Holography with broken spacetime symmetries and its transition into adulthood

Holography@25

School: June 5-13, 2023, Workshop: June 14-17, 2023

São Paulo, Brazil

ICTP-SAIFR/IFT-UNESP

Matteo Baggioli Jiao-Tong University Shanghai

Holographist by Trade

April 14, 2020 • Physics 13, 57

Tackling condensed-matter problems with string theory is becoming a dedicated profession.

APS/Carin Cain

Holographists use a string theory correspondence that relates black holes and condensed-matter systems, such as metals and superconductors.

This is a personal (and therefore biased) historical reconstruction of the facts

References are not complete [and obviously my works are over-emphasized ©]

Original motivation

Strange metals High-Tc superconductivity

[a posteriori, probably not the biggest success ...]

Condensed matter systems

This was holography in 5th grade (~ 2008)

- How did "we" make holography compatible with broken translations ?
- ➤ What did "we" learn ?
- ➤ Where did "we" fail ?
- > What's next ?

STEP 1: relaxing momentum and get finite conductivity

 $\sigma(\omega) = \sigma_0 + \frac{\rho^2}{\varepsilon + P} \frac{1}{1/\tau - i\omega}$

This is what Holography could do in 5th grade

What is the problem ? $au
ightarrow \infty$

The DC conductivity is infinite The system is translational invariant Not so useful for real cond-mat systems

Solution #1

[Submitted on 2 Apr 2012 (v1), last revised 3 Aug 2012 (this version, v2)]

Optical Conductivity with Holographic Lattices

Gary T. Horowitz, Jorge E. Santos, David Tong

2 A Holographic Lattice

The minimal ingredients necessary to compute conductivity in a holographic framework are provided by Einstein-Maxwell theory in AdS_4 . To this we add a neutral scalar field Φ which we will use to source the lattice. We work with the Lagrangian,

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{2} F_{ab} F^{ab} - 2\nabla_a \Phi \nabla^a \Phi - 4V(\Phi) \right], \qquad (2.1)$$

$$\Phi \to z\phi_1 + z^2\phi_2 + \mathcal{O}(z^3)$$

$$\phi_1(x) = A_0 \cos(k_0 x) \,.$$

Solution #2 : the first holographic revolution

[Submitted on 3 Jan 2013 (v1), last revised 15 Jan 2013 (this version, v2)]

Holography without translational symmetry

David Vegh

$$\frac{d}{dt}\vec{p}(t) = e\vec{E} - \frac{\vec{p}(t)}{\tau} \longleftrightarrow \mathcal{L}_I = \sqrt{-g} \, m^2(\delta g_{tx}) (\delta g^{tx})$$

Momentum relaxation

Massive graviton

dRGT massive gravity:
$$S = \frac{-1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R + \Lambda - \frac{L^2}{4} F^2 + m^2 \sum_{i=1}^4 c_i \mathcal{U}_i(g, f) \right]$$

Breaking the (spatial components) of the stress-energy tensor conservation

Lorentz violating massive gravity in AdS

Solution #2 : a more convenient way, the axion model

[Submitted on 20 Nov 2013 (v1), last revised 7 Dec 2013 (this version, v2)]

A simple holographic model of momentum relaxation

Tomas Andrade, Benjamin Withers

$$S_0 = \int_M \sqrt{-g} \left[R - 2\Lambda - \frac{1}{2} \sum_{I}^{d-1} (\partial \psi_I)^2 - \frac{1}{4} F^2 \right] d^{d+1}x$$

$$\sigma_{DC} = r_0^{d-3} \left(1 + (d-2)^2 \frac{\mu^2}{\alpha^2} \right)$$

Analytic DC conductivities

[Submitted on 18 Jun 2014 (this version), latest version 14 Oct 2014 (v4)]

Thermoelectric DC conductivities from black hole horizons

Aristomenis Donos, Jerome P. Gauntlett

$$\psi_I = \alpha_{Ia} x^a,$$

Birth of the "homogeneous" models

Advantages:

- Simple & analytic
- Doing the job
- Drude Physics (and more)

Disadvantages:

- What is this?
- No "real" lattice
- What is missing?

