Vector mesons to probe quark axial current
 Quark-meson mixings: flavor symmetry breaking/sea quarks

Fabio L. Braghin

Instituto de Física - Universidade Federal de Goias braghin@ufg.br

POETIC23 - Inst. Principia / ICTP- SAIFR - IFT-UNESP May 5th 2023

Poetic - May 2023 1 / 39

Talk based on:

* F.L.B., Constituent quark axial current couplings to light vector mesons in the vacuum and with a weak magnetic field, Phys. Rev. D105, 054009 (2022).

* F.L.B., Strangeness content of the pion in the U(3) Nambu Jona Lasinio model, J. Phys. G: Nucl. Part. Phys. 49, 055101 (2022);
* F.L.B., Flavor-dependent corrections for the U(3) NJL coupling constant, Phys. Rev. D 103, 094028 (2021),

* F.L.B. Quark-antiquark states of the lightest scalar mesons within the Nambu-Jona-Lasinio model with flavor-dependent coupling constants, arXiv:2212.06616.

* W.F.de S., F.L. B., Charm and beauty content of the pion and kaon in the Flavor U(5) Nambu-Jona-Lasinio model, arXiv:2301.10128

Principia Institute + ICTP-SAIFR (workshop)

FabioLBraghin

・ロン・雪と・雨と、雨と

2/39

Motivations/context

- 2 Vector meson coupling to constituent quark axial current Quark-antiquark interaction- dynamical calculation Relation to g_A and form factor
- Quark-antiquark mesons + sea-quarks in improved NJL model Quark polarization in the NJLmodel - FSB A calculation on U(5) NJL Pion strangeness content leading to Meson Mixing Quark-antiquark states of light scalars

4 Summary

* Few slides presented in the talk have been withdrawn.

• = • • = • •

I: Hadrons and NJL model: valence + sea quarks

(Low energy) QCD effective models: **global hadron properties** * Dynamical Chiral Symmetry Breaking: $\langle \bar{q}q \rangle$ masses/couplings

* Some models "Near-exausted" (?) resources: still phenomenology and test-model

Nambu-Jona-Lasinio (NJL) model: low energy QCD/Quark model \sim punctual interactions $G_0 \sim 1/M_G^2$ or $1/\Lambda^2$ valence quarks Usually improvements rely on further free parameters

Strangeness content of nucleon (electromag. \sim 5%) Charm content of nucleon: Brodsky, Hoyer, Peterson/many (1%) LHCb-NNPDF: evidence 3σ c.l. (?)

Outcome → quarks/meson mixings: sea quarks * Flavor symmetry breaking (FSB)

* Spin content of the nucleon (hadrons) from axial current * Pion and axial mesons (unstables) to nucleon: axial charge (nucleon or constituent quark)

* Roughly: **axial mesons** as chiral partners ($\rho - A_1$ and $\omega - f_1$) * Non-central collisions: vector mesons production

- Straightforward dynamical (one-loop polarization) calculation of **leading meson couplings to constituent quarks** *F.L.B., Phys. Rev. D105, 054009 (2022); Phys. Rev. (2019); E (2023) Journ. of Phys. G47, 115102 (2020); Phys. Rev. D97, 0140022 (2018) ; D101, 039902(E) (2020)*

* Vector mesons probe/couples to axial current

* If yes, Even a photon could probe the axial current (by VMD)

< ロ > < 同 > < 三 > < 三

Vector mesons couplings to axial current (dynamically generated)

$$\begin{aligned} & Z[\eta,\bar{\eta}] &= N \int \mathcal{D}[\bar{\psi},\psi] \\ & \exp i \int d^4x \quad \left[\bar{\psi} \left(i \not{D} - m \right) \psi - \frac{g^2}{2} \int_{\mathcal{Y}} j^{\beta}_{\mu}(x) \tilde{R}^{\mu\nu}_{\beta\alpha}(x-y) j^{\alpha}_{\nu}(y) + \bar{\psi}\eta + \bar{\eta}\psi \right] \end{aligned}$$

color quark current $j_{\alpha}^{\mu} = \bar{\psi} \lambda_{\alpha} \gamma^{\mu} \psi$, $i, j, k = 0, ...(N_{f}^{2} - 1)$ for U($N_{f} = 2$), $\alpha, \beta... = 1, ...(N_{c}^{2} - 1)$

