Geometric phases, von Neumann algebras and AdS/CFT

Julius-Maximilians-Universität Würzburg

ct.qmat

Complexity and Topology in Quantum Matter

Johanna Erdmenger

Overview

- Geometry and entanglement
- Wormholes and factorization in AdS/CFT
- Berry phase in quantum mechanics
- Relation to von Neumann algebras
- 2d CFTs and their gravity dual

Berry phases for wormholes: Motivation

- Wormholes provide relation between entanglement and geometry in AdS/CFT van Raamsdonk; Maldacena, Susskind
- Concept of wormhole also present in simple quantum mechanics H. Verlinde
- Berry phase provides geometrical picture of how degrees of freedom entangle
- Factorization puzzle Fibre bundle approach, missing information
- von Neumann algebras: Definition of trace requires vanishing Berry phase
- Also for AdS3/CFT2

Talk based on

Berry phase in quantum mechanics and wormholes Nogueira, Banerjee, Dorband, J.E., Meyer, van den Brink arXiv:2109.06190, PRD

Berry phases in AdS3/CFT2 •

Berry phases and von Neumann algebras •

Banerjee, Dorband, J.E., Meyer, Weigel arXiv:2202.11717, JHEP

Banerjee, Dorband, J.E., Weigel arXiv:2306.00055

I. Black holes and wormholes in AdS/CFT and the factorization puzzle

Eternal AdS black hole

- Global coordinates (Kruskal)
- Non-traversable wormhole
- Singularity in time coordinate: Time-like Killing vector switches sign at horizon

Eternal AdS black hole

 Eternal black hole in AdS spacetime is dual to two copies of the boundary CFT, entangled in the TFD state

J. Maldacena, [hep-th/0106112]

 TFD state is the purification of a thermal state of one CFT

$$|\mathsf{TFD}\rangle = \frac{1}{\sqrt{Z}} \sum_{n} e^{-\frac{\beta}{2}E_{n}} |n\rangle_{L} |n|$$
$$\mathsf{tr}_{R} |\mathsf{TFD}\rangle \langle \mathsf{TFD}| = \frac{1}{Z} e^{-\beta H_{L}} =$$

- $n\rangle_R^*$,
- $= \rho_{\beta}$

ER = EPR

Van Raamsdonk 2010; Maldacena, Susskind 2013

Relation between entanglement and geometry

• EPR: Einstein-Podolsky-Rosen entanglement

• ER: Einstein-Rosen bridge (wormhole)

 Two entangled CFTs with EPR correlation are connected through a wormhole (ER bridge)

Factorization puzzle

- The two CFTs have disjoint Hilbert spaces since there is no interaction between them, $\mathcal{H}_{L} \otimes \mathcal{H}_{\mathcal{R}}$
- The wormhole Hilbert space does not factorize
- Apparent contradiction?

Maldacena+Maoz '13; Harlow '16

Wormholes in quantum mechanics

$$egin{aligned} Z(eta) &= ext{tr}(e^{-eta H}) \ Z(D) &= \int [dX] \, e^{\int_D \Omega \, - \ X} \end{aligned}$$

generalized coordinates and momenta X^a , symplectic form $\Omega = \frac{1}{2}\omega_{ab}dX^a \wedge dX^b$

Exact symplectic structu

If symplectic structure is non-exact:

$$\langle Z(\beta)^n \rangle = Z(\Sigma_n)$$

H. Verlinde 2021 2003.13117 2105.02129

The:
$$\Omega = dlpha, \quad \int_D \Omega = \oint_{\partial D} lpha$$

 $Z(eta) = Z(D)$

II. Berry phases and von Neumann algebras in quantum mechanics

Berry Phase

- Time-dependent Schrödinger eq.
- Ground state
- Berry connection
- Berry phase

$$i\hbar \frac{\partial |\psi\rangle}{\partial t} = H(\lambda(t))|\psi\rangle$$
$$|\psi(t)\rangle = U(t) |n(\lambda(t))\rangle$$
$$\mathcal{A}_i(\lambda) = -i\langle n|\frac{\partial}{\partial\lambda^i}|n\rangle$$
$$\dot{U} = -i\mathcal{A}_i \dot{\lambda}^i$$

$$e^{i\gamma} = \exp\left(-i\oint_C \mathcal{A}_i(\lambda) d\lambda^i\right)$$

Review: Lectures by D. Tong

Berry phase

$$A_{\rm MC} = \sigma^{-1} d\sigma$$

 Berry connection: Ground state expectation value of the Maurer-Cartan form $A_{\rm B}(\lambda) = i \langle \psi_0 | A_{\rm MC} | \psi_0 \rangle$