Clarifying an important point

Most general Lorentz violating massive gravity theory in Stueckelberg formalism

"generalized axion theory"

$$X \equiv \frac{1}{2} \operatorname{tr}[\mathcal{I}^{IJ}] = \frac{1}{2} \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{I} ; \qquad \left\langle \phi^{A} \right\rangle = x^{\mu} \delta^{A}_{\mu}$$
$$Z \equiv \operatorname{det}[\mathcal{I}^{IJ}] = \frac{1}{2} \left(\partial_{\mu} \phi^{I} \partial^{\mu} \phi^{I} \partial_{\nu} \phi^{J} \partial^{\nu} \phi^{J} - \partial_{\mu} \phi^{I} \partial^{\mu} \phi^{J} \partial_{\nu} \phi^{I} \partial^{\nu} \phi^{J} \right)$$

$$S_{\phi} \equiv \int d^4x \sqrt{-g} \,\mathcal{L}_{\phi} = -\int d^4x \sqrt{-g} \,V(X,Z) \;.$$

[Submitted on 30 Oct 2015]

Solid Holography and Massive Gravity

Lasma Alberte, Matteo Baggioli, Andrei Khmelnitsky, Oriol Pujolas

Retaining isotropy there is nothing more general you can do!

Well know fact in cosmology/gravity community

Solution #2 : more options, "same" physics

Helical lattices [Donos, Hartnoll 2012]

 $\phi = e^{ikx_1}\varphi$

Q-lattices [Donos, Gauntlett 2013]

$$\nabla_{\mu}J_{I}^{\mu\nu} = 0$$

Higher forms [Grozdanov, Poovuttikul, 2018] Same IR physics

Equivalent effective descriptions

[Submitted on 30 Aug 2017 (v1), last revised 11 Nov 2017 (this version, v2)] Conformal solids and holography

A. Esposito, S. Garcia-Saenz, A. Nicolis, R. Penco

"solidons"

[these two models on the bottom only for spontaneous breaking]

From solution #1 to solution #2

[Submitted on 14 Oct 2013 (v1), last revised 21 Feb 2014 (this version, v3)] Holographic Lattices Give the Graviton a Mass

Mike Blake, David Tong, David Vegh

 $\rightarrow \phi_{-} = \epsilon \cos(k_L x)$ $S_{\text{eff}} = \frac{1}{2} \int d^4x \sqrt{-g} M^2(r) g^{xx} \qquad M^2(r) = \frac{1}{2} \epsilon^2 k_L^2 \phi_0(r)^2$ Drude rate: $\Gamma \sim M^2(r_h) \sim \epsilon^2 k_L^2 \phi_0(r_h)^2$ [In the hydro limit, inhomogeneities are irrelevant! So why bother? ©]

Still something missing

Spontaneous breaking of translational symmetry (= these materials are solid)

Solution #1: holographic stripes

[Submitted on 4 Nov 2009 (v1), last revised 26 Nov 2009 (this version, v2)] Gravity Dual of Spatially Modulated Phase

Shin Nakamura, Hirosi Ooguri, Chang-Soon Park

- Finite wave-vector instabilities
 - Spontaneous formation of modulated structures
- "holographic charge density waves"

Lot of follow-up works:

- Different models
- More dimensions

Solution #2: homogeneous models

[same logic as before, periodic lattice structure does not (always) matter]

[Submitted on 8 Nov 2017]

Holographic Phonons

Lasma Alberte, Martin Ammon, Matteo Baggioli, Amadeo Jiménez-Alba, Oriol Pujolàs

Lesson #1: hydrodynamics, we have a problem

Martin Ammon, Matteo Baggioli, Seán Gray, Sebastian Grieninger

The hydrodynamic description is (wrong) incomplete

Holography driven EFT developments

[Submitted on 3 Aug 2019 (v1), last revised 14 Jan 2020 (this version, v3)] Viscoelastic hydrodynamics and holography