Fierz transformation \rightarrow all flavor-Dirac channels Auxiliary fields: suitable for quark-antiquark states

FabioLBraghin

Leading couplings: meson- constituent quarks

Expansion of quark determinant (some ambiguities-symmetries)

Leading meson-constituent quark couplings (form factors)

$$\mathcal{L}_{j_{A}} = \left[G_{A}(Q,K)Q_{\mu}\pi^{i}(Q) + G_{\bar{A}}(Q,K)\bar{A}_{\mu}^{i}(Q) \right] j_{A,i}^{\mu}(K,Q), \\ \mathcal{L}_{\nu-q} = g_{r1}(Q,K)V_{i}^{\mu}(Q)j_{\mu}^{V,i}(K,Q) + g_{A1}(Q,K)\bar{A}_{i}^{\mu}(Q)j_{\mu}^{A,i}(K,Q) \\ + g_{\nu1}(Q,K)V^{\mu}(Q)j_{\mu}(K,Q) + g_{f1}(Q,K)\bar{A}_{\mu}(Q)j_{\mu}^{\mu}(K,Q),$$
(1)

 $G_A(Q, K), g_{r1}(Q, K), g_{A1}(Q, K), g_{f1}(Q, K)$ are one loop integrals Coupling constants (K = Q = 0) or ($Q^2 = M_{\pi}^2$) .. Numerically: correct order of magnitude (renormalization=1-fit)

FabioLBraghin

Quark determinant: Emergence of Gluon and pion clouds

- * Gluon cloud: dressing to quark currents \rightarrow constituent quarks
- * Pion cloud from the *Goldstone boson* couplings to (all) quark currents

* Last part of the talk: Flavor symmetry breaking \rightarrow emergence of diverse sea quark "cloud"

Wess Zumino Witten type coupling

Next leading terms

Note that: Meson-quark momenta Transversal to each other and Transversal meson polarization

For isosinglet V_{μ} and isotriplet V_{μ}^{i} mesons

$$\mathcal{L}_{\nu j a} = i \delta_{i j} \epsilon^{\sigma \rho \mu \nu} F^{\nu j a}(K, Q) K_{\sigma} \mathcal{F}^{i}_{\rho \mu}(Q) j^{A, j}_{\nu}(K, K+Q) + i \epsilon^{\sigma \rho \mu \nu} F^{\nu j a}(K, Q) K_{\sigma} \mathcal{F}_{\rho \mu}(Q) j^{A}_{\nu}(K, K+Q), \qquad (2)$$
$$j^{A, i}_{\mu}(K, K+Q) = \bar{\psi}(K+Q) \gamma_{\mu} \gamma_{5} \sigma^{i} \psi(K) \text{ and } j^{A}_{\mu}(K, K+Q) = \bar{\psi}(K+Q) \gamma_{\mu} \gamma_{5} \psi(K).$$

* Polarized vector meson, transversal directions in $\epsilon^{\sigma \rho \mu \nu}$

$$\mathcal{F}^i_{
ho\mu}(Q)=Q_
ho\,V^i_\mu(Q)-Q_\mu\,V^i_
ho(Q),\qquad \mathcal{F}_{
ho\mu}(Q)=Q_
ho\,V_\mu(Q)-Q_\mu\,V_
ho(Q).$$

