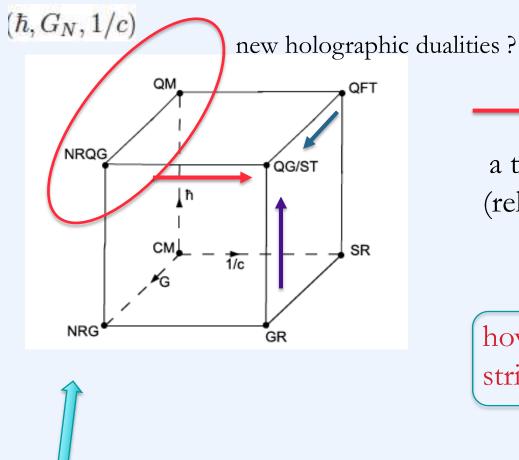
Non-relativistic corners in String Theory and AdS/CFT

Holography@25, ICTP-SAIFIR, Sao Paulo, June 14, 2023 Niels Obers (Nordita & Niels Bohr Institute)

based on work:

to appear **230y.xxxxx** (Bidussi,Harmark,Hartong,NO,Oling) **2107.006542** (JHEP) (Bidussi,Harmark,Hartong,NO,Oling) 2011.02539 (JHEP) (Harmark,Hartong,NO,Oling) 1907.01663 (JHEP) (Harmark,Hartong,Menculini,NO,Oling) & 1810.05560 (JHEP) (Harmark,Hartong,Menculini,NO,Yan) 1705.03535 (PRD) (Harmark,Hartong,NO)

Non-relativistic physics and cube of physical theories



a third route towards (relativistic) quantum gravity

how does this fit with string theory/holography?

already (classical) non-relativistic gravity (NRG) is more than just Newtonian gravity

Non-Lorentzian geometries

recent progress in understanding non-relativistic corners of: gravity, quantum field theory and string theory:

→ builds on improved understanding of non-Lorentzian geometries
= spacetimes with local symmetries other than Lorentz

NL geometries appear in:

- bdry geometries in non-AdS holography (e.g. Lifshitz flat space)
- covariant formulations of PN approximation in GR
- covariant formulations of non-Lorentzian fluids and CMT systems (FQHE, fractons, ..)
- Horava-Lifshitz gravity, non-relativistic versions of CS, JT
- cosmology, black hole horizons, ultra-local GR (Carroll)
- double field theory
- non-relativistic corners of String Theory
- near-BPS limits of string theory on AdS5 × S5

Why non-relativistic (NR) string theory?

- can we learn more about ordinary string theories from NR techniques
- what is landscape of UV complete non-Lorentzian theories (certain NR strings contained in double field theory)
- D-branes/open strings in non-Lorentzian string theory?
- can we build explicit examples of holographic dualities ?
- is NRQG a well-defined corner and does it have a ST description ?

Main messages

- non-relativistic strings naturally appear in the AdS/CFT corr.

- NR strings from near-BPS limits in N=4 SYM
- resulting sigma models are part of a larger landscape of NR strings:

NR string theory from near-critical B-field (Gomis, Ooguri/Danielsson et al)

curved spacetime generalization (still 2D CFTs): strings with Lorentzian worldsheet/probing non-Lorentzian target space time

Further world-sheet limit gives:

Galilean string (with non-relativistic worldsheet)

 \rightarrow novel class of sigma models that includes NR AdS/CFT corners

(Note: dual limit gives Carrollian string - relevant for AdS/CFT?)

NR strings from N=4 SYM

Spin Matrix theory (SMT) limits of AdS/CFT obtained by zooming unitarity bounds of N=4 SYM on RxS3: in on Harmark/Orselli (2014)

$$\lambda \to 0$$
 , $\frac{E-Q}{\lambda} = \text{fixed}$

Q = linear sum of Cartan charges of PSU(2,2|4)

Kruczenski (0311)

 \rightarrow N=4 SYM simplifies and becomes QM theory

- reduces to nearest-neighbor spin chains in planar N limit

low energy excitations of spin chains = magnons

$$E - Q = \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}} - 1$$
 becomes in
SMT limt:
$$H - Q = \frac{g}{2\pi^2} \sin^2 \frac{p}{2}$$
non-relativistic non-relativistic

- semi-classical limits of spin chains become sigma models: e.g. Landau-Lifshitz model $\mathcal{L}_{\rm LL} = \frac{J}{4\pi} \left[\sin\theta \dot{\phi} - \frac{1}{4} \left((\theta')^2 + \cos^2\theta (\phi')^2 \right) \right]$ for SU(2) sector

Stringy side of SMT gives NR sigma models

- using AdS/CFT dictionary: SMT (near-BPS) limit can be formulated as limit of type IIB string theory on AdS5xS5
 - correspond to non-relativistic world-sheet strings !
- → LL model (and generalizations for other near-BPS sectors) is example of a novel class of non-relativistic worldsheet strings with a non-Lorentzian target spacetime

- one of target space dimensions = position along the spin chain (zero momentum because of cyclicity of trace)

- strongly suggests: bulk description of SMT is a type of NR gravity

new class of flat-fluxed backgrounds obtained recently: analogue of flat Minkowski space using Penrose type limits
natural starting point to quantize the theory

NR strings

NR strings on flat spacetime = Gomis-Ooguri string

Gomis,Ooguri(2000); Danielsson et al.(2000);

→ Non-Lorentzian (stringy Newton-Cartan) geometries when spacetime is curved

Andringa et al (2012), Harmark, Hartong, NO(2017); Bergshoeff, Gomis, Yan(2018); Harmark, Hartong, Menculini, NO, Yan(2018); Gomis, Oh, Yan(2019); Gallegos, Gursoy, Zinnato(2019), Harmark, Hartong, Menculini, NO, Oling(2019); Bergshoeff, Gomis, Rosseel, Simsek, Yan(2019); Kluson (2018/19), Yan (2021), Bergshoeff, Lahnsteiner, Romano, Rosseel, Simsek (2021); Bidussi, Harmark, Hartong, NO, Oling (2021); (& many more refs since then)

also:

- tensionless strings

e.g.Lindstrom,Sundborg,Theodoridis(1991) Bagchi,Gopakumar(2009) Bagchi,Banerjee,Parekh(2019)

- Galilean strings

Battle,Gomis,Not(2016))