- Berry curvature: $F_{\rm B}(\lambda) = i \langle \psi_0 | \omega_{\rm KK} | \psi_0 \rangle$
- Berry phase: $\Phi_{\rm B} = \int^{2\pi} \int^{\pi} F_{\rm B}$

• Maurer-Cartan form: Connection on a group manifold M defined for any group element σ

 $\omega_{\rm KK} = dA_{\rm MC}$

Kirillov-Kostant symplectic form

von Neumann algebras

von Neumann 1930

Concept of algebraic QFT for classifying operator algebras w.r.t. entanglement properties

Type I - density matrix and trace (as in quantum mechanics),

admits irreducible representations

Type II - trace prescription, but does not act irreducibly

Type III - no trace prescription (eg. free QFTs)

Jefferson; Liu, Leutheusser; Witten; Chandrasekaran, Penington, Witten

von Neumann algebras

1. Die vorliegende Arbeit zerfällt in zwei, im wesentlichen unabhängige, Teile. Der erste (§§ I-III) ist der Untersuchung der linearen und beschränkten Operatoren (d. h. Matrizen) des Hilbertschen Raumes § gewidmet, indem die algebraischen Eigenschaften des von ihnen gebildeten (nichtkommutativen) Ringes B betrachtet werden. Den Gegenstand des zweiten Teiles hingegen bilden diejenigen, nicht notwendig überall (in \mathfrak{H}) sinnvollen und beschränkten Operatoren, die die sogenannte Hilbertsche Spektraldarstellung mit komplexen Eigenwerten zulassen (vgl. die ausführlichere Explizierung dieser Begriffe im § 4 der Einleitung). Dies sind die als "normal" zu bezeichnenden Operatoren, die bisher nur im Beschränkten betrachtet wurden¹), und für die wir eine neue allgemeinere Definition geben werden (vgl. am vorhin angeführten Orte).

J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der Normalen Operatoren, Mathematische Annalen **102** (1930) 370–427.

Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren.

Von

J. v. Neumann in Berlin

Einleitung.

Two-spin system: Berry phase and type I Von Neumann algebra

• Coupled spins in external magnetic field: Electronic Zeeman interaction in hydrogen atom

Projective Hilbert space \mathbb{CP}^3 (= SU(4)/U(3))

Schmidt decomposition $|\psi_0\rangle = \sum$

$H = JS_1 \cdot S_2 - 2\mu_B BS_{1z}$

$$|\downarrow\rangle - \frac{\sin\frac{\alpha}{2} + \cos\frac{\alpha}{2}}{\sqrt{2}}|\downarrow\uparrow\rangle \qquad \qquad \tan\alpha = 2\mu$$

$$\sum_{i=\uparrow,\downarrow} \kappa_i |i, \tilde{i}\rangle$$

$$\kappa_{\uparrow} = \sqrt{\frac{1 - \sin \alpha}{2}} \qquad \kappa_{\downarrow} = \sqrt{\frac{1 + 1}{2}}$$

Two-spin system: Berry phase and type I Von Neumann algebra

Intermediate entanglement

$$\sum_{\substack{=\uparrow,\downarrow}} \kappa_i^2 \ln \kappa_i^2 = \sin \alpha \ln \frac{1 - \sin \alpha}{\cos \alpha} - \ln \frac{\cos \alpha}{2}$$

Entanglement orbit $\mathbb{C}P^1 \times \mathbb{C}P^1$

$$\frac{SU(2)}{\mathbb{Z}_2} = \mathbb{R}P^3$$

$$\mathbb{C}\mathrm{P}^1 \times \mathbb{R}\mathrm{P}^3$$

State spaces - entanglement orbits

- Projective Hilbert space CP3 = SU(4)/U(3)
- CP1 x CP1: Two single-qubit subspaces of CP3

No entanglement: ground state lies in CP1xCP1 Describes local (one-sided) properties - factorization

