Surface operators and holographic M2-branes

Nadav Drukker

King's College London

Based on:

arXiv:2003.12372 with M. Probst and M. Trépanier arXiv:2004.04562 with S. Giombi, A. Tseytlin and X. Zhou arXiv:2009.10732 with M. Probst and M. Trépanier arXiv:2012.11087 with M. Trépanier arXiv:2111.09385 with M. Trépanier arXiv:2204.12627 with M. Trépanier arXiv:2210.07251 with M. Trépanier arXiv:23??.???? with O. Shahpo and M. Trépanier

June, 2023

Holography at 25 — ICTP SAIFR

- Approach the 6d $\mathcal{N} = (2, 0)$ theory from its surface operator observables.
- Throw at it all tools that worked for Wilson loops in $\mathcal{N} = 4$ SYM.
- Learn more nonperturbative methods in CFTs.

Outline

- Old observables:
 - String-antistring potential.
 - Anomaly coefficients.
- New BPS surface operators.
- New observables:
 - VEVs of anomaless surfaces (torus).
 - BPS and non-BPS creases: "Generalised string-antistring potential."

Old observables

- An M2-brane ends on a 2-surface on the boundary of $AdS_7 \times S^4$
- Simplest configuration: Flat \mathbb{R}^2 .

• Next simplest: A sphere. [Berenstein, Corrado] [Fischler, Maldacena]

Next simplest: A pair of planes.
 [Maldacena]
 equal to:

$$\log \langle V_{\parallel} \rangle = \frac{8N\sqrt{\pi}\,\Gamma(2/3)}{\Gamma(1/6)^3} \frac{\text{Area}}{R^2}.$$

Anomalies [Deser]

- Calculating correlation functions of local operators gives rise to logarithmic divergences, which account for anomalous dimensions.
- Smooth line operators have finite expectation values.
- Cusped Wilson loops have anomalies and the anomaly of the almost straight cusp is related to the Bremsstrahlung function.
- Surface operators again have logarithmic divergences, signalling anomalies.

$$\log \langle V_{\Sigma} \rangle \sim \frac{1}{4\pi} \log \epsilon \int_{\Sigma} \operatorname{vol}_{\Sigma} \left[a_1 \mathcal{R}^{\Sigma} + a_2 \left(H^2 + 4 \operatorname{tr} P \right) + b \operatorname{tr} W + c (\partial n)^2 \right].$$

- R^{Σ} is the Ricci scalar on Σ .
- *H* is the mean curvature
- *P* the pullback of the Schouten tensor.
- *W* is the pullback of the Weyl tensor.
- $(\partial n)^2 = \bar{\partial}_m n^i \partial^m n^i$ are couplings to scalar fields.

Holographic anomalies [Graham]

- Near boundary analysis of generic M2-brane in $AdS_7 \times S^4$
- The result is

- Using defect CFT techniques we proved that $a_2 = -c$ and b = 0. [ND, Probst, Trépanier]
- Exact expressions for *a*₁ and *a*₂ exist for all *N* and any representation. For the fundamental representation they are

[Wang] Chalabi, Estes, Jensen, Krym [ND, Giombi O'Bannon, Robinson, Rogers, Sisti] [ND, Giombi Tseytlin, Zhou]

$$a_1^{(N)} = \frac{1}{2} - \frac{1}{2N}$$
, $a_2^{(N)} = -N + \frac{1}{2} + \frac{1}{2N}$.

• For a spherical surface or radius *R*

$$\langle V_{S^2} \rangle \propto \frac{1}{R^{2a_1+4a_2}} = R^{4N-3-1/N} \,.$$

Nadav Drukker

Surface Operators

Is this all?

BPS surface operators [ND, Trépanier]

- The theory has 32 supercharges.
- "Locally BPS" operators have a half-rank projector at every point along the surface.
 - Generally more than one half-rank projector equation will only have a trivial solution.
- Want compatible equations at all points along the surface.
 - The plane has the same equation at all points, hence globally 1/2 BPS.
- Found 4 classes (and several subclasses) of geometries that allow for BPS observables, with appropriate choice of *n*^{*i*}:
 - Type- \mathbb{R} : Any curve in \mathbb{R}^5 times a line.
 - Type- \mathbb{C} : Any holomorphic curve in $\mathbb{R}^6 \sim \mathbb{C}^3$
 - Type- \mathbb{H} : Any surface in $\mathbb{R}^4 \subset \mathbb{R}^6$.
 - Type-*S*: Any surface in $S^3 \subset \mathbb{R}^6$.