- relation to double field theory

Ko,Melby-Thompson,Meyer,Park(2015) Morand,Park(2017);Berman,Blair,Otsuki(2019);Blair(2019)

NR strings (on flat spacetime)

Gomis,Ooguri(2000); Danielsson et al.(2000)

zero Regge slope limit of relativistic string theory in near-critical B-field

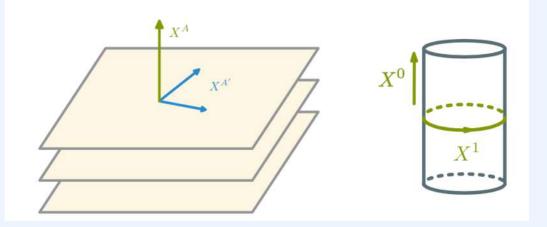
$$S = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \sqrt{h} \left(h^{\alpha\beta} \,\partial_{\alpha} X^{A'} \,\partial_{\beta} X_{A'} + \lambda \,\bar{\mathcal{D}} X + \bar{\lambda} \,\mathcal{D} \overline{X} \right),$$

in conformal gauge:

$$S = \frac{1}{4\pi\alpha'} \int_{\Sigma} d^2\sigma \left(\partial_{\alpha} X^{A'} \, \partial^{\alpha} X_{A'} + \lambda \, \bar{\partial} X + \bar{\lambda} \, \partial \overline{X} \right),$$

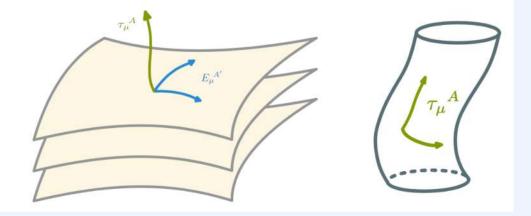
- Galilean invariant dispersion relation
- no massless physical states
- low-energy effective theory described by Newton-like gravity
- all asymptotic states carry non-zero winding along (compact) X1
- space-time S-matrix with NR symmetry

Gomis/Ooguri NR string lives in flat space



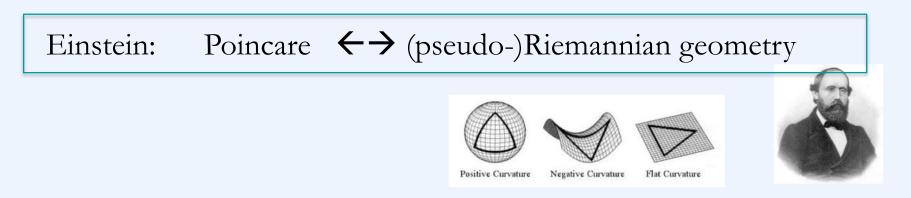
figures from review on NRST Gerben Oling & Ziqi Yan (2202.12698)

Q: what is the general target space probed by NR strings ?



Space-Time symmetries and Geometry

local symmetries of space and time $\leftarrow \rightarrow$ geometry of space and time

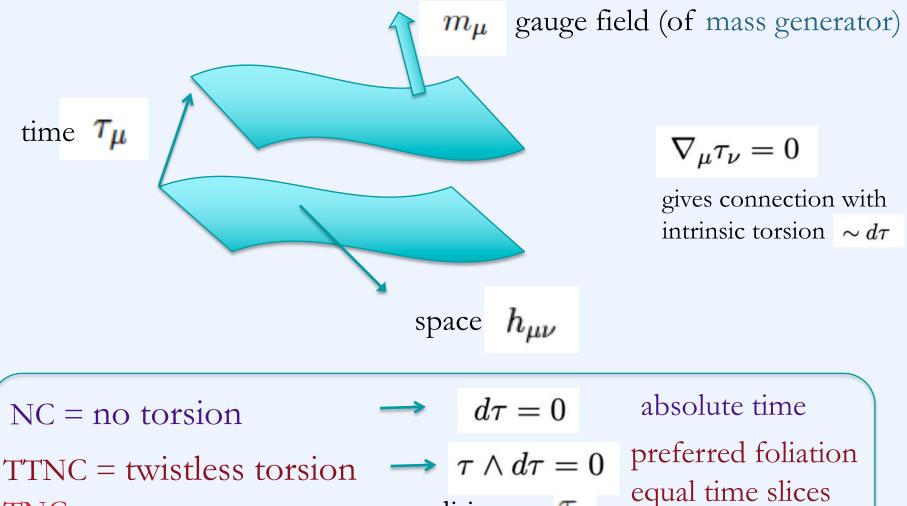


Cartan: Galilean/Bargmann $\leftarrow \rightarrow$ Newton-Cartan geometry

[Eisenhart, Trautman, Dautcourt, Kuenzle, Duval, Burdet, Perrin, Gibbons, Horvathy, Julia, Nicolai, ...] ..

- geometrize Poisson equation of Newtonian gravity falling observers see Galilean laws of physics

torsional Newton-Cartan geometry (NR particles)



no condition on au_{μ}

TNC

Christensen, Hartong, NO, Rollier (2013)

Coupling of non-relativistic particle to TNC geometry

two routes:

- null-reduction of relativistic particle
- c \rightarrow infinity of extremal charged particle

 $q = mc^2$.

$$S = \frac{m}{2} \int \frac{h_{\mu\nu} \dot{X}^{\mu} \dot{X}^{\nu}}{\tau_{\rho} \dot{X}^{\rho}} d\lambda - m \int m_{\mu} \dot{X}^{\mu} d\lambda \qquad [Kuchar], Bergshoeff et all kinetic term potential term: coupling to m_{μ}
 $m_{0} \sim Newtonian potential T^{\mu} = m \int d\tau \, \partial_{\tau} X^{\mu} \delta(x - X(\tau)) \qquad mass current$$$

• action has TNC local target space symmetries

Non-relativistic string on curved spacetime

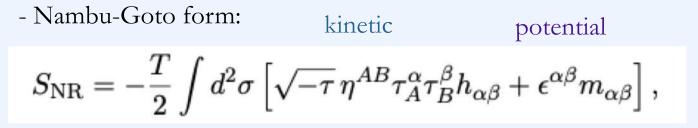
two routes:

- null reduction of relativistic string action (`light-like T-duality' along null isometry)
- c → infinity limit in near-critical B-field of relativistic string action (F-strings extremally charged under B-field: tension = charge)

 \rightarrow NR strings move in torsional string Newton-Cartan geometry:

- Riemannian geometry (transverse) fibered over 2-dimensional Lorentzian base (longitudinal)
- pullback of longitudinal base on the worldvolume
 = Lorentzian metric on worldsheet

NRST action on TSNC target space



A = 0,1 : longitudinal directions a= 2,...D-1: transverse directions alpha = sigma,tau: world-sheet

 $h_{\mu\nu} = e^a_\alpha e^b_\beta \delta_{ab}$

torsional string Newton–Cartan geometry : τ_{μ}^{A} , $h_{\mu\nu}$, $m_{\mu\nu}$.

