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The duality between AdS:xS> and super-Yang-
Mills can be obtained by taking the near
horizon limit of D3 branes in ten dimensions.




Holography for D p-branes

* What if we take the near horizon limit of Dp branes, forp # 3 ?



Holography for D p-branes

* We also get a duality between a geometry and a super Yang Mills
theory with 16 supercharges. The theory is not scale invariant.

Itzhaki, JM, Sonnenschein, Yankielowicz

* In the gravity limit, the solution is rather simple

* |t has dilaton that depends on the radius
* The Einstein metric is Weyl equivalent (conformal) to AdS,,, x S¥P

Boonstra, Skenderis, Townsend



Why are we returning to this topic?



The DO case is particularly interesting.

The matrix model is the simplest guantum
mechanical theory™ that has a bulk Einstein gravity

dual™.

*as opposed to QFT
" as opposed to higher spin gravity theories



There have been very interesting numerical
simulations at finite temperature.



Latest montecarlo simulations

00 BFSS Berkowitz et al.
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Monte Carlo String/M-theory Collaboration (MCSMC)
- Pateloudis, Bergner, Hanada, Rinaldi, Schaefer, Vranas, Watanabe, Bodendorfer

- Berkowitz, Rinaldi, Hanada, Ishiki, Shimasaki, Vranas



They have numerically computed the first 8-
derivative corrections at tree and loop level.

—

Not reproduced from gravity. Reproduced from gravity
Do not have the explicit form o .
of the 8 derivative correction as a function of R, 4, F2, ¢ Hanada, Hyakutake, Nishimura, Takeuchi

They are more advanced than analytic computations!



In the distant future = quantum simulated?

The number of qubits is roughly similar to that necessary for factoring large integers (breaking RSA code)



Holography for D p-branes

* Gravity solution

—dt? + da;]% + dz?

dss, = 2° = + #dO5_
e 2% xx N?z° : Fs_p o< Nws—
_m\2 _ _
o= —f/3. =8P by (1=p)3—p)
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Itzhaki, JM, Sonnenschein, Yankielowicz
Boonstra, Skenderis, Townsend



Scaling similarity

2 —dt? + ;i;v]% + dz? 4 pa?
e 2% o N2zb , Fs_p, o< Nws_
o= 08 9—5(3—19)27 . _(T—p)B-p)
(5—p) (5—p)
Similarity:
t, x, 2 — At, Ax , Az, I — X 9T

/ -Hyperscaling violation exponent.

Classical gravity action Dong, Harrison, Kachru, Torroba, H. Wang

-Action scaling similarity exponent



Simple case of a scaling similarity

Power law potentials.
Landau, Lifshitz

[ = [ dt[z* — z"]

—2

t— At T — An—27 , I — A nz]

E.g., for n=-1, the scaling of x, for n=-1, fixes the 3" Kepler law.

A similarity depends on a classical limit.



Validity of gravity solution (p<3)

Stringy
curvatu

re

z, 1/Energy scale



Validity of gravity solution at finite
temperature (p<3).

Black hole horizon

Valid for low, but not too low
temperatures

Stringy
curvatu

re

= B

logZ = -1 = —0F Vpr+§

Action similarity exponent = fixes the temperature dependence



Scaling symmetry of the gravity equations of
motion

The equations of motion have a scaling symmetry.

Previously obtained by
It can be used to classify the small fluctuations = operators of the gravity theory. Sekino, Yoneya

As a separate trick, it is useful to note that these solutions can be also usefully viewed as coming from
dimensional reduction from

AdS2_|_p_|_9_ X 58_29

Kanitscheider, Skenderis

Classify fields by their dimension A from the AdS, .5 point of view.



Useful trick (Side comment)

These solutions can be also usefully viewed as coming from dimensional reduction from

Kanitscheider, Skenderis

Classify fields by their dimension A from the AdS, ., 7 point of view.

What we will call A is the standard one in this higher dimensional AdS space.



Spectrum of dimensions from 11 dimensions.

 All these backgrounds can be uplifted to an M-theory plane wave

background. —=—(dat)? + T} + djjy_,

. Pertu{gbations are just those of flat space far away. Simple powers of
Y, Y.