Maximal entanglement: States in non-diagonally embedded submanifold of CP3

$$\frac{SU(2)}{\mathbb{Z}_2} = \mathbb{R}P^3$$

Two-spin system: Berry phase and type I Von Neumann algebra

Berry phase from symplectic volume of entanglement orbit

Symplectic form $\Omega = dA =$ Berry phase $V_{\rm symp} = \int \Omega = \frac{\sin \alpha}{2} V(S^2)$

$$\frac{1-\sin\alpha}{2} = 0$$

$$\int \sqrt{\frac{1+\sin\alpha}{2}}$$

$$u = e^{-i\frac{\phi}{2}\sigma_z} e^{-i\frac{\theta}{2}\sigma_y} e^{i\frac{\phi}{2}\sigma_z}$$

$$Q^{\dagger}dQ) = \frac{\sin\alpha}{2} (1-\cos\theta)d\phi$$

$$= \frac{\sin\alpha}{2} \sin\theta d\theta \wedge d\phi$$

$$^{2}) = 2\pi \sin \alpha = \Phi_{G}$$

vanishes for maximally entangled state

Two-spin system: Berry phase and type I Von Neumann algebra

Trace functional f(ab) = f(ba)Cyclicity?

> $f_0(a_L) = \langle \psi_0 | a_L | \psi_0 \rangle$ $f_0([a_L, b_L]) = 2i \sin \alpha (a_{L,y} b_L)$ Trace functional on commutator proportional to $f_0([a_L, b_L]) \propto \Phi_G$ geometric phase

Banerjee, Dorband, J.E., Weigel arXiv:2306.00055

f(ca) = cf(a) for $c \in \mathbb{C}, a \in \mathcal{A}$ and

f(a+b) = f(a) + f(b) for $a, b \in \mathcal{A}$.

$$a_L = a_{L,n}\sigma_n, \quad b_L = b_{L,n}\sigma_n, \quad n \in \{0, x, y, z\}, \quad a_{L,n}, b_L$$

$$a_{L,x}b_{L,y}$$

vanishes for maximally entangled state

Quantum tomography

identical quantum states

Density matrix

For $|\Psi_{\phi}\rangle = (|00\rangle + \exp(i\phi)|11\rangle)/\sqrt{2}$, the measurement of the product

of Pauli matrices $\sigma_x \otimes \sigma_x$ allows to reconstruct the phase

 $\langle \Psi_{\phi} | \sigma_x \otimes \sigma_x | \Psi_{\phi} \rangle = \cos \phi$

Rainer Blatt and David Wineland, "Entangled states of trapped atomic ions," Nature 453, 1008–1015 (2008).

A quantum state is reconstructed using measurements on an ensemble of

Berry phase and Von Neumann algebra for eternal black hole

No global Killing vector in the presence of a wormhole

related to mass/temperature of eternal black hole

Leads to non-exact symplectic form

does not transform state

Wormhole Berry Phase

Time translations at each boundary Bulk isometry from *H_L* - *H_R* Bulk moduli space of classical solutions parametrized by δ Berry connection $A_{\delta} = i \langle TFD | U^{\dagger} \partial_{\delta} U | TFD \rangle$ $\Phi_G^{(\text{TFD})} = \int^{\epsilon} d\delta A_{\delta} \neq 0$ proportional to geometric phase of bulk moduli space

 $U(1) \times U(1)$ U(1) $\frac{\mathrm{U}(1) \times \mathrm{U}(1)}{\mathrm{U}(1)} \sim \mathrm{U}(1) \sim S^{1}$

 $U = e^{\mathbf{i}(H_L + H_R)\delta}$

Type II vs. type III von Neumann algebra for eternal black hole

Single-trace operators form generalised free field theory in large N limit Type III von Neumann algebra Applies to both CFT_L and CFT_R - both algebras have trivial center $H'_L = H_L - \langle H_L \rangle \qquad \qquad U = H'_L / N$

Consider $A_L = A_{L,0} \otimes A_U$ including the algebra of bounded functions of U To construct \mathcal{A}_R , the same operator U has to be used

Liu, Leutheusser; Witten; Chandrasekaran, Penington, Witten

- Hamiltonian diverges with N^2 and cannot be included into algebra; therefore consider

$$egin{aligned} &[U,\mathcal{O}] = rac{1}{N} [H'_L,\mathcal{O}] = -rac{\mathrm{i}}{N} \partial_t \mathcal{O} \stackrel{N o \infty}{ o} & \mathcal{O} &$$

- Both left and right algebra share the same center, proportional to the black hole mass

Type II vs. type III von Neumann algebra for eternal black hole

Including 1/N corrections gives rise to type II algebra with vanishing center Witten '21 Allows for well-defined trace functional for a particular state

In geometric phase approach:

Non-factorization -> non-zero geometric phase -> no trace definition -> type III vN algebra