 $m_{\mu\nu}$. couples to worldsheet tension current $J_{\rm T}^{\mu\nu} = T \int d^2\sigma \,\epsilon^{\alpha\beta} \partial_\alpha X^\mu \partial_\beta X^\nu \delta(x - X(\sigma^\alpha)),$

TSNC Polyakov action:

$$\begin{split} S &= -\frac{T}{2} \int d^2 \sigma \Big[\sqrt{-\gamma} \, \gamma^{\alpha\beta} \partial_\alpha X^M \partial_\beta X^N h_{MN} + \epsilon^{\alpha\beta} \partial_\alpha X^M \partial_\beta X^N m_{MN} \\ &+ \lambda \epsilon^{\alpha\beta} e^+_{\ \alpha} \tau^+_{\ M} \partial_\beta X^M + \bar{\lambda} \epsilon^{\alpha\beta} e^-_{\ \alpha} \tau^-_{\ M} \partial_\beta X^M \Big] \,, \end{split}$$

Symmetries of the TSNC action

- 2-form gauge syms: $\bar{\delta}m_{\mu\nu} = 2\partial_{[\mu}\lambda_{\nu]}$.
- transverse string Galilean boosts:

$$\bar{\delta}h_{\mu\nu} = -\lambda_{Ab}\left(au^A_\mu e^b_
u + au^A_
u e^b_\mu
ight) \quad , \quad \ \ ar{\delta}m_{\mu\nu} = -2\epsilon_{AB}\lambda^B_{\ c} au^A_{[\mu}e^c_{
u]}.$$

- longitudinal Lorentz boosts
- → string analogue of the symmetries of NR particle coupling to Newton-Cartan

Remarks

- beta functions/effective spacetime actions for the NR string obtained in various different formulations/using different methods

Gomis,Oh,Yan(2019); Bergshoeff,Gomis,Rosseel,Simsek,Yan(2019); Yan,Yu(2019) Bergshoeff et al (2021); Yan (2021); Gallegos,Gursoy,Zinnato(2019); Gallegos,Gursoy,Verma,Zinnato(2020);....

→ describe the dynamics of (versions of) non-relativistic (super-) gravity

- limits vs. expansions

- limit geometry: type I (cancellation of divergent term)
- geometry from expansion: type II (each term in the action generates more gauge fields)

van den Bleeken (2018), Hansen, Hartong, NO (2019, 2020)

Hartong, Have (2021, 2022)

Galilean limit of TSNC string

start with NR string action

$$\mathcal{L} = rac{T_{
m NR}}{2} \left[au \left(au_0^lpha au_0^eta - ilde{c}^2 au_1^lpha au_1^eta
ight) h_{lphaeta} - arepsilon^{lphaeta} m_{lphaeta}
ight]$$

worldsheet scaling limit: $\tilde{c} \rightarrow \infty$ (also rescale tension and m-field)

 $T_{\rm NR} = T_G \tilde{c}^{-2}$

gives Nambu-Goto action of Galilean string

$$S=-rac{T}{2}\int d^2\sigma \Big[\sqrt{- au}\, au_1{}^lpha au_1{}^eta h_{lphaeta}+\epsilon^{lphaeta}m_{lphaeta}\Big]\,,$$

- symmetries:
- longitudinal Galilei & transverse string Galilei boosts
- 2-form gauge trafos

 will see: reduces for subclass of spacetimes to actions found in near-BPS SMT decoupling limits of AdS/CFT

Galilean string (cont'd)

partial gauge fixing $\tau_{\sigma}^{0} = \tau_{M}^{0} X'^{M} = 0.$ residual gauge symmetries $\tau \to \tilde{\tau}(\tau)$ and $\sigma \to \tilde{\sigma}(\tau, \sigma)$

static gauge $X^t = a\tau$, $X^v = wR_v\sigma + f(\tau)$

 $X^v \sim X^v + 2\pi R_v$ and w > 0 is the winding number.

- EOM of f: level matching constraint

take: $\tau_M^0 dx^M = dt$ and $\tau_M^1 dx^M = dv$. $X^M = (X^t, X^v, X^i)$

Lagrangian of Galilei string takes form:

$$\mathcal{L} = T \left[m_{iv} \left(\dot{X}^{v} X'^{i} - \dot{X}^{i} X'^{v} \right) - \frac{\dot{X}^{t}}{2X'^{v}} h_{ij} X'^{i} X'^{j} - \frac{1}{2} (h_{tt} + 2m_{tv}) \dot{X}^{t} X'^{v} - (h_{vi} + m_{ti}) \dot{X}^{t} X'^{i} - m_{ij} \dot{X}^{i} X'^{j} \right]$$

Galilean string (cont'd)

• theories of form:

$$\mathcal{L} = T \left[m_{iv} \left(\dot{X}^v X'^i - \dot{X}^i X'^v \right) - \frac{\dot{X}^t}{2X'^v} h_{ij} X'^i X'^j \right]$$

- can be obtained by starting with relativistic strings on AdS5xS5 and taking SMT limit

- AdS5xS5 admits null Killing vector can null reduce and then take limit $\tilde{c} \to \infty$ $\tilde{c} = (4\pi g_s N)^{-1/2}$ \Rightarrow gives particular SMT (most general one) and others as special subcases

Remarks

- AdS5xS5 null reduction vs large c limit (need `dual' background when taking large c limit)
- Q: what is dual field theory description after null reduction but before taking SMT limit ?

