TOPICS ON COHERENT STATES AND HIGH DIMENSION OPERATORS IN GAUGE/GRAVITY CORRESPONDENCE

HAI LIN SOUTHEAST UNIVERSITY, CHINA

BPS coherent states, droplets and holes

- coherent states are widely used in various contexts of physics
- special types of coherent states in explicit gravity dual Berenstein, Wang; Holguin, Wang; Lin; Holguin, Weng; Holguin; ...
- with extra bosonic variables

$$F[\Lambda_Z] = \int dU \exp(\operatorname{Tr}(U\Lambda_Z U^{-1} a_Z^{\dagger})) |0\rangle$$

 generating function of multi-trace operators, by expanding the exponential

BPS coherent states, droplets and holes

action of dilatation operator simplifies (on these bases)

 also in quiver cases, coulomb branches, and orbifold cases

• U(N), SO(N), Sp(N) cases

Berenstein, Wang; Holguin, Wang

Quarter and Eighth BPS coherent states

 $F[\Lambda_Y, \Lambda_Z] = \int dU \exp(\operatorname{Tr}(U\Lambda_Y U^{-1}a_Y^{\dagger} + U\Lambda_Z U^{-1}a_Z^{\dagger})) |0\rangle$ $F[\Lambda_X, \Lambda_Y, \Lambda_Z] = \int dU \exp(\operatorname{Tr}(U\Lambda_X U^{-1}a_X^{\dagger} + U\Lambda_Y U^{-1}a_Y^{\dagger} + U\Lambda_Z U^{-1}a_Z^{\dagger})) |0\rangle$

• e.g. two-term and three-term HCIZs

 complete bases (albeit also-overcomplete due to coherent state); can be used in coherent state path integral

SL(2) sectors and their cousins

coherent state in sl(2) sectors and their cousins

$$c_D^{\dagger n} a_Z^{\dagger} \leftrightarrow D_+^n Z, \quad c_D^{\dagger} a_Z^{\dagger} \leftrightarrow D_+ Z, \quad a_Z^{\dagger} \leftrightarrow Z.$$

 $K[R_Z, \Lambda_Z] = \int dU \exp(\operatorname{Tr}(UR_Z U^{-1} c_D^{\dagger} a_Z^{\dagger} a_Z)) \exp(\operatorname{Tr}(U\Lambda_Z U^{-1} a_Z^{\dagger})) |0\rangle$

 generating function of multi-trace products of forms

$$\operatorname{Tr}(D_{+}^{n_{1}}ZD_{+}^{n_{2}}Z...D_{+}^{n_{\alpha}}Z...)$$

cousin psu(1,1|2) sectors

BPS coherent states and edge modes

coherent state descriptions

Berenstein, Miller; Skenderis, Taylor; Simon; Balasubramanian et.al.; Lin, Zeng; ...

$$\operatorname{Tr}(X^k) \longleftrightarrow t_k \longleftrightarrow a_k^{\dagger}, a_k.$$

 $\mathcal{H} = \bigotimes_k \mathcal{H}_k = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \dots$

states can be spanned by

$$\prod_{k} (t_k)^{w_k} := \prod_{k} \left(a_k^{\dagger} \right)^{w_k} |0\rangle$$

• coherent states written as

$$|Coh\rangle = \prod_{k} \exp(\Lambda_k \frac{t_k}{k})$$

• chiral field on the coherent states

$$\langle \hat{\phi}(\theta) \rangle_{|Coh\rangle} \to \phi(\theta)$$

• the shape of the droplet edge can be described by the chiral field $\phi(\theta)$ and

 $\langle \hat{\phi}(\theta) \rangle_{|Coh(\Lambda_k)\rangle} \to \phi_{\Lambda_k}(\theta)$

- the chiral field is a displacement of the edge of the droplets, or a height function
- e.g. circularly shaped droplets, and more general cases (e.g. annular droplets, droplets with long strips)

Supermatrix coherent states $O = \int dU d\chi^{\dagger} d\chi e^{\operatorname{tr}(\chi\chi^{\dagger})} \exp(\operatorname{tr}(\alpha U \Lambda_z U^{\dagger} Z + \alpha U \Lambda_y U^{\dagger} Y + \alpha U \Lambda_x U^{\dagger} X - \beta \chi \Lambda_z^c \chi^{\dagger} Z - \beta \chi \Lambda_u^c \chi^{\dagger} Y - \beta \chi \Lambda_x^c \chi^{\dagger} X))$

• $\Lambda_z, \Lambda_y, \Lambda_x$ are three $N \times N$ matrices. $\Lambda_z^c, \Lambda_y^c, \Lambda_x^c$ are three $T \times T$ matrices.

- contains particle-hole duality (e.g. between dual giants and giants)
- convolution ideas
- generating correlators of integrated operators from correlators of un-integrated operators

Berenstein, Wang; Holguin, Wang; Holguin, Weng; ...