Type-ℝ

A curve in \mathbb{R}^5 extended over x^6 :

$$x^{i}(u) \subset \mathbb{R}^{5} \ (i = 1, \dots, 5) \text{ and } x^{6} = v,$$

 $n^{i}(u, v) = \frac{\partial_{u} x^{i}}{|\partial_{u} x|}.$

- Restricting the curve to \mathbb{R} , we get a plane.
- With a curve in \mathbb{R}^2 can make a crease.
- They are uplifts of "Zarembo Wilson loops" in $\mathcal{N} = 4$ SYM.
- No anomaly.
- Finite quantity: VEV per unit length.

We choose a complex structure such that $\mathbb{R}^6 \cong \mathbb{C}^3$ and take any surface which is holomorphic, with fixed $n^i = \delta^{i5}$.

- Generally preserve two supercharges.
- In \mathbb{C}^2 preserves 4.
- In \mathbb{C} , it's just the plane, so 16.
- The anomaly is

$$\int_{\Sigma} \mathcal{A}_{\Sigma}^{\mathbb{C}} \operatorname{vol}_{\Sigma} = a_1 \chi(\Sigma) \,.$$

Type-ℍ

Arbitrary surface in $\mathbb{R}^4 \subset \mathbb{R}^6$. n^i chosen from the tangent space by projecting to the self-dual part, which is in S^2

$$n^{i} = \epsilon^{ab} \eta^{i}_{\mu\nu} \partial_{a} x^{\mu} \partial_{b} x^{\nu}$$

- Generally preserve a single supercharge.
- Restricting to \mathbb{R}^3 preserve two supercharges.
- Lagrangian manifolds: $n^i \in S^1$ preserve two supercharges.
- Anomaly related to degree of Gauss map.

Type-S

Take $x^{\mu} \in S^3$ and n^i according to

$$n^i = rac{1}{2} \epsilon^{ab} \epsilon^{ijkl} \partial_a x^j \partial_b x^k x^l \, .$$

- Generic surface preserves two combination of Q and S supercharges.
- Restricting to S^2 gives the 1/2 BPS sphere.
- Can construct spherical crease, which is 1/4 BPS.
- Infinitesimal surfaces lead to the same as the ℝ³ restriction of Type-Ⅲ.
- Anomaly includes topological part and part related to the area of the surface

$$\int \mathcal{A}_{\Sigma}^{S} \operatorname{vol}_{\Sigma} = (a_{1} + a_{2}) \chi(\Sigma) + a_{2} \frac{\operatorname{vol}(\Sigma)}{2\pi} \,.$$

Calibrated surfaces

• A BPS M2-brane satisfies a projection equation of the form

$$-\frac{i}{6}\varepsilon\Gamma_{MNP}\partial_m X^M \partial_n X^N \partial_p X^P \varepsilon^{mnp} = \varepsilon \,,$$

• For any preserved supercharge ε , can define a 3-form

$$\phi = -i \frac{\varepsilon \Gamma_{MNP} \varepsilon^{\dagger}}{\varepsilon \varepsilon^{\dagger}} dX^{M} \wedge dX^{N} \wedge dX^{P}$$

• We could reduce the equations of motion to first order as

$$\partial_m X^M = \frac{1}{2} g_{ml} \varepsilon^{lnp} G^{ML} \phi_{LNP} \partial_n X^N \partial_p X^P$$