SU(2) case and LL model as non-rel 2D CFT

start with AdS5xS5 in appropriate coordinates

$$\begin{array}{ll} \text{consider BPS bound} & E \ge Q = J = J_1 + J_2. \\ E = i\partial_t \text{ and } J = -i\partial_\gamma. \\ \text{after limit} \\ \tau = d\tilde{x}^0 \quad , \quad m = -\frac{\cos\theta}{2}d\phi \quad , \quad h_{\mu\nu}dx^{\mu}dx^{\nu} = \frac{1}{4}(d\theta^2 + \sin^2\theta d\phi^2) \end{array}$$

NR background R x S2 and non-zero "magnetic" flux

gives LL model
$$S = \frac{Q}{4\pi} \int d^2 \sigma [\dot{\phi} \cos \theta - \frac{1}{4} (\theta'^2 + \sin^2 \theta \phi'^2)]$$

free magnon limit: S2 -> R2 (corresponds to pp-wave limit)

$$au = d ilde{x}_0 \;, \;\; m = rac{x}{2} dy \;, \;\; h = rac{1}{4} [dx^2 + dy^2]$$

action
$$S \sim \int d^2 \sigma [x \dot{y} - \frac{1}{4} (x'^2 + y'^2)]$$

Polyakov action for Galilean strings

$$S = -\frac{T}{2} \int d^2 \sigma \Big[\left(e \, e_1^{\,\alpha} e_1^{\,\beta} h_{MN} + \epsilon^{\alpha\beta} m_{MN} \right) \partial_\alpha X^M \partial_\beta X^N + \omega \epsilon^{\alpha\beta} e^0_{\,\alpha} \tau^0_{\,\beta} + \psi \epsilon^{\alpha\beta} (e^0_{\,\alpha} \tau^1_{\,\beta} + e^1_{\,\alpha} \tau^0_{\,\beta}) \Big]$$

- exhibits Galilean world-sheet structure
- Weyl and local (2D) Galilean boost act on the zweibeine:

$$e^0{}_{\alpha} \rightarrow f e^0{}_{\alpha} \ , \ \ e^1{}_{\alpha} \rightarrow f e^1{}_{\alpha} + \hat{f} e^0{}_{\alpha} \ , \ \ \omega \rightarrow \frac{1}{f} \omega - \frac{\hat{f}}{f^2} \psi \ , \ \ \psi \rightarrow \frac{1}{f} \psi$$

- analysis of kinetic terms suggests setting $e^0_{\sigma} = 0$ (otherwise wrong sign)
- natural from pov of Galilean ws. structure:
 - → spatial foliation in terms of ws. coordinate time: $e^{0}_{\alpha} = f d\tau$,
- expected full reparametrization freedom is:

$$\tau \to g(\tau), \qquad \sigma \to h(\tau, \sigma).$$

 \rightarrow Hamiltonian analysis: R x Vir symmetries

Carrollian limit of TSNC string

• scaling limit and $\tilde{c} \to 0$

Nambu-Goto action $S = -\frac{T}{2} \int d^2 \sigma \Big[-\sqrt{-\tau} \,\tau_0^{\,\alpha} \tau_0^{\,\beta} h_{\alpha\beta} + \epsilon^{\alpha\beta} m_{\alpha\beta} \Big]$

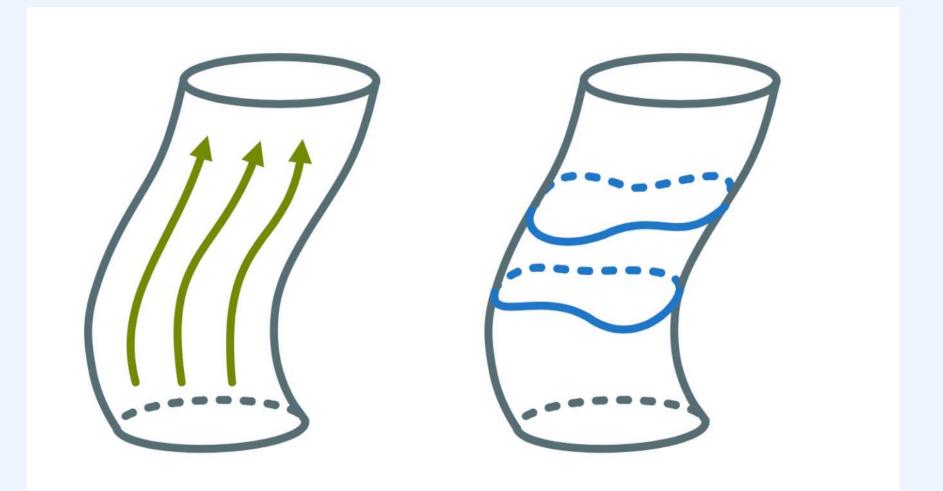
- related to Galilean case by 0 interchanged with 1

- Polyakov formulation: worldsheet structure with Carrollian metric structure that is Weyl invariant

- gauge-fixed action has residual symmetry: BMS_3 (contraction of Vir x Vir)

- corresponds to a limit in AdS/CFT?

Visualisation of world-sheet



(drawing: courtesy of Gerben Oling)

Further developments (NRST)

- open strings and branes:
 - non-relativistic open string sector and DBI actions Gomis, Yan, Yu (2020)
 - connection to NR D/M-branes

Kluson/Blair,Gallegos,Zinnato (2021)/Ebert,Sun,Yan(2021)

- strings/branes as background solutions Bergshoeff,Lahnsteiner,Romano,Rosseel(2022)
- generalize procedure to non-relativistic limit of extremal p-branes TSNC analogue for p-branes (incl. D/M) Bidussi,Harmark,Hartong,NO,Oling (in progress
- SUSY generalization of (include RR fields) NR limit & relations to DFT/exceptional FT
 non-perturbative dualities in NR string theory
- connection to integrable models

Gomis,Gomis,Kamimura(2005)/Roychowdhury(2019/ Fontanella,NietoGarcia,Torielli(2021),Fontanello,van Tongeren(2022)

Further developments (NR worldsheets0

• Hamiltonian analysis

Kluson (2021), Bidussi, Harmark, Hartong, NO, Oling (to appear)

- obtain beta functions for Galilean string
- connection with explicit construction of SMT using classical reduction of N=4 SYM & suitable quantization method

Harmark,Wintergerst (2019),Baiguera,Harmark,Wintergerst (2020) Baiguera,Harmark,Lei,Wintergerst (2020)

• connections to Carrollian (small speed of light) gravity

Henneaux (1979), Bergshoeff,Gomis,Rollier,ter Veldhuis(2017),Hartong(2015) Henneaux,Salgado-Rebolledo(2021), de Boer,Hartong,NO,Sybesma,Vandoren(2021),Perez(2021),Hansen,NO,Oling,Soegaard(2021)

Outlook

• NR (a la GO) describes closed subsector of relativistic ST has covariant string Newton-Cartan formulation (still Lor. CFT2 on ws)

what can we add to 90s ST?