 Tracking the action of the similarity transformation = we can read off
the dimensions. Similarity = rescaling + boost in 11 dimensions.

— 20
A = %(b —+ 2) —+ ﬂ E.g. Tr[X{)] has dimension A = SZT{)

|

Spin of the field in the light cone directions in 11 dimensions, b=-2,-1,0,1,2. (only these values, for bosons)



One interesting question we can answer with
this formula is the following



How many relevant operators do we have at
strong coupling ?



Relevant operators at strong coupling

* We have no SO(9) invariant single trace relevant operator.

* We have a few double and triple trace SO(9) invariant operators.

eg. TriXUXxNrrxUXx)], A:§x2x2:§<%4=1+§, éz%
* The coefficients of these should be fine tuned in order to simulate the
model at very low energies.



At finite temperature we can use the
AdS,,,.g black branes.

Once the spectrum is fixed, we can write the wave
eguations.

We can get black hole quasinormal modes, etc. 2

Simple “spectrum’ of a black hole



Can we determine the scaling similarity
exponent from the YM side?



We can determine it by performing a susy
orotected computation that is valid also at strong
coupling



Two examples of SUSY protected
computations

* Motion in the moduli space approximation, v* term is one loop exact.

Similar ideas : Smilga ; Morita, Shiba, Wiseman, Withers

. X*
2
I /dt X* + ‘XW Similarity with exponent 0

* Sphere partition functions.

log Zepir o< N2RONS . p>0

Bobev, Bomans, Gautason, Minahan, Nedelin



Comparing the scaling of the susy protected
computation with the one expected from gravity
- get the exponent. Agreement!

Susy computations are consistent with the similarity.

Assuming we have the similarity - get the exponent.



Now we will switch to a different problem



What follows is based on work in progress
with

Anna Biggs, JM, Vladimir Narovlansky



The SYK model is a quantum mechanical theory
which develops a near scale invariance at low
energies.




s there an SYK-like model that develops a
scaling similarity at low energies?



We are studying such a model.



There is a model that had been considered
before as a model for black holes.

Anninos, Anous, Denef

(In fact before SYK )



We will consider a slightly simplified version.



The models (two variants)

« N=24 supersymmetric quantum mechanics with a random gt order
superpotential.

N=2 / dtd*0|D¢' D¢" + W (9)] , W=> Jijd'¢'o" ¢ is real

(different than than the N=2 model considered by Fu, Gaiotto, JM, Sachdev)

N / dtd*0¢'¢" + / d*0W () + / oW (¢) , W=D Jijup'¢’¢" ¢ is complex

(We wrote the g=3 version)

Dynamical bosons + fermions



We will discuss the N=2 one, the other is almost
identical at the level of the large N equations.



We can find the large N equations for the two
point functions

Go(t,t') = (9" ()9 (1)) , Gy =", Gp=(F'F"

/

Auxiliary fields

Ge(t,t') = Gyt —1t') ete.



The large N equations

Definitions of the self energies:

Co@® ~So@)] =1,  Gu)-iw-Zy@]=1, Grw)l-Spw)]=1

Self energies in terms of G (melon approximation) :

Y = —2GpGy + 2G5,
Yp=—Gj

Both sides are functions of (t,t’), or really t-t’.

(we specialized to q=3 and J=1 to avoid clutter)



Naive low energy analysis

~ 2

Set all functions to be power laws, G , and similarly for the others.

Assume SUSY at short times.

1 1 1

Gg X 72 Gy o AT Gr x 2AT2

Anninos, Anous, Denef
Insert in equations 2 Find A =0 .

Not really a solution, some coefficients diverge as A = 0



These equations were considered by Lin, Shao,
Wang, Yin, as an (uncontrolled) approximation to a
different model, also inspired by BFSS.




They solved them in a low temperature
oproximah’on, ,8] > 1. (non-trivial analysis)

Q)

They found:

log Z = —BF o NTS/5

Lin, Shao, Wang, Yin



We checked it vs a numerical solution

Lin, Shao, Wang, Yin
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Our numerical

Agree well at low temperatures.

We showed how it interpolates to the
(simpler) high temperature behavior.
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We are trying to understand this model better.
Does it indeed display a scaling similarity?