Maximally entangled state -> geometric phase vanishes -> type II vN algebra

Banerjee, Dorband, J.E., Weigel arXiv:2306.00055

Missing information

i.e. different coordinate patches are necessary to cover the space An observer in one coordinate patch has no information about the other

- When a symplectic form is non-exact, there is no global section for the entire system

III. Berry phases in AdS3/CFT2

Banerjee, Dorband, J.E., Meyer, Weigel arXiv:2202.11717

AdS₃/CFT₂

Virasoro group: $Diff(S^1)$ group elements $(f(\phi), \alpha)$ generator: $T(\phi) = \sum L_n e^{in\phi} [L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}m(m^2-1)\delta_{m+n,0}$ n

Highest weight-state $|h\rangle$:

CFT vacuum $|0\rangle$: invariant under $L_{-1}, L_0, L_1, SL(2,R)$ symmetry

General $|h\rangle$ with h > 0 invariant under L_0 , U(1) symmetry

Stabilizer group

AdS₃/CFT₂

In 3d, the bulk spacetime is completely fixed by

- Boundary metric: $g_{ii}^{(0)}$
- Expectation value $\langle h | T(\phi) | h \rangle$

$$ds^{2} = \frac{dr^{2}}{r^{2}} + \left(\frac{1}{r^{2}}g_{ij}^{(0)} + g_{ij}^{(2)} + r^{4}g_{ij}^{(4)}\right)dx^{i}dx^{j} \qquad \text{de Haro, Skend}$$
$$g_{ij}^{(2)} = -\frac{1}{2}R^{(0)}g_{ij}^{(0)} - \frac{6}{c}\langle h | T_{ij} | h \rangle \quad \text{and} \quad g_{ij}^{(4)} = \frac{1}{4}\left(g^{(2)}\left(g^{(0)}\right)^{-1}g^{(2)}\right)_{ij}$$

Symmetries: $\langle h | T(\phi) | h \rangle$ invariant under SL(2,R)/U(1), becomes Killing symmetry of the bulk

Example: CFT in vacuum $\langle 0 | T(\phi) | 0 \rangle = -\frac{c}{24} SL(2,R)$ symmetry

Dual to empty AdS SL(2,R) Killing symmetry

Fefferman+Graham 1985 deris, Solodhukin 2000

Coadjoint orbits

 \bullet

A Virasoro group element g acts on a gate X by the adjoint transformation

$$\operatorname{Ad}_{g}(X) = \frac{d}{dt} \left(g \cdot e^{tX} \cdot g^{-1} \right) \Big|_{t=0}$$

and on a state v by the coadjoint transformation

 $\langle \operatorname{Ad}_g^*(v), X \rangle$

Coadjoint orbit: set of states v reachable through coadjoint transformations on fixed state v_0 ,

$$O_{v_0} = \{v =$$

for Virasoro group: coadjoint orbit = Verma module

$$\rangle = \langle v, \operatorname{Ad}_{g^{-1}}(X) \rangle$$

 $= \operatorname{Ad}_g^*(v_0) \mid g \in G \}$

Coadjoint orbits

Coadjoint orbit has symplectic form

$$\omega = d\alpha = -d\langle v, \theta_g \rangle$$
 where $\theta_g = \frac{d}{ds} \left[g^{-1}(t) \cdot g(s) \right]_{s=t}$

Geometric action on coadjoint orbits

$$S_{\text{geo}} = \int \alpha = -\int dt \langle \operatorname{Ad}_{g(t)}^* v_0, t \rangle$$

Coadjoint orbit for Virasoro group

$$\mathcal{O}_{b_0} = \{b = \operatorname{Ad}^*_{(f,\alpha)} b_0$$

$$\operatorname{Ad}_{(f,\alpha)}^* b_0 = f'^2 b_0 -$$

 $\theta_{g(t)}\rangle$

$|f \in \operatorname{Diff}(S^1)\},$

 $-rac{c}{24\pi}\{f,\phi\}$

Virasoro Berry phase

generated by diffeomorphisms that change the CFT state

- Berry phase for group manifold $A = i\langle \phi(t)|d|\phi(t)\rangle = i\langle \phi|\mathfrak{u}(\theta)|\phi\rangle$, $\mathfrak{u}(\theta) = U_a^{\dagger}dU_g$
- with central extension $A = \langle h | \mathfrak{u}(\theta) | h \rangle + c \langle h | \mathfrak{u}(m_{\theta}) | h \rangle$ (θ, m_{θ}) : Maurer-Cartan form
- Connection gives rise to Berry phase as before
- Virasoro Berry phases probe the geometry of a particular coadjoint orbit
- For states outside the coadjoint orbit, the stabilizer group leads to a phase