Poetic - May 2023

9/39

FabioLBraghin

For isosinglet \bar{A}_{μ} and isotriplet \bar{A}^{i}_{μ} mesons

$$\mathcal{L}_{\nu j a - A} = i \epsilon^{\sigma \rho \mu \nu} F^{\nu j a}(K, Q) K_{\sigma} \mathcal{G}^{i}_{\rho \mu}(Q) j^{V, i}_{\nu}(K, K + Q) + i \epsilon^{\sigma \rho \mu \nu} F^{\nu j a}(K, Q) K_{\sigma} \mathcal{G}_{\rho \mu}(Q) j^{V}_{\nu}(K, K + Q),$$
(3)

 $j_{\mu}^{V,i}(K,K+Q) = \overline{\psi}(K+Q)\gamma_{\mu}\sigma^{i}\psi(K)$ $j_{\mu}^{V}(K,K+Q) = \overline{\psi}(K+Q)\gamma_{\mu}\psi(K).$

$$\mathcal{G}^{i}_{\mu\nu} = \partial_{\mu}\bar{A}^{i}_{\nu} - \partial_{\nu}\bar{A}^{i}_{\mu}, \qquad \mathcal{G}_{\mu\nu} = \partial_{\mu}\bar{A}_{\nu} - \partial_{\nu}\bar{A}_{\mu}.$$
(4)

Axial pion coupling and the ρ coupling

Couplings to the axial current (out of 8 structures Ball-Chiu)

$$\begin{aligned} \mathcal{L}_{j_{A}} &= \left[G_{A} Q_{\mu} \pi^{i}(Q) + G_{\bar{A}} \bar{A}^{i}_{\mu}(Q) + i F_{\nu j a} \epsilon_{\mu \nu \rho \sigma} K^{\nu} Q^{\rho} V^{\sigma}_{i}(Q) \right] \\ &\times j^{\mu}_{A,i}(K,Q), \end{aligned}$$

From the same method:

$$\frac{F_{vja}(K,Q)}{G_A(K,Q)} = \frac{1}{4M^*F} = \text{constant.}$$
(6)

Renormalization condition can be $G_A \sim 1$.

(Relativistic Consituent quark model - S.Weinberg + GT relation)

$$\frac{F_{vja}(K,Q) \times |K||Q|}{G_V(K,Q)} \Big|_{Q \sim K \sim 200-500 MeV} \sim 0.1.$$
(7)

What happens at high energies? Can a Photon probe the axial current (Vector Meson Dominance)?

FabioLBraghin

5)

11/39

Witten's procedure: quantization

 $\mathcal{L}_{\textit{vja}}$ as a 5dim closed surface (Stoke's theorem)

$$n \Gamma = -\epsilon^{\sigma \rho \mu \nu} \frac{i}{240\pi^2} \int d^4 K \ d^4 Q \ F^{\nu j a}(K, Q) K_{\sigma} \mathcal{F}^i_{\rho \mu}(Q) j^{A,i}_{\nu}(K, K+Q),$$
(8)
n is an integer: $\Gamma = \epsilon_{\sigma \rho \mu \nu} \Gamma^{\sigma \rho \mu \nu}$

Quantized integrals (Sum over $\mu\nu\rho\sigma$) contain integrals of the type

$$\begin{split} \Gamma_{(xyz0)} &= -\frac{i}{240\pi^2} \int d^4 K \ d^4 Q \ F^{vja}(K,Q) K_x Q_y \\ \times & \left[\rho_z^-(Q) \bar{u}(K+Q) \gamma_0 \gamma_5 d(K) + \rho_z^+(Q) \bar{d}(K+Q) \gamma_0 \gamma_5 u(K) \right] (9) \\ \star \rho_z^{\pm}(Q) = z \text{-polarization component} \end{split}$$

From the last slide (one loop - rainbow ladder):

$$\frac{F_{vja}(K,Q)}{G_A(K,Q)} = \frac{1}{4M^*F}.$$
(10)

* Sum of $\Gamma_{\sigma\rho\mu\nu} \rightarrow$ "sum rule"?