As part of this process we developed a more
systematic understanding of their approximation



The low temperature expansion again

G¢ — é¢ —|—5G¢

Constant, independent of Euclidean time.
Much larger than the non-constant part.

Expand the effective action in this constant .



Expand the action

G¢ — é¢ —|—5G¢

Constant

Expand the effective action in this constant . G¢ > 5G¢

GGy — 5G?5G¢G¢ +0G + - -

First term is quadratic



Solve exactly the quadratic terms

logZ 1
05 = — log 2 4 d

N 2 VRBGL?

(for g=3, other values of q are similar)



Add the higher order terms perturbatively

logzZ 1 1
°S = — log 2 z

N 2 - VBBGY? 332G}

Ground state entropy
Cubic terms (and quartic, for p>3)

Quadratic terms

— - 6
Minimize with respectto Gy > determine G4 -2 find power logZ x T's



Scaling similarity

T 1

VERGY? 320

K )
f

Has a simple scaling similarity = extends to the approximate solution




s the ground state entropy arising from BPS
states?



The Witten index and the ground state
entropy.

e Index for the N=2 case: | =0 (we do not have an full argument, yet)

e Index for the N=4 case: 1 =2N  (or (g-1)N more generally)

* The large N analysis is essentially the same for the two cases. We
should be compatible with the index in the second case.

* For the first maybe states are lifted at higher orders.



Interpretation

* It is puzzling that qu is growing without bound for small
temperatures.

* For orientation we consider the g=2 case, which is exactly solvable.



=2

* Harmonic oscillators with random mass matrix J; . Diagonalize it and
get a distribution of masses.

Low energies

Eigenvalue (
density

»
»

m
Eigenvalue or frequency of the oscillator

At low energies, constant density = like modes of a 1+1 dimensional field.

Free energy log /X TL, L o< N/m m = typical eigenvalue. 1/L ~ spacing between them



Free energy for g=2

logZOCIO i 5G¢ | #
N >1158G,] " Bm

We find that G goes to infinity!

What is going on?



Interpretation for q=2

At large N there are eigenvectors of the mass matrix with almost zero eigenvalue
and we get infinite vevs for the those components.

Eigenvalue
density

. 1
Lowest eigenvalues & "

Nearly zero eigenvalues

v

/ Bar = average over couplings.

It is even worse because when we average over couplings. We get:  (¢p?) = o



The situation is a bit different for g>2



Expand Q' = ¢,& + 00", Q' > 00"
Constant in time Small fluctuations, time dependent

Expand superpotential ng (QB )(5§bz(5§b3 ] quj — ijkggk

/

Also looks like random masses. However, the mass scale is set by the vev of q[)—l ,
which is becoming large along a very flat direction of the potential.



For g=3

logzZ 1 oo 9 +
X — log 2 - —
N 9 1/2
BG%

1
Same as what we had for g=2, but with m = (5¢)2

Prefers small G_¢ —> implies that now this will not go to infinity. The further correction stabilizes it.

log Z
N

T B 1
VBRG,?  32Gy

1
— —log 2
2og +



Because the model is close to quadratic =2 we
expect no chaos or black hole like behavior!



In addition...



Anninos, Anous and Denef suggested that this
model could display spin glass behavior.




We are exploring this qguestion



This involves solving the model with
n replicas and then taking n=> 0




We can similarly make a large G4 approximation



Lloga+ T !
_— — Og — — —
before 2 \/gﬁqub/z 32G2

log Z
N

Independent of 8, G
X, parametrizes the (rescaled) off diagonal

/ components of GaP Gab C_?¢Xab
( X3 has ones in the diagonal )
log Z
N n(Same as before) + F(X,,)

Same solution for the dynamical part.

Possibly a different ground state entropy. But we have not reached a conclusion yet....



Conclusions

* We discussed the scaling similarity of the Dp brane gravity solutions.
* We explained how it can be used to organize the spectrum of fluctuations.
* We explained how to get the similarity exponent from a susy computation.

* We analyzed an SYK-like model that displays a scaling similarity at large N.
* We explained some features of the solution of this model.

* We are still working on a possible spin glass phase... (have not found it yet).