- covariant formulation of DLCQ of strings
- further connection with Matrix string theory/M-theory
- other expansions ?
- Spin Matrix limits give
 - tractable subsector of N=4 SYM
 - strings with Galilean structure on worldsheet
 - \rightarrow quantize

- similar Carrollian worldsheet models exist
 - from usual tensionless limit
 - BMS3 residual symmetries

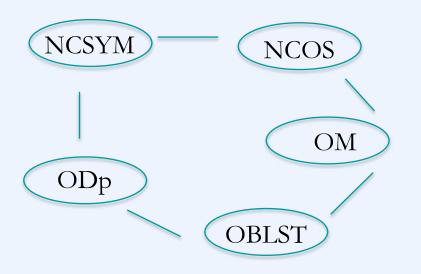
The end

extra stuff (varia)

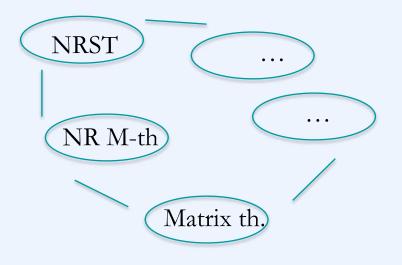
Duality web of `non-Lorentzian' string theories?

web of decoupled non-gravitational theories

(`open string sector')



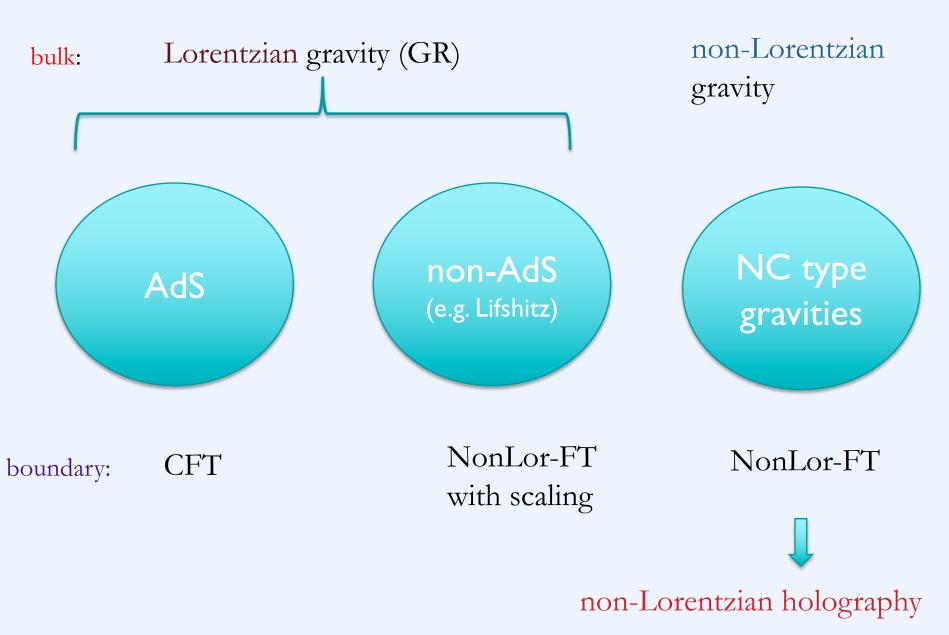
web of non-Lorentzian gravitational
string theories
 (`closed string sector'_)



back to 2000s...

self-contained corners of ST w. own geometrynew window on non-perturbative effects ?

Non-AdS holography & NR holography



Routes towards non-Lorentzian holography

I. branes

- Dp-branes as probes of TSNC geometry
- Dp-branes as backgrounds solutions of NR (super) gravity actions

Can one find decoupling limits giving rise to avatars of AdS/CFT ?

II. limits of AdS/CFT

- limits of the NR world-sheet theories
- study quantization
- Hamiltonian analysis
- beta-functions

→ tractable limit of AdS/CFT, finite N, simpler moduli space/genus expansion . ?

Galilean string (cont'd):

- Consider part that is quadratic in X^i . For constant m_{ij} that term is a total derivative and $\delta m_{ij} = 0$ implies $\delta m_{iv} = \partial_i \sigma$.
- We want a kinetic term for every X^i so m_{iv} must be such that its field strength is invertible: symplectic structure.
- Need i = 1, ..., 2n. Hence $m_{iv} = -\omega_{ij}X^j$ where ω_{ij} is a $2n \times 2n$ invertible antisymmetric matrix.
- WLOG the most general quadratic action that preserves the rotations leaving ω invariant is

$$\mathcal{L} = T\omega_{ij}X^j \left(\dot{X}^i - \dot{f}(\tau)X'^i \right) - \frac{T}{2}X'^i X'^i - \frac{\alpha^2}{2}X^i X^i$$

where we used the strongest possible gauge fixing.

• *n* decoupled Schrödinger fields $\Phi^{I} = X^{2I-1} + iX^{2I}$ with I = 1, ..., n and masses determined by eigenvalues of ω_{ij} .

Polyakov action for Carrollian strings

$$S = -\frac{T}{2} \int d^2\sigma \Big[\left(-e \, e_0{}^\alpha e_0{}^\beta h_{MN} + \epsilon^{\alpha\beta} m_{MN} \right) \partial_\alpha X^M \partial_\beta X^N + \omega \epsilon^{\alpha\beta} e^1{}_\alpha \tau^1{}_\beta + \psi \epsilon^{\alpha\beta} (e^0{}_\alpha \tau^1{}_\beta + e^1{}_\alpha \tau^0{}_\beta) \Big]$$

- exhibits Carrollian world-sheet structure
- Weyl and local (2D) Carrollian boost act on the zweibeine:

$$e^0{}_{\alpha} \rightarrow f e^0{}_{\alpha} + \hat{f} e^1{}_{\alpha} \ , \ \ e^1{}_{\alpha} \rightarrow f e^1{}_{\alpha} \ , \ \ \omega \rightarrow \frac{1}{f} \omega - \frac{\hat{f}}{f^2} \psi \ , \ \ \psi \rightarrow \frac{1}{f} \psi$$

