SYK and Quantum de Sitter

Herman Verlinde

São Paolo, June 14, 2023

Pure Einstein gravity in 2+1-D de Sitter space:

$$
S=\frac{1}{16 \pi G} \int_{\mathcal{M}} d^{3} x \sqrt{-g}(R-2 \Lambda)+\frac{1}{8 \pi G} \int_{\partial \mathcal{M}} d^{2} x \sqrt{\gamma} K
$$

Static patch:

$$
d s^{2}=\left(1-\Lambda r^{2}\right) d t^{2}+\frac{d r^{2}}{1-\Lambda r^{2}}+r^{2} d \theta^{2}
$$

Schwarzschild de Sitter thermodynamics:

$$
d s^{2}=-\left(1-8 G E-r^{2}\right) d t^{2}+\frac{d r^{2}}{\left(1-8 G E-r^{2}\right)}+r^{2} d \phi^{2}
$$

$$
T_{\mathrm{SdS}}=\frac{\sqrt{1-8 G E}}{2 \pi} . \quad \quad S_{\mathrm{SdS}}=\frac{A_{H}}{4 G}=\frac{\pi}{2 G} \sqrt{1-8 G E}
$$

$$
\frac{d S_{\mathrm{SdS}}}{d\left(-E_{\mathrm{dS}}\right)}=\frac{1}{T_{\mathrm{SdS}}}
$$

Can we reproduce this from a microscopic theory?

SYK model = 1D many body QM with maximal chaos

$$
\begin{array}{cc}
H_{\mathrm{SYK}}=i^{p / 2} \sum_{\substack{i_{1} \ldots i_{p}}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}} & \left\{\psi^{i}, \psi^{j}\right\}=\delta^{i j} \\
\text { random couplings }-\downarrow
\end{array}
$$

$$
\begin{gathered}
\left\langle J_{i_{1} \ldots i_{p}}^{2}\right\rangle=\mathcal{J}^{2} \frac{2^{p-1} p!}{p^{2} N^{p-1}} \\
G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{i} \psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right)
\end{gathered}
$$

Double scaled SYK model has also been exactly solved:

$$
H_{\mathrm{SYK}}=i^{p / 2} \sum_{i_{1} \ldots i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}} \quad \begin{gathered}
\mathrm{N}->\infty \\
\mathrm{p}->\infty
\end{gathered} \quad \mathrm{P}^{2} / \mathrm{N}=\lambda=\text { fixed }
$$

$$
\begin{gathered}
G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{i} \psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right) \quad G\left(\tau_{1}, \tau_{2}\right)=e^{\frac{1}{p} g\left(\tau_{1}, \tau_{2}\right)} \\
S_{\text {eff }}=\frac{N}{8 p^{2}} \int d \tau_{1} d \tau_{2}\left[\partial_{\tau_{1}} g \partial_{\tau_{2}} g-4 \mathcal{J}^{2} \exp g\left(\tau_{1}, \tau_{2}\right)\right] .
\end{gathered}
$$

Dynamical mean field theory reduces to 2D Liouville theory with complex central charge!

Double scaled SYK model has also been exactly solved:

$$
H_{\mathrm{SYK}}=i^{p / 2} \sum_{i_{1} \ldots i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}} \quad \begin{gathered}
\mathrm{N}->\infty \\
\mathrm{p}->\infty
\end{gathered} \quad \mathrm{P}^{2} / \mathrm{N}=\lambda=\text { fixed }
$$

$$
\begin{aligned}
& \quad \rho(E)=\vartheta_{1}(2 \theta, q) \\
& C_{\ell}\left(E_{1}, E_{2}\right)^{2}=\frac{1}{\vartheta_{\ell}\left(\pm \theta_{1} \pm \theta_{2}, q\right)} \\
& \quad E=\frac{\mathcal{J} \cos \theta}{\sqrt{1-q}}, \quad q=e^{-\lambda}
\end{aligned}
$$

$2+1$ de Sitter gravity can be reformulated as an $S L(2, \mathbb{C})$ CS theory

$$
\begin{gathered}
S_{E}=i \kappa \int\left(A d A+\frac{2}{3} A^{2}\right)-i \kappa \int\left(\bar{A} d \bar{A}+\frac{2}{3} \bar{A}^{3}\right) \\
A=e+\omega \quad \bar{A}=e-\omega
\end{gathered}
$$

Quantum states of SL(2,C) CS theory are Virasoro conformal blocks:

$$
\begin{gathered}
S=\frac{i \kappa}{2 \pi} \int d^{2} z\left(\frac{1}{2} \partial \phi_{+} \bar{\partial} \phi_{+}+2 e^{\phi_{+}}\right)-\frac{i \kappa}{2 \pi} \int d^{2} z\left(\frac{1}{2} \partial \phi_{-} \bar{\partial} \phi_{-}+2 e^{\phi_{-}}\right) \\
c_{ \pm}=1+6 Q_{ \pm}^{2}, \quad Q_{ \pm}=b_{ \pm}+\frac{1}{b_{ \pm}} \quad \pm i \kappa=\frac{1}{b_{ \pm}^{2}}
\end{gathered}
$$

$2+1$ de Sitter gravity can be reformulated as an $S L(2, \mathbb{C})$ CS theory

$$
\begin{gathered}
S_{E}=i \kappa \int\left(A d A+\frac{2}{3} A^{2}\right)-i \kappa \int\left(\bar{A} d \bar{A}+\frac{2}{3} \bar{A}^{3}\right) \\
A=e+\omega \quad \bar{A}=e-\omega
\end{gathered}
$$