If φ is closed, the brane is a calibration: its action is equal to the integral of the form on any brane of the same homology class.
 [Harvey][Dymarsky, Gubser J[Joyce]

$$S = T_{M2} \int_V \phi \,.$$

Nadav Drukker

Surface Operators

• Using the metric

$$ds^2 = \frac{y}{L}dx_m dx_m + \frac{L^2}{y^2}dy_i dy_i \,,$$

• The forms for type- \mathbb{R} , \mathbb{H} and \mathbb{C} are

$$\begin{split} \phi^{\mathbb{R}} &= -dx_6 \wedge \sum_{I=1}^5 \left(dx_i \wedge dy_i \right) \,. \\ \phi^{\mathbb{H}} &= \frac{1}{2} \eta_{I\mu\nu} \, dx_\mu \wedge dx_\nu \wedge dy_I - \left(\frac{L}{y}\right)^3 dy_1 \wedge dy_2 \wedge dy_3 \,. \\ \phi^{\mathbb{C}} &= \left(dx_1 \wedge dx_2 + dx_3 \wedge dx_4 + dx_5 \wedge dx_6 \right) \wedge dy_1 \,. \end{split}$$

• All are exact, so we can integrate to the boundary and find that if there is no anomaly

$$S_{\rm ren} = -\frac{N}{4\pi} \int_{\Sigma} \sqrt{h} H_{\nu} H_{\nu} d^2 \sigma + \mathcal{O}(y^{-1}) \,.$$

Lagrangian surfaces

• Surfaces of type- \mathbb{H} are restricted to \mathbb{R}^4 . If the pullback of the symplectic from $\omega_0 = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$ to the surface

$$\omega_0|_{\Sigma}=0\,,$$

the surface is Lagrangian.

- The image of the Gauss map is now in *S*¹ and SUSY is doubled.
- Can define two calibration forms $\phi^{\mathbb{H}}$, $\phi^{\overline{\mathbb{H}}}$ satisfying

$$\phi^L|_V \equiv \frac{1}{2} \left[\phi^{\mathbb{H}} + \phi^{\overline{\mathbb{H}}} \right]_V = \operatorname{vol}_V, \qquad \left(\phi^{\mathbb{H}} - \phi^{\overline{\mathbb{H}}} \right)|_V = 0.$$

• Eplicitly

 ϕ

$$\phi^{L} = (dx_1 \wedge dx_4 + dx_2 \wedge dx_3) \wedge dy_1 + (dx_3 \wedge dx_1 + dx_2 \wedge dx_4) \wedge dy_2,$$
$$^{\mathbb{H}} - \phi^{\overline{\mathbb{H}}} = 2\left(dx_1 \wedge dx_2 + dx_3 \wedge dx_4 - \left(\frac{L}{y}\right)^3 dy_1 \wedge dy_2\right) \wedge dy_3.$$

• We can define a special Kähler structure on the 6d space with constant $y_{4,5,6}$, $x_{5,6}$ and the minimal M2 is special Lagrangian.

Nadav Drukker

Surface Operators

Summary

Туре	Geometry	n^{I} in	SUSYs	Also in	Anomaly
R	$\mathbb{R} imes\gamma$, $\gamma\subset\mathbb{R}^5$	S^4	1 Q		
	$\mathbb{R} imes\gamma$, $\gamma\subset\mathbb{R}^4$	S^3	1 Q		0
	$\mathbb{R} imes\gamma$, $\gamma\subset\mathbb{R}^3$	S^2	2 Q	H	0
	$\mathbb{R} imes\gamma$, $\gamma\subset\mathbb{R}^2$	S^1	4 Q	H	
C	$\Sigma \subset \mathbb{C}^3$ (holo.)	point	2 Q		NOC
	$\Sigma \subset \mathbb{C}^2$ (holo.)	point	4 Q	H, L	yes
H	$\Sigma \subset \mathbb{R}^4$	<i>S</i> ²	1 Q		
subclass $\begin{cases} L \\ N \end{cases}$	Lagrangian	S^1	2 Q		yes
	$\Sigma \subset \mathbb{R}^3$	S^2	2 Q	(S)	
S	$\Sigma \subset S^3$	S^3	2 (Q + S)		yes