イロト (得) (ヨ) (ヨ) - ヨ

Figure: Form factor $G_{vja}(K, Q)$ for effective gluon propagator (Tandy-Maris) as a function Q^2 for different values of K. Two effective masses $M^* = 0.33$ GeV and $M^* = 0.45$ GeV.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Vector meson Axial radius

$$\Delta_A < r_{
ho}^2 >= -6 \left. \left. \frac{d \bar{G}_{vja}}{d Q^2} \right|_{Q=0}, \qquad < r_{
ho}^2 > \simeq 0.28 - 0.56 fm^2$$

Bhagwat etal, Krutov etal, H.Roberts etal, Ballon-Bayona etal, F.L.B.

FabioLBraghin

II Improved- NJL model

æ

< 2 > < 2 >

* Nambu-Jona-Lasinio model:

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - m_f)\psi + \frac{G_0}{2}[(\bar{\psi}\lambda_i\psi)^2 + (\bar{\psi}i\gamma_5\lambda_i\psi)^2]$$

* Gluon exchange(s) and dynamics $G_0 \sim \frac{1}{M_G^2}, \frac{1}{\Lambda^2}$ (flavorless) * Current light quark masses m_f and generation of mass $M_f = m_f + G_0 < \bar{q}q >_f$

* Light meson multiplets (pseudoscalar, vector) reasonably well

* $\eta - \eta'$ puzzle - $U_A(1)$ anomaly - 't Hooft interaction * Vacuum polarization also generates U(3) 'tHooft int. for NJLmodel (without instantons) A.P.J., F.L.B., PRD90, 014049 (2014)

< ロ > < 同 > < 三 > < 三 > 、

Quark model pseudoscalar mesons nonet

Non degenerate quarks: $|u\rangle$, $|d\rangle$, $|s\rangle$

$$\frac{P_a\lambda_a}{\sqrt{2}} = \begin{pmatrix} \frac{P_u}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{P_d}{\sqrt{2}} & K^0 \\ K^- & K_0 & \frac{P_s}{\sqrt{2}} \end{pmatrix}$$

$$P_{1,2,3} \rightarrow \text{pions}$$

$$P_{4,5,6,7} \rightarrow \text{kaons}$$

$$P_{8} = \pi_{8} = \frac{1}{\sqrt{3}}(\bar{u}u + \bar{d}d - 2\bar{s}s) \rightarrow \eta$$

$$P_{0} = \pi_{0} = \frac{\sqrt{2}}{\sqrt{3}}(\bar{u}u + \bar{d}d + \bar{s}s) \rightarrow \eta'$$
(11)

< 口 > < 同

∃ >

Two reasons for improved NJL model (flavor symmetry breaking)

** Usually mean field NJL model for fixed G₀:
1) Gap equations for DChSB, one-loop
1) Mesons from Bound state equations, one-loop

** QCD Lagrangian: flavor symmetry breaking in *m_f* 2) in a "GOOD" effective model, this flavor breaking SHOULD be present in all parameters.. (EFT, Weinberg "theorem" 1979)

- * So, one step further **
- One loop level for the coupling constant calculated
- NJL coupling constant with flavor symmetry breaking

Quark-polarization: fundamental and NJL model

Figure: Polarization in the NJL model, solid lines are quarks, P = 0

Figure: Wiggly lines with a dot = (dressed) gluon propagator.* The dots in the vertices = running quark-gluon coupling constant.* Need to (re)normalize resulting strength of interactions..

Resulting interaction *G_{ij}*: flavor-dependent

FabioLBraghin

19/39

Gap/Bound state equations/ $G \rightarrow$ coupled equations

One obtains (that plugs into the BSE) $i, j = 0, ... N_f^2 - 1$:

$$G_{ij} = G_{ij}(M_u^*, M_d^*, M_s^*).$$
 (12)

Standard NJL gap equations f = u, d, s (U(3) flavor)

$$(G_0) \quad M_f - m_f = G_0 \operatorname{Tr}(S_{0,f}(0)) \tag{13}$$

By neglecting ALL mixing interactions $G_{i\neq j}$ and $G_{f_1\neq f_2}$

$$(G_{ij}) \quad M_f^* - m_f = G_{ff} Tr(S_{0,f}(0)). \tag{14}$$

with $S_{0f}(k) = 1/(k - M^*)$ Chiral condensates \rightarrow sea quark-antiquark degrees of freedom

