dt
(6)

= −Trf

∫ t

0

dτ [VI(t), [VI(t− τ), ρI(t− τ)]] , (7)

using the fact that Trf [VI , ρI(0)] vanishes. Note that the evolution of the density matrix at time t depends on its
value at previous times t− τ , which is an exact result, but inconvenient to evaluate.
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The Born-Markov approximation assumes, that from the atomic point of view, the photons always appear to be
in vacuum, and that the photons have a short ”memory” time. That is, the integrand is dominated by values of the
density matrix around τ = 0, such that we can replace

ρI(t− τ) ≈ ρa(t)⊗ |0⟩⟨0|, (8)

giving a time-local evolution. In a consistent manner, we can also take the upper bound of integration to t → ∞. In
summary, the Born-Markov approximation amounts to:

dρa
dt

≈ −Trf

∫ ∞

0

dτ [VI(t), [VI(t− τ), ρa(t)⊗ |0⟩⟨0|]] . (9)

This is in fact a general result, independent of the system that we want to apply it to.

Now in the following, we will want to re-write the equation above in the “quantum jump” form

dρa
dt

= −i(Heffρa − ρH†
eff) +

∑
i

ciρac
†
i (10)

as discussed in lectures.

Problem 2. Comparing Eqs. (9) and (10), we anticipate that the effective non-Hermitian Hamiltonian is given by

−iHeff ρa = −Trf

∫ ∞

0

dτVI(t)VI(t− τ)ρa(t)⊗ |0⟩⟨0|. (11)

Evaluate this to show that the effective Hamiltonian is given by

Heff = − iΓ1D

2

∑
i

σi
ee − iΓ1D

∑
zi>zj

eik0(zi−zj)σi
egσ

j
ge, (12)

where k0 = ω0/c. This reproduces the effective Hamiltonian for chiral waveguide QED presented in the lecture.

Hints: use the identities ∫ ∞

0

dτei(ω0−ω)τ = πδ(ω0 − ω) + iP 1

ω0 − ω
, (13)

where P denotes the Cauchy principal value, and

P
∫ ∞

−∞
dk

eikx

k
= iπsign(x), (14)

where sign(x) = +1 for x > 0, sign(x) = −1 for x < 0, and sign(x) = 0 for x = 0.

end

Problem 3. Similarly, we can calculate the jump term, which comes from(
dρa
dt

)
jump

= Trf

∫ ∞

0

dτ VI(t)ρa ⊗ |0⟩⟨0|VI(t− τ) + VI(t− τ)ρa ⊗ |0⟩⟨0|VI(t), (15)

and show that

ĉ =
√

Γ1D

∑
i

σ̂i
gee

−ik0zi (16)

is the single jump operator for the system.
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II. SUPER- AND SUBRADIANCE FOR N = 2 ATOMS

In lecture, we numerically diagonalized the effective Hamiltonian for a 1D chain of atoms in the single-excitation
sector for a large but finite atom number N , and we also discussed how the single-excitation sector for N → ∞ is
diagonalized by Bloch’s theorem. The goal of this exercise is to exactly diagonalize N = 2 atoms, which are separated
by a distance much smaller than the resonant wavelength of their atomic transition, r ≪ λeg, in the entire Hilbert
space (zero, one, and two excitations).
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FIG. 1.

First, we have to choose an orientation of the atomic transitions, and the atomic positions. Let’s choose the atoms
to be separated by a distance r along the x-axis, i.e., the vector connecting them is r = rx̂. Let’s also choose the
orientation of the atomic transition to also be along x, ℘̂ = x̂, as illustrated in Fig. 1a. As discussed in lecture, the
Green’s function projected along ℘̂ is then

Gxx(r, 0, ω0) =
3

4
eiρ

[(
1

ρ
+

i

ρ2
− 1

ρ3

)
+

(
−1

ρ
− 3i

ρ2
+

3

ρ3

)
(x̂ · r)2

r2

]
, (17)

where ρ = ω0r/c is a dimensionless distance. Taking r = rx̂, one has

Gxx(rx̂, 0, ω0) =
3eiρ(1− iρ)

2ρ3
. (18)

Let’s now expand around ρ = 0. It turns out that the order of ρ that we should keep is different depending on whether
we look at the real or imaginary part of Gxx. In particular, let’s write

Gxx(rx̂, 0, ω0) =

[
Gxx +G∗

xx

2

]
+ i

[
Gxx −G∗

xx

2i

]
. (19)

Separately expanding the real and imaginary parts, the lowest non-trivial orders that we want to keep are

Gxx(rx̂, 0, ω0) ≈
3

2ρ3
+ i

(
1

2
− ρ2

20

)
. (20)
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(You can check this if you want.)

The non-Hermitian, effective Hamiltonian is

Heff = −Γ0

2∑
i,j=1

Gxx(ri, rj , ω0)σ
i
egσ

j
ge (21)

Note that this Hamiltonian only has non-zero matrix elements between states having the same total number of
excitations. Thus, we can separately diagonalize Heff in different excitation number manifolds.

Problem 4. The easiest manifolds to diagonalize are the manifold with zero excitations (both atoms in their
ground states |gg⟩), and two excitations (both atoms in excited states |ee⟩). There is only one state in each manifold,
so each one must be the eigenstate of Heff in that manifold. Show that the corresponding eigenenergies are ϵee = −iΓ0

and ϵgg = 0. (Recall that exactly at ρ = 0, we should ignore the diverging term 1/ρ3 in Gxx and set it to zero.)

Problem 5. Next, we diagonalize the manifold of one excitation, spanned by the states |ge⟩ and |eg⟩. Intuitively,
because the atoms are identical, the eigenstates should be given by |±⟩ = |ge⟩±|eg⟩√

2
. Verify that these are eigenstates,

with eigenenergies ϵ+ ≈ − 3Γ0

2ρ3 − iΓ0, and ϵ− ≈ + 3Γ0

2ρ3 − iΓ0ρ
2

20 .

Recall that a complex eigenenergy ϵα = ∆ωα − iΓα/2 can be related to the energy shift ∆ωα of that state relative
to the bare atomic transition frequency ω0, and a modified decay rate Γα due to interference in emission. Note that
the doubly excited state |ee⟩ has a decay rate 2Γ0 that is twice that of a single excited atom, which makes sense
because we have double the number of excitations. Interestingly, though, we see that the state |+⟩, which only has a
single excitation, also has a decay rate of 2Γ0, physically due to constructive interference! Conversely, the state |−⟩
has a vanishing decay rate as the distance of separation between the two atoms goes to zero, ρ → 0. This result has a
classical interpretation in terms of two oscillating dipoles that radiate in phase (constructive interference of emission),
and out of phase (the net dipole moment of the system is zero). The two states also have energy shifts of ∼ ∓ 1

ρ3 ,

which reflects the interaction of the two atoms via their optical near-fields.

The energies and decay rates are visually depicted in Fig. 1b. Note that although diagonalization of Heff gives the
total decay rate of |ee⟩, it cannot determine whether the decay is primarily into the state |+⟩ or |−⟩. It turns out that
the decay is mostly into |+⟩, which must be calculated by looking at the jump term in the Lindblad master equation.
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