- no problem with (wrong-sign) kinetic terms
- Hamiltonian analysis for (subclass) of target spacetimes

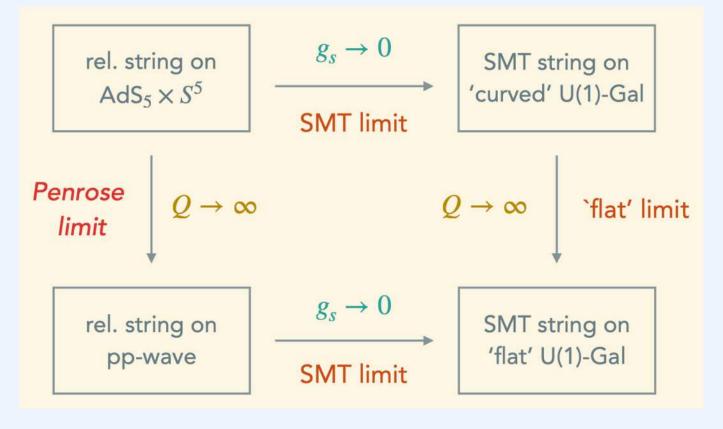
$$x^M=(x^\mu,v),$$

v = compact isometry

$$au^0{}_M = \delta^t_M \;,\;\; au^1{}_M = \delta^v_M \;,\;\; m_{\mu
u} = 0 \;,\;\; m_{v\mu} = -m_\mu$$

gauge-fixed action has residual symmetry: BMS_3 (contraction of Vir x Vir)

Penrose limit and SMT limit commute



FF (flat-fluxed) backgrounds
 → natural starting point to quantize the theory

flat WS gauge
& "light-cone" gauge:

$$S = -\frac{Q}{2\pi} \int d^2\sigma \left[m_\mu \dot{X}^\mu + \frac{1}{2} h_{\mu\nu} X^{\prime\mu} X^{\prime\nu} \right]$$

TNC geometry from null reduction

Lorentzian metric with null isometry

$$ds^2 = g_{MN} dX^M dX^N = 2 \tau_\mu dx^\mu (du - m_
u dx^
u) + h_{\mu
u} dx^\mu dx^
u ,$$

$$au_{\mu}h^{\mu
u}=0$$

torsional Newton–Cartan (TNC) geometry: τ_{μ} , $h_{\mu\nu}$, m_{μ} ,

local syms:

$$\begin{split} \delta \tau_{\mu} &= \mathcal{L}_{\xi} \tau_{\mu} , \quad \delta h_{\mu\nu} = \mathcal{L}_{\xi} h_{\mu\nu} + \lambda_{\mu} \tau_{\nu} + \lambda_{\nu} \tau_{\mu} ,\\ \delta m_{\mu} &= \mathcal{L}_{\xi} m_{\mu} + \lambda_{\mu} + \partial_{\mu} \sigma , \end{split}$$

 $\begin{array}{ll} \lambda_{\mu} & \text{Galilean (Milne) boosts} \\ \sigma & \text{U(1) (mass) parameter} \end{array}$

Non-perturbative string theory

complete understanding of non-perturbative regime is still lacking despite much progress made in last many decades:

- non-perturbative dualities

Matrix theory:
 infinite boost limit of ST on spacelike circle = DLCQ of ST

can be viewed as ST on light-like circle \rightarrow non-relativistic behavior

• NRST as a novel way to study corners of relativistic string theory

TNC geometry from null reduction

Lorentzian metric with null isometry

$$ds^2 = g_{MN} dX^M dX^N = 2 \tau_\mu dx^\mu (du - m_
u dx^
u) + h_{\mu
u} dx^\mu dx^
u ,$$

$$au_{\mu}h^{\mu
u}=0$$

torsional Newton–Cartan (TNC) geometry: τ_{μ} , $h_{\mu\nu}$, m_{μ} ,

local syms:

$$\begin{split} \delta \tau_{\mu} &= \mathcal{L}_{\xi} \tau_{\mu} , \quad \delta h_{\mu\nu} = \mathcal{L}_{\xi} h_{\mu\nu} + \lambda_{\mu} \tau_{\nu} + \lambda_{\nu} \tau_{\mu} ,\\ \delta m_{\mu} &= \mathcal{L}_{\xi} m_{\mu} + \lambda_{\mu} + \partial_{\mu} \sigma , \end{split}$$

 $\begin{array}{ll} \lambda_{\mu} & \text{Galilean (Milne) boosts} \\ \sigma & \text{U(1) (mass) parameter} \end{array}$

TNC geometry as background geometry for NRFTs

putting relativistic field theory on a curved spacetime

$$\delta S_{
m rel.matter} \sim \int d^4x \; T_{\mu
u} \; \delta g^{\mu
u}$$

• non-relativistic FT naturally couples to torsional Newton-Cartan:

$$\delta S_{\text{non-rel matter}} \sim \int d^3 x [E^{\mu} \delta \tau_{\mu} + S^{\mu\nu} \delta h_{\mu\nu} + T^{\mu} \delta m_{\mu}]$$

energy current spatial stress mass current
& momentum current

see e.g. Son (2013), Hartong, Kiritsis, NO(2014), Jensen(2014)

Other properties

• geodesic equation on flat NC space with:

$$m_t = \Phi_{\text{Newt}} \rightarrow \text{Newton's law}$$

• TNC geometry can also be obtained by gauging Bargmann algebra Andringa,Bergshoeff,Gomis,de Roo (2012)

$$[G_a, P_b] = -\delta_{ab}N$$
, $[G_a, H] = -P_a$ & rotations
mass generator

(just as pseudo-Riemannian geometry follows from gauging Poincare)