Special examples with enhanced SUSY

Name	Туре	Geometry	n^{I} in	SUSYs	see
cones	H H, N	over $\gamma \subset S^3$ over $\gamma \subset S^2$	S^2 S^2	Q, S 2Q, 2S	Mezei Pufu Wang
crease	$\mathbb{R},\mathbb{H},\mathbb{N}$	2 half-planes	S^0	$4Q,4S\subset\mathfrak{osp}(4^* 2)$	[Agmon Wang]
tori	S	$T^2 \subset S^3$	S^4	2(Q + S)	
	Ⅲ, L	$T^2 \subset \mathbb{R}^4$	S^1	2Q, 2S	
	Ⅲ, N	$S^2 \subset \mathbb{R}^3$	S^2	2Q, 2S	ر Berenstein
spheres	S	latitude $S^2 \subset S^3$	S^3	4(Q+S)	Fischler
	S	large $S^2 \subset S^3$	point	$16(Q+S)\subset\mathfrak{osp}(4^* 2)^2$	L Maldacena L
plane	$\mathbb{R} \mathbb{C} \mathbb{H} L N$	\mathbb{R}^2	point	$8Q,8S\subset\mathfrak{osp}(4^* 2)^2$	[Maldacena]

Having evaluate the anomaly coefficients, need new observables.

- If $\int A_{\Sigma} = 0$, the surface has no anomaly and a finite VEV.
 - Type-.
 - Lagrangian surface of type-ℍ.
 - Other fine-tuned examples.
- The anomaly density is

$$\mathcal{A}_{\Sigma} = a_1 \mathcal{R}^{\Sigma} + c \left((\partial n)^2 - \left(H^2 + 4 \operatorname{tr} P \right) \right).$$

Torus

A flat torus in \mathbb{R}^4 is Lagrangian and of type- \mathbb{H} , so anomaless

• Explicitly

$$x^1 = R_1 \cos \varphi_1,$$
 $x^2 = R_1 \sin \varphi_1,$
 $x^3 = R_2 \cos \varphi_2,$ $x^4 = R_2 \sin \varphi_2.$

with fixed R_1 , R_2 and scalar couplings

 $n^1 = -\sin(\varphi_1 + \varphi_2), \qquad n^2 = \cos(\varphi_1 + \varphi_2).$

• Preserves 4 supercharges.

Holographic torus

• With metric

$$ds^2 = \frac{y}{L} dx^\mu dx^\mu + \frac{L^2}{y^2} dy^I dy^I ,$$

• Take ansatz

$$\begin{aligned} x^1 &= r_1(\rho) \cos \varphi_1 \,, \qquad x^2 &= r_1(\rho) \sin \varphi_1 \,, \\ x^3 &= r_2(\rho) \cos \varphi_2 \,, \qquad x^4 &= r_2(\rho) \sin \varphi_2 \,, \\ y_1 &= -\rho \sin(\varphi_1 + \varphi_2) \,, \qquad y_2 &= \rho \cos(\varphi_1 + \varphi_2) \,, \qquad y_3(\rho) \,. \end{aligned}$$

• Solution:

$$y_{3} = \text{const},$$

$$r_{1}^{2}(\rho) = R_{1}^{2} - \frac{2L^{3}}{\sqrt{\rho^{2} + y_{3}^{2}}} = R_{1}^{2} - \frac{2L^{3}}{y},$$

$$r_{2}^{2}(\rho) = R_{2}^{2} - \frac{2L^{3}}{\sqrt{\rho^{2} + y_{3}^{2}}} = R_{2}^{2} - \frac{2L^{3}}{y}.$$

Torus VEV

• action:

$$S = \frac{\pi N y}{L^3} R_1 R_2 - \pi N \left(\frac{R_1}{R_2} + \frac{R_2}{R_1} \right).$$

Agrees with results from calibration form.

• If we take $R_1 \rightarrow \infty$ we get a cylinder of length $D = 2\pi R_2$ and expect an extensive expression

$$\left\langle V_{\mathbb{R}\times S^1} \right\rangle = \exp \frac{s_1 D}{2\pi R_2}$$

- Indeed we find $s_1 = \pi N$.
- For general N expect

$$\log \langle V_{T^2} \rangle = s_0 + s_1 \left(\frac{R_1}{R_2} + \frac{R_1}{R_2} \right).$$

What are $s_0(N)$ and $s_1(N)$ beyond the large N limit? $s_0(1) = s_1(1) = 0.$

Nadav Drukker

Crease

- Surface extended in x³ direction and a cusp of angle φ in the (x¹, x²) plane.
- Allow to couple to two scalars with angle θ .
- $\mathfrak{so}(2,1) \oplus \mathfrak{so}(3) \oplus \mathfrak{so}(3)$ symmetry.
- For $\phi = \theta$, it is 1/4 BPS and preserves $\mathfrak{osp}(4^*|2)$.
- Log of expectation value extensive in area of half plane with hyperbolic metric, so vanishes.
- Alternative picture: Spherical crease. Two hemispheres glued along the equator.