Coupled equations: G_{ij} and M_f^* perturbatively/self consistently

To fix parameters of the model (to fit observables), meson masses ,

First and second mixings: Coupling constants

Coupling constants in the fundamental representation (quarks) G_{ff} Different from the ones of adjoint representation (mesons) G_{ij}

$$2G_{uu} = 2\frac{G_{00}}{3} + G_{33} + \frac{G_{88}}{3},$$

$$2G_{dd} = 2\frac{G_{00}}{3} + G_{33} + \frac{G_{88}}{3},$$

$$2G_{ss} = 2\frac{G_{00}}{3} + 4\frac{G_{88}}{3},$$
(15)

where $G_{88}(M_f^*), G_{00}(M_f^*)$ (for f = u, d, s) Emergence of sea quarks in GAP eqs. (1-quark mixings) *Screening* in coupling constants G_{ff} above

And resulting mixing interations (2- meson mixing interactions)

$$G_{i \neq j} \propto (M_{f_1} - M_{f_2})^{n=1,2}$$
 $G_{f_1 \neq f_2} \propto (M_{f_1} - M_{f_2})^{n=1,2}$

By neglecting ALL mixing interactions $G_{i\neq j}$ - uncoupled equations:

$$1 - 2G_{ij}I_{f_1f_2}^{ij}(P_0^2 = -M_\phi^2, \vec{P}^2 = 0) = 0, \tag{16}$$

rest frame of meson ϕ , eg, pseudoscalar mesons (NG)

 G_{ij} : defines the meson structure in the adjoint representation Eg.

 G_{11}, G_{22}, G_{33} : pion structure G_{44}, G_{55}, \dots kaon structure

$$I_{f_{1}f_{2}}^{ij}(P_{0},\vec{P}) = Tr_{D,F,C} \int \frac{d^{4}k}{(2\pi)^{4}} \lambda_{i} i\gamma_{5} S_{0,f_{1}}(k+P/2) \lambda_{j} i\gamma_{5} S_{0,f_{2}}(k-P/2), (17)$$

* Since $G_{ij}(M_u, M_d, M_s...)$ strange/heavier quark-antiquark states (sea) contribute for the pion...

* Both fundamental and adjoint representations

* F.L.B., Phys. Rev. D 103, 094028 (2021); J.Phys. G 49, 055101 (2022); arXiv:2212.06616; W.F.S.+F.L.B. arxiv: 2301.05695 arXiv:2301.10128

Table: Sets of parameters: Lagrangian quark masses, ultraviolet cutoff and the quark effective masses obtained from an initial NJL-gap equation $G_0 = 10 \text{GeV}^{-2} \rightarrow \text{fitting procedure neutral } \pi^0, K^0$

set of	m _u	m _d	m _s	Λ	M _u	M _d	Ms
parameters	MeV	MeV	MeV	MeV	MeV	MeV	MeV
S	3	7	133	680	405	415	612
V	3	7	133	685	422	431	625

By varying freely M_s^* in up-down gap equations

FabioLBraghin

Poetic - May 2023

25/39

BSE of neutral pion: Strangeness in pions

* Normalization point at nearly $M_s^* \sim$ 450 MeV $G_{ij} \rightarrow G_0$ * "Physical point" $M_s^* \sim$ 550 MeV

-

$F_{\pi} \simeq$ 102 MeV at the "physical point" (value obtained from the fixed parameters of the model)

U(5) NJL-model and cutoffs: mesons masses

* NJL model not expected to work for heavy hadrons, still, we did some calculation

* Vector interaction Λ_f (Bashir et al, Serna et al, others)