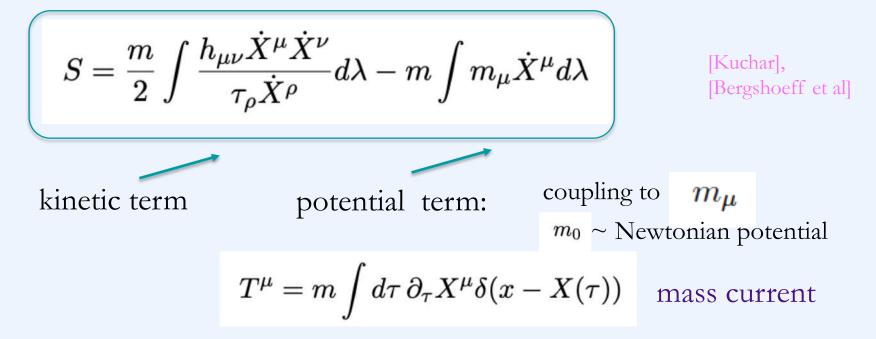
Warmup: Non-Relativistic particle from null reduction

null-reduction of relativistic particle

$$S=\int rac{1}{2e}g_{MN}\dot{X}^M\dot{X}^Nd\lambda$$
 =

→ reduce on target space with null Killing vector :

probe mass is conserved momentum in null direction: $p_u = m$



action has TNC local target space symmetries

NR particle from limit of extremal particle action of charged relativistic particle:

$$S = -mc \int \sqrt{-g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} d\lambda + q \int A_{\mu} \dot{x}^{\mu} d\lambda$$

• time-space split in metric: $g_{\mu
u} = -c^2 T_\mu T_
u + h_{\mu
u}$

expand for large c:

$$S = -mc^2 \int \left[T_\mu - \frac{q}{mc^2} A_\mu \right] \dot{x}^\mu d\lambda + \frac{m}{2} \int \frac{h_{\mu\nu} \dot{x}^\mu \dot{x}^\nu}{T_\rho \dot{x}^\rho} d\lambda + \mathcal{O}(c^{-2})$$

extremal particle $q = mc^2$. divergent term. cancels with:

$$T_{\mu} = au_{\mu} + rac{1}{2c^2}m_{\mu} \,,$$

 $A_{\mu} = au_{\mu} - rac{1}{2c^2}m_{\mu} \,,$

algebra level: IW contraction

$$H = cP_0 + Q$$
 , $N = rac{1}{2c^2} \left(cP_0 - Q
ight)$

energy

mass

Kalb-Ramond B-field from string Poincare

metric and B-field symmetries $\bar{\delta}g_{\mu\nu} = \mathcal{L}_{\xi}g_{\mu\nu}$, $\bar{\delta}B_{\mu\nu} = \mathcal{L}_{\xi}B_{\mu\nu} + 2\partial_{[\mu}\lambda_{\nu]}$.

→ can be obtained from string extension of Poincare: (with extra set of translational generators (cf. double field theory)

$$\begin{split} [M_{\underline{a}\underline{b}}, M_{\underline{c}\underline{d}}] &= \eta_{\underline{a}\underline{c}} M_{\underline{b}\underline{d}} - \eta_{\underline{b}\underline{c}} M_{\underline{a}\underline{d}} + \eta_{\underline{b}\underline{d}} M_{\underline{a}\underline{c}} - \eta_{\underline{a}\underline{d}} M_{\underline{b}\underline{c}}, \\ [M_{\underline{a}\underline{b}}, P_{\underline{c}}] &= \eta_{\underline{a}\underline{c}} P_{\underline{b}} - \eta_{\underline{b}\underline{c}} P_{\underline{a}}, \\ [M_{\underline{a}\underline{b}}, Q_{\underline{c}}] &= \eta_{\underline{a}\underline{c}} Q_{\underline{b}} - \eta_{\underline{b}\underline{c}} Q_{\underline{a}}, \end{split}$$

Lie algebra valued connection:

$$\mathcal{A}_{\mu} = e^{\underline{a}}_{\mu}P_{\underline{a}} + \frac{1}{2}\omega_{\mu}{}^{\underline{a}\underline{b}}M_{\underline{a}\underline{b}} + \pi^{\underline{a}}_{\mu}Q_{\underline{a}},$$

$$g_{\mu\nu} = \eta_{\underline{a}\underline{b}} \, e^{\underline{a}}_{\mu} e^{\underline{b}}_{\overline{\nu}}. \qquad B_{\mu\nu} = \eta_{\underline{a}\underline{b}} \, e^{\underline{a}}_{[\mu} \pi^{\underline{b}}_{\nu]}.$$

(see e.g. Ne'eman,Regge/D'Auria,Fre)

NR string action from $c \rightarrow$ infinity limit

$$S = S_{
m NG} + S_{
m WZ},$$

 $S_{
m NG} = -c T_{
m F} \int d^2 \sigma \sqrt{-\det g_{lphaeta}}, \qquad S_{
m WZ} = -c rac{T_{
m F}}{2} \int d^2 \sigma B_{lphaeta} \epsilon^{lphaeta}.$

- use vielbein decomposition of the NSNS target space:

$$g_{\mu\nu} = \eta_{\underline{a}\underline{b}} e^{\underline{a}}_{\mu} e^{\underline{b}}_{\nu} \quad , \qquad B_{\mu\nu} = \eta_{\underline{a}\underline{b}} e^{\underline{a}}_{[\mu} \pi^{\underline{b}}_{\nu]},$$

- split tangent space into A=0,1: longitudinal a=2,..d-1: transverse

$$e^{\underline{a}}_{\mu} = (cE^{A}_{\mu}, e^{a}_{\mu}) \ , \quad \pi^{\underline{a}}_{\mu} = (c\Pi^{A}_{\mu}, \pi^{a}_{\mu}),$$

 reparametrize longitudinal vielbeins:

$$\begin{split} E^{A}_{\mu} &= \tau^{A}_{\mu} + \frac{1}{2c^{2}}\pi^{B}_{\mu}\epsilon_{B}{}^{A}, \\ \Pi^{A}_{\mu} &= \epsilon^{A}{}_{B}\tau^{B}_{\mu} + \frac{1}{2c^{2}}\pi^{A}_{\mu}, \end{split}$$

divergent term in action cancels since F-string is extremal

NRST action on TSNC target space

after limit: kinetic potential

$$S_{\rm NR} = -\frac{T}{2} \int d^2 \sigma \left[\sqrt{-\tau} \eta^{AB} \tau_A^{\alpha} \tau_B^{\beta} h_{\alpha\beta} + \epsilon^{\alpha\beta} m_{\alpha\beta} \right],$$

$$h_{\mu\nu} = e_{\alpha}^a e_{\beta}^b \delta_{ab} \qquad m_{\mu\nu} = \eta_{AB} \tau_{[\mu}^A \pi_{\nu]}^B + \delta_{ab} e_{[\mu}^a \pi_{\nu]}^b.$$
torsional string Newton-Cartan geometry : $\tau_{\mu}^A, h_{\mu\nu}, m_{\mu\nu}.$

$$m_{\mu\nu}.$$
couples to
worldsheet tension current
$$J_{\rm T}^{\mu\nu} = T \int d^2 \sigma \, \epsilon^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X^{\nu} \delta(x - X(\sigma^{\alpha})),$$
conserved
charges:
$$M^{\mu} = \int d\sigma J^{0\mu}.$$
gravitational mass:
$$M^v = 2\pi T R.$$
(for compact longitudinal direction v)
$$m_{0\nu} = \text{gravitational potential}$$