Jay Armas, Akash Jain

Complete and correct hydrodynamic description matching with holographic models

arXiv:2001.05737 [pdf, other] hep-th cond-mat.soft cond-mat.str-el doi 10.1016/j.physletb.2020.135691 On the Hydrodynamic Description of Holographic Viscoelastic Models Authors: Martin Ammon, Matteo Baggioli, Seán Gray, Sebastian Grieninger, Akash Jain

arXiv:2005.01725 [pdf, other] hep-th cond-mat.mes-hall cond-mat.str-el doi 10.1007/JHEP09(2020)037 Magnetophonons & type-B Goldstones from Hydrodynamics to Holography Authors: Matteo Baggioli, Sebastian Grieninger, Li Li

Ops, one more missing thing

Impurities and disorder pin the would-be Goldstone mode (more general: phason mode in incommensurate structures and aperiodic systems)

How we did it (without realizing it)

cond-mat.str-el

doi

A pseudo-Goldstone mode appears

10.1103/PhysRevLett.114.251602

 $\omega = \omega_0 - i\Omega + \dots$

At that time, we did not understand it ... Things changed around 2017...

arXiv:1708.08306 [pdf, other] hep-th 10.1007/JHEP02(2018)085 cond-mat.str-el ar-ac doi Pinning of longitudinal phonons in holographic spontaneous helices Authors: Tomas Andrade, Matteo Baggioli, Alexander Krikun, Napat Poovuttikul

arXiv:1708.08477 [pdf, other] hep-th doi

10.1007/JHEP01(2018)129

Black hole elasticity and gapped transverse phonons in holography Authors: Lasma Alberte, Martin Ammon, Matteo Baggioli, Amadeo Jiménez, Oriol Pujolàs

General low-energy description

Momentum relaxation rate
 Pinning frequency (or wave-vector)
 Goldstone (or "phase") relaxation

$$\dot{\delta}\phi^i = -\Omega\,\delta\phi^i + O(\nabla^i)$$

$$\delta f^{(2)} = \frac{B+G}{2} \left(\nabla^i \delta \phi_i\right)^2 + \frac{G}{2} \left(\nabla \times \delta \phi\right)^2 + \frac{G q_o^2}{2} \delta \phi_i \delta \phi^i \qquad \dot{\pi}^i + \nabla_j \tau^{ji} = -\Gamma \pi^i - G q_o^2 \delta \phi^i$$

(1) Is expected from explicit breaking of translations
(2) Is expected with spontaneous + explicit breaking (cfr. Pions)
(3) Is expected from topological defects (e.g., vortices in superfluids)

Our Goldstone relaxation is different! No defects around!

A simple way to see that it is different

arXiv:1904.05785 [pdf, other] hep-th doi 10.1007/JHEP09(2019)124

A Unified Description of Translational Symmetry Breaking in Holography

Authors: Martin Ammon, Matteo Baggioli, Amadeo Jiménez-Alba

$$\eta(\omega) \,\equiv\, \frac{1}{i\,\omega}\,\mathcal{G}^R_{T_{xy}T_{xy}}\left(\omega,k=0\right)$$

$$\eta(\omega) = \frac{G}{\Omega - i\,\omega} + \eta + \dots,$$

A different beast

A universal prediction from holography

 arXiv:1812.08118 [pdf, other] hep-th cond-mat.str-el doi 10.1103/PhysRevLett.123.211602

 Universal relaxation in a holographic metallic density wave phase

 Authors: Andrea Amoretti, Daniel Areán, Blaise Goutéraux, Daniele Musso

$$\Omega = Gq_o^2 \xi$$
$$\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^R_{\partial_t \phi^i \partial_t \phi^i}(\omega, k = 0)$$

I'm new!