* $< \bar{c}c >$, $< \bar{b}b >$ non zero: NJL-type model with DChSB

W.F.de S., F.L. B., arXiv:2301.10128 \rightarrow yes: meson masses Non-covariant ultraviolet cutoff improves improves interpretation

$$|ec{k}| \leq \Lambda_u \simeq \Lambda_s \simeq \Lambda_c \simeq \Lambda_b \sim 0.5 GeV$$

heavy quarks: non covariant (non relativistic) anyway
 light quarks: results similar to other regularizations

* 5 parameters \rightarrow (7+4) or (21+4) PS mesons, (5 or 18) S meson Masses $m_u = m_d$ within \sim 6% and 10%

Set	2	3	Exp.
M_{π} (MeV)	165(140)[-]	147 (118)[-]	137†
		{ 147(118) }	
M_{K} (MeV)	505(494)[475]	512 (501)[481]	495
		{ 512(501) }	
M_D (MeV)	1870(1863)[1869]	1868 (1869)[1873]	1870
		{ 1310(1378) }	
M_{D_s} (MeV)	2011(1985)[2005]	2018 (2000)[2019]	1968
		{ 1469(1515) }	
<i>M</i> _B (MeV)	5294(5275)[5288]	5279 (5274)[5283]	5280
		{ 4740(4831) }	
M_{B_s} (MeV)	5427(5392)[5418]	5421 (5397)[5421]	5367
		{ 4882(4954) }	
M_{B_c} (MeV)	6542(6460)[6504]	6539 (6477)[6516]	6275
		{ 5491(5595) }	

$$G_0 \ (G_{ij}) \ [G_{i
eq j}=0] \ \{ar{S}_c=ar{S}_b=0\}$$

・ロト・日本・山田・山田・山口・

Table: Probabilities of a meson with valence quark-antiquark structure to develop other types of sea quark/antiquark components from $G_{psqq} = Z_{ps}^2$

Set	1	2	3	4
$Pr(\pi)$	2 %	2 %	2 %	2 %
Pr(K)	3 %	3 %	3 %	5 %
Pr(D)	4 %	7 %	7 %	7 %
$Pr(D_s)$	5 %	4 %	5 %	5 %
Pr(B)	9 %	8 %	9 %	8 %
$Pr(B_s)$	11 %	7 %	7%	7 %
$Pr(B_c)$	6 %	6 %	6 %	5 %

3 N

Image: A mage: A ma

₹ 9Q@

・ロト ・部ト ・ヨト ・ヨト

æ

(日)

$$\frac{\Delta_{c,b}M_u}{M_u} > \frac{\Delta_{c,b}M_s}{M_s},$$

æ

ヘロト 人間 とくほとく ほど

Pion strangeness content leading to Meson Mixing

Mixing matrix (Kroll, Feldmann et al)

$$\left(\begin{array}{c} \pi^{0} \\ \eta \\ \eta' \end{array}\right) = M \left(\begin{array}{c} P_{3} \\ P_{8} \\ P_{0} \end{array}\right)$$

Leading mixings:

$$\begin{aligned} |\eta \rangle &= \cos \theta_{ps} | P_8 \rangle - \sin \theta_{ps} | P_0 \rangle, \\ |\eta' \rangle &= \sin \theta_{ps} | P_8 \rangle + \cos \theta_{ps} | P_0 \rangle. \end{aligned} \tag{18}$$

$$\theta_{ps} = \frac{1}{2} \arcsin\left(\frac{4G_{08}^n \bar{G}_{08}}{(M_{\eta}^2 - M_{\eta'}^2)}\right).$$
(19)

Poetic - May 2023

34/39

$$\begin{aligned} |\eta > &= -(\epsilon_2 + \epsilon_1 \cos(\phi_{08})|P_3 > + \sqrt{\frac{2}{3}}\cos(\phi_{08})|P_8 >, \\ |\pi_0 > &= |P_3 > + \left(\sqrt{\frac{2}{3}}(\epsilon_1 + \epsilon_2\cos(\phi_{08})) - \frac{\epsilon_2 S_{\psi}}{\sqrt{3}}\right)|P_8 > . \end{aligned}$$