• Alternative: conformal transform to $\mathbb{H}_2 \times S^4$:

$$ds^{2} = du^{2} + \cos^{2} u \, dv^{2} + \sin^{2} u \, d\Omega_{4}^{2}$$
$$= \frac{1}{\cosh^{2} \rho} \left(d\rho^{2} + \sinh^{2} \rho \, dv^{2} + d\Omega_{4}^{2} \right).$$

Generalised potential

• Finite observable is ratio

$$U(\phi, heta) = rac{1}{2\pi}\lograc{V_{\phi, heta}}{V_{S^2}}$$
 .

 -2π is the regularized area of \mathbb{H}_2 .

- Same anomaly for numerator and denominator $\langle V_{S^2} \rangle \sim 1/R^{2a_1+4a_2}$.
- In the abelian theory:

$$U^{(1)}(\phi,\theta) = \frac{1}{2\pi} \left(\log \cos \phi + \frac{\cos^2 \phi - \cos^2 \theta}{2\cos^2 \phi} \right).$$

• In *AdS*:

$$U^{(N)}(\phi,\theta) = \frac{N}{\pi} \left(\log \cos \phi - (\phi - \theta) \tan \phi - \frac{(\phi - \theta)^2}{2} \left[\frac{1}{\cos^2 \phi} + \frac{2 \tan^3 \phi}{3(\phi - \tan \phi)} \right] + \dots \right)$$

Defect CFT

• We can prove using dCFT techniques that

$$U(\phi,\theta) = U(\phi,\phi) + (\phi-\theta)\frac{dU(\phi,\phi)}{d\phi} + \dots$$

- Analog of the "generalized bremsstrahlung function".
 [Correa, maldacena, Sever]
- Missing proof of

$$U(\phi, \phi) = \frac{c}{\pi} \log \cos \phi$$
,

with *c* the anomaly coefficient.

Comparison to Wilson loops

Wilson loop	Surface operator	
Circle: $\langle \mathbf{M} \rangle = \frac{1}{2} I I (\lambda / \Lambda \mathbf{N}) e^{\lambda / 8N}$	Cylinder: $\langle V_{\mathbb{R}\times S^1} \rangle = \exp\left(\frac{NT}{2D} + \cdots\right)$	
Circle: $\langle vv_{\circ} \rangle = \overline{N}L_{N-1}(-\lambda/4Iv)e^{-\lambda}$	Sphere: $\langle V_{S^2} angle \propto R^{4N-3-rac{1}{N}}$	
Two longitudes:	BPS crease:	
$\langle W_{\phi} angle = \langle W_{\circ}((1 - rac{\phi^2}{\pi^2})\lambda) angle$	$\langle V_{\phi,\phi} \rangle / \langle V_{S^2} \rangle \stackrel{?}{=} \cos^{2N-1-\frac{1}{N}} \phi$	
Bremsstrahlung function:	Near BPS:	
$B = \frac{1}{2\pi^2} \lambda \partial_\lambda \log \langle W_{\circ} \rangle$	$\partial_{\phi} \log \frac{\langle V_{\phi,\phi} \rangle}{\langle V_{S^2} \rangle} \stackrel{?}{=} -(2N-1-\frac{1}{N}) \tan \phi$	

Conclusion and outlook

- Surface operators are natural observables in the 6d theory.
- They are similar to Wilson loops.
- We can generalize some of the tools used for line operators to study the surface operators.
- We found relations among *b*, *a*₂ and *c*.
- Found very rich examples of BPS observables.
- Started calculating finite quantites
 - Torus and cylinder.
 - Crease: $U(\phi, \theta)$.
- First signs of exact results in $\log \cos \phi$ and its derivative.

The end