Simple words: the Goldstone relaxation is not an independent parameter! It is slaved to the pinning frequency and properties of the spontaneous phase (Goldstone diffusivity and speed of sound)

Yes, it is really universal

It has been later recognized also in QCD

[Submitted on 6 May 2020 (v1), last revised 7 Jul 2020 (this version, v2)]

Transport and hydrodynamics in the chiral limit

Eduardo Grossi, Alexander Soloviev, Derek Teaney, Fanglida Yan

It is notable that the two independent scalars comprising the superfluid expansion scalar, $\partial_{\mu}(f^2 L^{\mu})$ and $U\mathcal{M}^{\dagger} - \mathcal{M}U^{\dagger}$, must have the same dissipative coefficient, $\zeta^{(2)}$.

arising from entropy considerations, was not recognized in the linearized analysis of dissipation by Son and Stephanov [4], which leads to an additional transport coefficient in their theory⁵.

It does not depend on the symmetry which is broken

arXiv:2111.10305 [pdf, other] hep-th cond-m

cond-mat.mes-hall cond-mat.str-el

doi 10.1007/JHEP03(2022)015

nucl-th

E.g. Pseudo-spontaneous *U*(1) Symmetry Breaking in Hydrodynamics and Holography Authors: Martin Ammon, Daniel Arean, Matteo Baggioli, Seán Gray, Sebastian Grieninger

In "superfluid" language
$$\Omega \,=\, \omega_0^2\,\zeta_3\,\chi_{
ho
ho} \,\,\,\,\,\, D_\xi \,=\, \zeta_3
ho_s/\mu$$

Derived later from EFT/hydro

10.1103/PhysRevLett.128.141601

[Submitted on 6 May 2020 (v1), last revised 7 Jul 2020 (this version, v2)]

Transport and hydrodynamics in the chiral limit

Eduardo Grossi, Alexander Soloviev, Derek Teaney, Fanglida Yan

Entropy production in hydrodynamics

 arXiv:2008.05339 [pdf, other] hep-th cond-mat.dis-nn cond-mat.mtrl-sci cond-mat.soft cond-mat.stat-mech doi 10.21468/SciPostPhys.9.5.062

 Effective Field Theory for Quasicrystals and Phasons Dynamics

 Authors: Matteo Baggioli, Michael Landry

Keldysh-Schwinger formalism : automatic !

doi

Damping of Pseudo-Goldstone Fields Authors: Luca V. Delacrétaz, Blaise Goutéraux, Vaios Ziogas

arXiv:2111.13459 [pdf, other] hep-th

"locality" in hydrodynamics

cond-mat.str-el

arXiv:2112.14373 [pdf, ps, other] hep-th cond-mat.soft cond-mat.str-el hep-ph Approximate symmetries, pseudo-Goldstones, and the second law of thermodynamics Authors: Jay Armas, Akash Jain, Ruben Lier

Entropy production in hydrodynamics

Finally, a(nother) proposal for our beloved strange metals

arXiv:2111.13459 [pdf, other] hep-th cond-mat.str-el

doi 10.1103/PhysRevLett.128.141601

Damping of Pseudo-Goldstone Fields Authors: Luca V. Delacrétaz, Blaise Goutéraux, Vaios Ziogas

Restoring charge and heat fluctuations and assuming approximate invariance under Galilean boosts, the resistivity is (see appendix)

$$\rho_{\rm dc} = \frac{m^{\star}}{ne^2} \left(\Gamma + \frac{\omega_o^2}{\Omega} \right) = \frac{m^{\star}}{ne^2} \left(\Gamma + \frac{c_s^2}{D} \right) \,, \qquad (24)$$

$$\rho_{\rm dc} \simeq \frac{m^{\star}}{ne^2} \left(\Gamma + \frac{k_B T}{\hbar} \right)$$

Electron irradiated Optimally doped

Phys. Rev. Lett. 91, 047001, (2023)

Slope independent of momentum relaxation rate

https://thegrumpyscientist.com

Holography is certainly useful.

Holography has greatly contributed to EFT/hydrodynamics (even when not needed). Holography has generated a new perspective in many condensed-matter problems (and not only). Holography has prompted efforts from field theory, hydrodynamics and even experiments. Is a big prediction missing? Maybe, but it is only 25 years old ... Just on time for thinking seriously about its future

Holography@25

School: June 5-13, 2023, Workshop: June 14-17, 2023

São Paulo, Brazil

ICTP-SAIFR/IFT-UNESP