• weak equivalence principle for NR string

F-string Galilean (FSG) algebra

decompose string
 Poincare algebra:
 <u>a</u> = (A, a)
 longitudinal, transverse

 $P_A, Q_A, P_a, Q_a, J_{AB} = \epsilon_{AB}J = M_{AB}, J_{ab} = M_{ab}, c G_{Ab} = M_{Ab}.$

 $H_A = c(P_A + Q_B \epsilon^B{}_A)$, $N_A = \frac{1}{2c}(\epsilon_A{}^B P_B + Q_A)$ (basis transformation)

after IW contraction (c \rightarrow infinity):

$$[G_{Ab}, H_C] = \eta_{AC} P_b + \epsilon_{AC} Q_b,$$

$$[G_{Ab}, P_c] = -\delta_{bc} \epsilon_A{}^B N_B,$$

$$[G_{Ab}, Q_c] = -\delta_{bc} N_A,$$

& further commutators involving $SO(1,1) \ge SO(d-2)$ rotations

• symmetry trafos follow from FSG-valued connection:

$$\mathcal{A}_{\mu} = \tau_{\mu}^{A} H_{A} + e_{\mu}^{a} P_{a} + \omega_{\mu} J + \frac{1}{2} \omega_{\mu}{}^{ab} J_{ab} + \omega_{\mu}{}^{Ab} G_{Ab} + \pi_{\mu}^{A} Z_{A} + \pi_{\mu}^{a} Q_{a},$$

Non-relativistic strings from null reduction

- start from Polyakov action (including NSNS) and reduce along null isometry
- implement conservation of string momentum along null isometry using Lagrange multipliers
- go to dual formulation that exchanges the (fixed) momentum along null direction for fixed winding of string along compact dual direction
 - → action of non-relativistic strings moving in torsional string Newton-Cartan target space
 & FSG symmetries can also be derived

Limit vs. I/c expansion

- limit geometry: type I (cancellation of divergent term)
- geometry from expansion: type II (each term in the action generates more gauge fields)

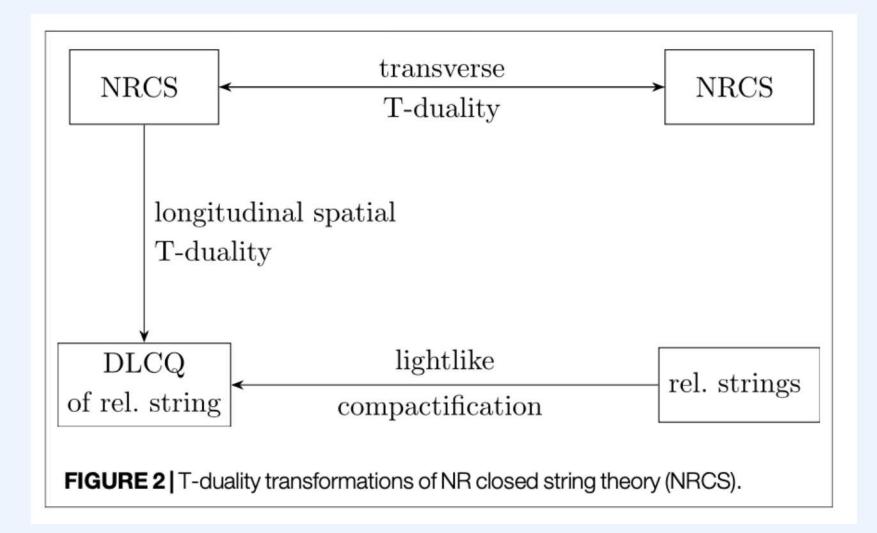
type II studied for:

- NR particle (and coupling to non-relativistic gravity from expanding GR) van den Bleeken (2018), Hansen, Hartong, NO (2019, 2020)
- NR string

Hartong,Have (2021)

spectrum: (compact long. direction) center of mass velocity << c

$$E = \frac{c^2 w R_{\text{eff}}}{\alpha'_{\text{eff}}} + \frac{N_{(0)} + \tilde{N}_{(0)}}{w R_{\text{eff}}} + \frac{\alpha'_{\text{eff}}}{2w R_{\text{eff}}} p_{(0)}^2 + \mathcal{O}(c^{-2})$$



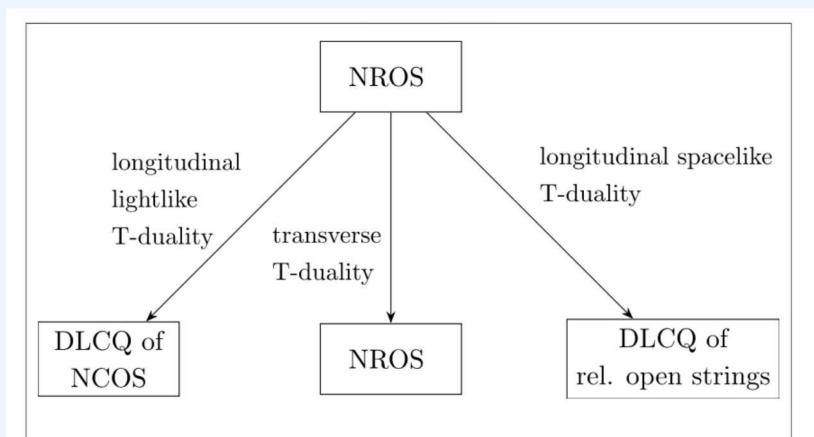


FIGURE 3 | T-duality relations for NR open string theory (NROS). The transverse T-duality swaps Dirichlet and Neumann boundary conditions in the usual way.