FabioLBraghin

 $\eta - \eta'$ mixing: usual basis

 $\pi^0 - \eta$ mixing:

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}}[1+a_{l}]|\bar{u}u\rangle - \frac{1}{\sqrt{2}}[1-a_{l}]|\bar{d}d\rangle - 2a_{s}|\bar{s}s\rangle,$$

* Contributions for Up and down are different * $< \bar{q}q|\hat{H}|\bar{q}q > \simeq 2M_q \sim 900$ MeV.

$$\Delta_\eta m_{\pi^0} \simeq 4 a^2 M_s ~\sim~ 1-5~{
m MeV} ~~ \Delta_\eta M^*_{u,d} \sim rac{3}{4} \Delta_\eta m_{\pi^0}.$$

* Meson -constituent quark couplings with mixings - on going

* Similarly: ChPT - eg Kaiser, (2007)- $\Delta_s M_\pi \sim 9-19$ MeV

Pion c-b content leading to mixing to η_c , η_b

Flavor eigenstates
$$P_3 = rac{1}{\sqrt{2}}(ar{u}u - ar{d}d) o \pi^0$$

$$P_{0} = \sqrt{\frac{2}{5}}(\bar{u}u + \bar{d}d + \bar{s}s + \bar{c}c + \bar{b}b) \rightarrow \eta'(958)$$

$$P_{8} = \frac{1}{\sqrt{3}}(\bar{u}u + \bar{d}d - 2\bar{s}s) \rightarrow \eta(548)$$

$$P_{15} = \frac{1}{\sqrt{6}}(\bar{u}u + \bar{d}d + \bar{s}s - 3\bar{c}c) \rightarrow \eta_{c}(3415)$$

$$P_{24} = \frac{1}{\sqrt{10}}(\bar{u}u + \bar{d}d + \bar{s}s + \bar{c}c - 4\bar{b}b) \rightarrow \eta_{b}(9859) \quad (20)$$

From the mixing: $\pi^0 \sim P_3 + G_{30}P_0 + G_{38}P_8 + G_{3,15}P_{15} + G_{3,24}P_{24}$ such that mixing amplitude:

$$<\eta_{{\it c}}|\pi^0>\sim G_{\!3,15}, \qquad <\eta_{{\it b}}|\pi^0>\sim G_{\!3,24}$$

Problem to identify: $M_{\pi^0} << M_{\eta_c} < M_{\eta_b}$ η_c, η_b at rest \rightarrow pions $K_{\pi^0} \sim (3375 MeV)$ (9719 MeV)?

Quark-antiquark states of light scalars

Strong consequences of strangeness

Figure: Mesons A_0 and κ : inversion of hierarchy

Figure: Ratio of mixings $A_0 - f_0$ BESS-III: 0.4 or 0.97

$$R_{a0f0} \equiv rac{A_0^0(980) o S_8 o f_0(980)}{f_0(980) o S_3 o A_0^0(980)} \sim rac{\left|rac{a_{0,(8)}}{a_0}
ight|^2}{\left|rac{f_{0,(3)}}{f_0}
ight|^2} \equiv \left|rac{A_{8,a_0}}{A_{3,f_0}}
ight|^2.$$

37/39

One quark, one antiquark, one meson

FabioLBraghin

Summary

- Vector mesons may probe axial quark current ($< r_{\rho} >_{A}^{2})$
- FSB \rightarrow Mixing effects \rightarrow sea quark structures
- Meson mixings and strangeness/charm/bottom content

On going/planned:

- Flavor symmetry breaking/mixing effects in punctual vector effective interaction with B.El Bennich+F.Serna
- Flavor symmetry breaking/mixing effects in couplings, e.g. pion-constituent quarks and $j_{A,\mu}$
- Behavior of FSB with increasing energies/momenta (GPDs,PDFs)

• ..

Thank you for your attention!

< ロ > < 同 > < 三 > < 三 > 、