Oblak 1703.06142

Virasoro Berry phase

$$2\pi b = 2\pi \operatorname{Ad}_{(f,\alpha)}^* b_0 = \langle h | \tilde{T}(\phi) | h \rangle = f'^2 \langle h | T(\tilde{\phi}) | h \rangle - \frac{c}{12} \{ f, \phi \},$$

$$b_0 = rac{1}{2\pi} \langle h | T(ilde{\phi}) | h
angle = rac{1}{2\pi}$$

Dual bulk geometries associated to Virasoro coadjoint orbits: Banados geometries

On-shell solutions to AdS3 gravity with Brown-Henneaux boundary conditions

$$ds^{2} = \ell^{2} \frac{dr^{2}}{r^{2}} - \left(rdx^{+} - \ell^{2} \frac{L_{-}(x^{-}) dx^{-}}{r}\right) \left(rdx^{-} - \ell^{2} \frac{L_{+}(x^{+}) dx^{+}}{r}\right)$$

 $L(x^{\pm}) = \frac{6}{c} \langle h | \tilde{T} | h \rangle = \frac{12\pi}{c} b \text{ and } x^{\pm} = t \pm \phi$

For holographic CFTs: use fact that stress tensor is element of dual Lie algebra

$$\left(h-\frac{c}{24}\right)$$

Henneaux, Merbis, Ranjbar arXiv:1912.09465 Berry phase for wormholes in AdS3

Two boundary CFTs for eternal AdS black hole

Chern-Simons action

 $S_{[CS]} = \frac{k}{2\pi} \int dt dr d\varphi \left(A_{\varphi} \partial_t A_r + A_t F_{r\varphi} \right)$

Abelian case: $A_{\varphi} = \partial_{\varphi}\mu + k_0$ Boundary values of μ Φ, Ψ

Holonomy $k_0 = \frac{1}{2\pi} \oint d\varphi A_{\varphi}$

Boundary action for Φ, Ψ, k_0

Boundary action

$$\begin{split} S &= \frac{k}{4\pi} \left(\int dt \left[\oint d\varphi \left(\partial_{\varphi} \Phi \partial_{t} \Phi \right) - H_{\Phi} \right] + \int dt \left[- \oint d\varphi \left(\partial_{\varphi} \Psi \partial_{t} \Psi \right) - H_{\Psi} \right] \right. \\ &+ 2 \int dt \left[\oint d\varphi k_{0} \left(\partial_{t} \Phi - \partial_{t} \Psi \right) - H_{0} \right] \right), \end{split}$$

where

$$egin{aligned} H_{\Phi} &= \int darphi \left(\partial_{arphi} \Phi
ight)^2, \ H_{\Psi} &= \int darphi \left(\partial_{arphi} \Psi
ight)^2, \ H_0 &= 2\pi \left(k_0
ight)^2. \end{aligned}$$

Conjugate momentum and symplectic form on phase space

Conjugate momentum for holonomy Π

 $\omega = d\Pi_{\Phi} \wedge d\Phi + d\Pi_{\Psi} \wedge d\Psi + dk_0 \wedge d\Pi_0$

Non-exact due to contribution of holonomy!

$$\mathbf{I}_{0} = -\frac{k}{2\pi} \oint d\varphi (\Phi - \Psi) = -\frac{k}{2\pi} \oint d\varphi \left(\int_{r_{1}}^{r_{2}} dr A_{r} \right)$$

Symplectic form on boundary phase space $x = (\Phi, \Psi, \Pi_0, \Pi_{\Phi}, \Pi_{\Psi}, k_0)$

Berry phases for wormholes in AdS³

- Virasoro Berry phase
- Symmetry transformations change states in the CFTs
- Symplectic form on phase space can be mapped to symplectic form on Virasoro group manifold with coupling between both CFTs

$$rac{\mathrm{Diff}(\mathrm{S}^1)}{S^1} imes rac{\mathrm{Diff}(\mathrm{S}^1)}{S^1}$$