Quantum states of $\operatorname{SL}(2, \mathrm{C}) \mathrm{CS}$ theory are Virasoro conformal blocks:

$$
\begin{gathered}
S=\frac{i \kappa}{2 \pi} \int d^{2} z\left(\frac{1}{2} \partial \phi_{+} \bar{\partial} \phi_{+}+2 e^{\phi_{+}}\right)-\frac{i \kappa}{2 \pi} \int d^{2} z\left(\frac{1}{2} \partial \phi_{-} \bar{\partial} \phi_{-}+2 e^{\phi_{-}}\right) \\
b_{ \pm}=e^{ \pm i \pi / 4} \beta \quad ; \quad c_{ \pm}=13 \pm i\left(\beta^{2}-\frac{1}{\beta^{2}}\right)
\end{gathered}
$$

2D gravity theory: $\quad c_{+}+c_{-}=26+b c$ ghost

$$
\begin{array}{rlr}
Z & =\int d \mu_{B} e^{-\beta \mu_{B}}\left\langle\operatorname{FZZT}\left(\mu_{B}\right)\right| e^{\frac{\pi i}{2}\left(L_{0}+\bar{L}_{0}-\frac{c}{12}\right)}|C\rangle \\
& =\int d \mu_{B} e^{-\beta \mu_{B}} \vartheta_{1}(2 \theta, q)^{2} & \mu_{B}=\mu \cos \theta \\
& q=e^{-\pi \beta^{2}}
\end{array}
$$

AI.B.Zamolodchikov showed that for complex Liouville CFT

$$
\left\langle\theta_{1}\right| V_{\ell}\left|\theta_{2}\right\rangle_{\mathrm{DOZZ}}=\frac{1}{\vartheta_{\ell}\left(\pm \theta_{1} \pm \theta_{2}, q\right)}
$$

Coupling the SYK model to gravity V2:

$$
\begin{gathered}
H=H_{+}-H_{-} \quad H_{ \pm}=i^{p / 2} \sum_{i_{1} \ldots i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}}^{ \pm} \ldots \psi_{i_{p}}^{ \pm} \\
\left.\left(H_{+}-H_{-}\right) \mid \text {phys }\right\rangle=0
\end{gathered}
$$

Coupled system of two identical SYK models with equal energy constraint:

$$
\begin{gathered}
\mid \text { phys }\rangle=\sum_{n} \alpha_{n}\left|E_{n}\right\rangle, \quad\left|E_{n}\right\rangle=\left|E_{n}\right\rangle_{+}\left|E_{n}\right\rangle_{-} \\
\left\langle E_{1}\right| V_{\ell}^{\mathrm{phys}}\left|E_{2}\right\rangle={ }_{+}\left\langle E_{1}\right| V_{\ell}^{+}\left|E_{2}\right\rangle_{+}{ }_{-}\left\langle E_{1}\right| V_{\ell}^{-}\left|E_{2}\right\rangle .
\end{gathered}
$$

- What does de Sitter entropy represent?
- Do the usual rules of thermodynamics apply?
- What role does quantum chaos play in dS?
- What are good observables?
- Can we compute quasi-normal mode frequencies?

R-matrix

$$
\text { 6j-symbol of } \operatorname{SL}(2, R)=S U(1,1)
$$

Coupling the SYK model to gravity V1:

$$
S[\psi]=\sum_{i} \int d \tau\left(\psi_{i} \partial_{\tau} \psi_{i}-H_{\mathrm{SYK}}\right) \quad H_{\mathrm{SYK}}=i^{p / 2} \sum_{i_{1} \ldots i_{p}} J_{i_{1} \ldots i_{p}} \psi_{i_{1}} \ldots \psi_{i_{p}}
$$

Promote couplings to time-dependent one forms with dynamical variance:

$$
\begin{gathered}
\left\langle J_{i_{1} \ldots i_{p}}\left(\tau_{1}\right) J_{i_{1} \ldots i_{p}}\left(\tau_{2}\right)\right\rangle=e^{h\left(\tau_{1}, \tau_{2}\right)} \mathcal{J}^{2} \frac{2^{p-1} p!}{p^{2} N^{p-1}} . \\
d s_{h}^{2}=e^{h\left(\tau_{1}, \tau_{2}\right)} d \tau_{1} d \tau_{2}
\end{gathered}
$$

=> Covariantizes the bilocal dynamical mean field theory!

Dynamical mean field theory in double scaling limit takes the form of a 2D Liouville CFT coupled to a dynamical background metric:

$$
G\left(\tau_{1}, \tau_{2}\right)=\frac{1}{N} \sum_{i} \psi_{i}\left(\tau_{1}\right) \psi_{i}\left(\tau_{2}\right) \quad G\left(\tau_{1}, \tau_{2}\right)=e^{\frac{1}{p} g\left(\tau_{1}, \tau_{2}\right)}
$$

$$
S_{\mathrm{eff}}[g, h]=\frac{N}{8 p^{2}} \int d^{2} \tau\left[\partial_{\tau_{1}} g(\tau) \partial_{\tau_{2}} g(\tau)-g(\tau) R_{h}(\tau)+\mathcal{J}^{2} e^{g(\tau)+h(\tau)}-2 \Lambda e^{h(\tau)}\right]
$$

This can be rewritten as the difference of two Liouville CFTs!

$$
\begin{gathered}
S_{\mathrm{eff}}[g, h]=S_{L}\left[\varphi_{+}\right]-S_{L}\left[\varphi_{-}\right], \quad \varphi_{+}=g+h, \varphi_{-}=h \\
S_{L}\left[\varphi_{ \pm}\right]=\frac{N}{8 p^{2}} \int d^{2} \tau\left[\partial_{\tau_{1}} \varphi_{ \pm} \partial_{\tau_{2}} \varphi_{ \pm}+2 \Lambda e^{\varphi_{ \pm}}\right]
\end{gathered}
$$