Supermatrix coherent states

 package coherent state parameter into supermatrix form

$$\int [dU_S] \exp(\operatorname{Str}(U_S \Lambda_S U_S^{\dagger} Z_S))$$
$$\Lambda_S = \begin{pmatrix} \alpha \Lambda & 0\\ 0 & -\beta \Lambda^c \end{pmatrix}$$

 correlation functions can be calculated by using HCIZ, super-HCIZ type integrals, and auxiliary susy integrals cases with more matrices

$$\int [dU_S] \exp(\operatorname{Str}(\Lambda_z^S U_S^{\dagger} Z_S U_S + \Lambda_y^S U_S^{\dagger} Y_S U_S + \Lambda_x^S U_S^{\dagger} X_S U_S))$$

$$\Lambda_z^S = \begin{pmatrix} \alpha \Lambda_z & 0\\ 0 & -\beta \Lambda_z^c \end{pmatrix}, \Lambda_y^S = \begin{pmatrix} \alpha \Lambda_y & 0\\ 0 & -\beta \Lambda_y^c \end{pmatrix}, \Lambda_x^S = \begin{pmatrix} \alpha \Lambda_x & 0\\ 0 & -\beta \Lambda_x^c \end{pmatrix}$$

quarter and eighth BPS cases

HHL and HHLL correlators

- field theory side using coherent states (for H) and single-trace operators (for L) Holguin, Weng
 - $\begin{aligned} |\lambda\rangle &= \int_{\mathbb{CP}^{N-1}} d\varphi e^{\alpha\lambda\varphi^{\dagger}Z\varphi} |0\rangle \\ \langle\Lambda| &= \langle 0| \int_{U(N)} dU e^{\alpha \operatorname{Tr}(\bar{Z}U^{\dagger}\bar{\Lambda}U)} \\ \mathcal{F}(\lambda,\Lambda,t) &= \langle\Lambda| \operatorname{Tr}\left[\frac{1}{1-2t\tilde{Z}}\right] |\lambda\rangle \end{aligned}$

• e.g.

matches gravity side and field theory side

Holguin, Weng; Bissi, Kristjansen, Young, Zoubos; Caputa, de Mello Koch, Zoubos; Lin; Komatsu, Jiang, Vescovi, Wu, Yang; Skenderis, Taylor; ...

new saddle point method

Berenstein, Wang; Holguin, Weng; de Mello Koch et.al.; Holguin

reduced coherent states

String-added states

• adding string onto the coherent state. e.g.

$$\int dU \exp\left(\operatorname{Tr}(U\Lambda_Z U^{-1}a_Z^{\dagger} + U\Lambda_Y U^{-1}a_Y^{\dagger})\right) \cdot \langle \vec{v}|_{i_1} U^{-1} W_1 U |\vec{v}\rangle_{j_1} \langle \vec{v}|_{i_2} U^{-1} W_2 U |\vec{v}\rangle_{j_2} \dots \langle \vec{v}|_{i_l} U^{-1} W_l U |\vec{v}\rangle_{j_l} |0\rangle$$

- the string part W can be labelled by BMN or spin-chain operators
- \bullet special cases: near BPS states; cases where W being BPS string

 special cases: interaction between the coherent state part and the string part

String-added states

can have generating function (for adding strings)

$$\tilde{F}[t_k, s_k] = \int dU d\chi^{\dagger} d\chi e^{\operatorname{tr}(\chi\chi^{\dagger})} \exp(\Gamma) \exp(\operatorname{tr}(\sum_k U t_k U^{\dagger} W_k - \sum_k \chi s_k \chi^{\dagger} W'_k))$$

$$\Gamma = \operatorname{tr}(\alpha \Lambda_z U^{\dagger} Z U + \alpha \Lambda_y U^{\dagger} Y U + \alpha \Lambda_x U^{\dagger} X U - \beta \chi \Lambda_z^c \chi^{\dagger} Z - \beta \chi \Lambda_y^c \chi^{\dagger} Y - \beta \chi \Lambda_x^c \chi^{\dagger} X)$$

• taking differentials

$$\delta_{(t_k)_j^i} \tilde{F} = \int dU d\chi^{\dagger} d\chi e^{\operatorname{tr}(\chi\chi^{\dagger})} \exp(\Gamma)_i \left(U^{\dagger} W_k U \right)_j$$

open and closed strings

New techniques

- HCIZ, super HCIZ
- auxiliary field integral method; auxiliary susy integral
- spin-matrix theory

Baiguera, Harmark, Lei, and friends ...

New techniques

centrally extended su(2|2) symmetry

Beisert; Berenstein, Holguin; de Mello Koch et.al.; Suzuki; ...

 permutation centralizer algebras; Brauer algebra bases; global symmetry bases; multi restricted
 Schur bases
 Brown, Heslop, Ramgoolam, de Mello Koch, Kimura, Ben

Brown, Heslop, Ramgoolam, de Mello Koch, Kimura, Ben Geloun, Kemp, and friends ...

permutations, analytic combinatorics, algebraic combinatorics

New techniques

- localization
- coherent state formalism
- new saddle point method (e.g. in particular involving heavy states and generating functions)
- enhanced symmetry (from giants)

Outlooks

- near BPS black holes; near BPS states
- giant graviton expansion of superconformal index
- giants and coherent states in N=1, N=2 theories, and other theories

e.g. Martelli, Sparks; Basu, Mandal; Berenstein, Hartnoll; Pasukonis, Ramgoolam

• NATD, superstar

e.g. Lozano, Nunez, Zacarias, Sfetsos, Thompson, Macpherson, Roychowdhury, Gaiotto, Maldacena, ...

• collective field theory method and Hamiltonian

e.g. Jevicki, Das, Rodrigues, Mandal, Berenstein, Hartnoll, Dhar, Suryanarayana, ...

- bootstrap, HHLL, HHL, spectrum of H
- fuzzball microstates, microstructure

code subspace

e.g. Bahiru, Belin, Papadodimas, Sarosi, Vardian; Berenstein, Miller; Belin, Withers; ...

- Wilson operators, line operators, defect operators
- flat space limit

Thank you