Symplectic form non-exact

A similar analysis may be performed for non-abelian SL(2,R) x SL(2,R) symmetry

Banerjee, Dorband, J.E., Meyer, Weigel arXiv:2202.11717

$$\frac{\text{Diff}(\text{S}^1) \times \text{Diff}(\text{S}^1)}{S^1}$$

Relation to geometric action

Reparametrize chiral boson

$$\Phi = k_0(f(t,\varphi) - \varphi) - \ln\left(-k_0 f'(t,\varphi)\right)$$
$$\Psi = k_0(\varphi - g(t,\varphi)) - \ln\left(k_0 g'(t,\varphi)\right)$$

Coupled Virasoro Berry phase $b_0 = \frac{\kappa}{2\pi}k_0$

$$b_0 = \frac{1}{2\pi} \langle h | T(\phi) | h \rangle$$
 couples both Ber

Asymptotic dynamics of BTZ black hole is described by coupled Virasoro Berry phase

Both sides are coupled by the holonomy and connected by a radial Wilson line

Symmetry group is enhanced boundary no longer factorizes

Action becomes

$$S \left[k_0, \Phi, \Psi \right] = S \overline{g}_{\Theta} \left[f, b_0 \right] - S_{\Theta}^{+} \left[g, b_0 \right]$$

$$S_{\Theta}^{\pm} \left[h, b_0 \right] = \int dt d\sigma \left(b_0 h' \partial_{\pm} h + \frac{k}{8\pi} \frac{h'' \partial_{\pm} h'}{\left(h' \right)^2} \right)$$

$$t_0(t)^2$$

Henneaux et al Jensen et al

ry phases

$$\frac{f(S^1)}{S^1}_{38} \times \frac{\text{Diff}(S^1)}{S^1} \longrightarrow \frac{\text{Diff}(S^1) \times \text{Diff}}{S^1}$$

Conclusions and outlook

- Non-Factorization of wormhole Hilbert space due to non-exact symplectic form that results in non-zero Berry phase
- Mathematical structure also present in quantum mechanics and in CFT
- Relation between entanglement and geometry
- New possibilities for experimental study
- Relation to von Neumann algebras

Modular Berry phase

- dual bulk region bounded by RT geodesic $\frac{l(u,v)}{4G_N}$
- Modular Hamiltonian: $H_{mod} = -\log(\rho_A)$ generates abstract time evolution with respect to modular time parameter

- Choice of modular time parameter is gauge symmetry for each interval
- Parallel transport of interval around closed loop leads to Berry phase

B. Czech

• Interval [u,v] on constant time slice in CFT with reduced density metric ρ_A

Modular Berry phase: Two-sided case

Transition in entanglement entropy (Hartman et al)

Change in Berry curvature

Gauge Berry phase

Proper diffeomorphisms correspond to gauge symmetries at the boundary yield Killing charges and satisfy $\delta_{\xi}g_{\mu\nu} = 0$

In presence of an eternal black hole, these charges may only be defined locally near the two boundaries

Brown, Henneaux 1986 Compère; Mao, Seraj, Sheikh-Jabbari 2015

Example: Wormhole Berry phase for JT gravity

- Theory of 2d gravity with a scalar field (dilaton) R + 2 = 0 & $(\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu})\Phi = 0$
- Boundary conditions: $\gamma_{tt}|_{\partial M} =$
- Diffeomorphisms given by time translations with

$$H_L = H_R = \Phi_H^2 / \phi_B$$

$$r_c^2 \quad \& \quad \Phi|_{\partial M} = \phi_b r_c$$

Harlow, Jafferis '18

Example: Wormhole Berry phase for JT gravity

- Berry connection evaluates to: $A_{\delta} = 2\Phi_H^2/\phi_h$
 - $\alpha = -2E\delta$ 2π periodic

$$\Phi_{\rm B}^{\rm JT} = \oint A_{\delta} d\delta = 2 \frac{\Phi_{H}^{2}}{\phi_{b}} \int_{0}^{\frac{\pi}{E}} d\delta =$$

Resulting Berry phase with winding number interpretation:

 2π

Wormhole Berry Phase

Non-zero Berry connection for diffe

$$A_{\delta} = i \langle \text{TFD}_{\alpha} | \partial_{\delta} | \text{TFD}_{\alpha} \rangle = \frac{2}{Z}$$

Vanishing Berry connection for diffeomorphism

 $A_{\delta} = i \langle \text{TFD}_{\alpha=0} | u_1^{\dagger} \partial_{\delta} u_1 | \text{TFD}_{\alpha=0} \rangle = 0$

$$Pomorphism \quad u_0(\delta) = e^{-i(H_L + H_R)\delta}$$

 $u_1(\delta) = e^{-i(H_L - H_R)\delta}$