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“The highly pedagogical notes of Eduardo Miranda, which are self-contained and assume just some
basic knowledge of second quantization, are of particular relevance as an introduction to the use of
modern bosonization techniques.” [BJP (2003)]



My story with Eduardo #TBT

* First met in 1999 during my undergrad at Unicamp.

 Masters 2002-2004. Worked on 1D Kondo lattice, magnetic domain walls and
Impurities In Luttinger liquids.

* | keep going back to the lessons | learned from Eduardo. This talk is an
example.



Outline

* [opological phases with boundaries
* Fractons

 Gapped boundaries of the Chamon model

o Effective field theory for boundary modes

In collaboration with Weslel Fontana (Natal) [arXiv:2210.09867, to appear in SciPost]



Gapped edges of topological phases

Topological-ordered phases without symmetries, e.g. fractional quantum Hall
states and quantum spin liquids.

Long-range entanglement. Ground state degeneracy
depends on topology of closed surface in real space.
Fractionalization: elementary excitations are anyons.

o _ open edge
Gapped edges classified by condensation of v
anyons with self/mutual bosonic statistics:

Lagrangian subgroups of the set of quasiparticles. \/\

[Kapustin & Saulina, NPB (2011); Levin, PRX (2013); Wang & Wen, PRB (2015)]



Example: Z2 topological order

Present in Anderson’s resonating valence bond state.

[Anderson (1973); Kivelson, Rokhsar & Sethna (1987)]

[Kivelson & Sondhi, “50 years of quantum spin liquids”, arXiv:2305.18103]

Realized in quantum simulation platforms: superconducting qubits, Rydberg

atoms, trapped ions.
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Anyons in the Z2 spin liquid

Toric code: e and m particles have bosonic self-statistics, mutual semionic
statistics; bound state of e and m is a fermion.

[Kitaev, arXiv:quant-ph/9707021]
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Two types of gapped edges

Open boundaries (surface codes): e particles condense on rough edges and m
particles on smooth edges. Different boundary phases separated by quantum
phase transition (described by Ising CFT).  (Brawi& kitaev, arXiv:quant-ph/e811052
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Two types of gapped edges
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Fracton “topological” order

Restricted mobility: particles unable to move In isolation, move along certain
directions by forming bound states (type-I, e.g. Chamon model, X-cube); or are
completely immobile (type-Il, e.g. Haah code).

[Chamon, PRL (2005); Bravyi, Leemhuis & Terhal, Ann. Phys. (2011): Haah, PRA (2011); Vijay, Haah & Fu, PRB (2015)]

Ground state degeneracy depends on geometric data; typically increases with
system size.

Not described by topological quantum field theories; effective field theories
depend on microscopic details (UV-IR mixing).

Lattice models involve multi-spin interactions. Proposals with Majorana zero
modes and quantum circuits with time evolution and measurements.

[You & von Oppen, PRR (2019); Verresen et al., arXiv(2021); Lu et al., PRX Quantum (2022)]



Chamon model

Stabilizers defined on octahedra in the fcc lattice. [Chamon, PRL (2005)

O =005050,0:0

H:—JZOI
1

T_ sum over

octahedra




Chamon model

Stabilizers defined on octahedra in the fcc lattice. [Chamon, PRL (2005)

O =0]05050,0:0

H=-J)» 0
1

| Sum over

octahedra

7> constraints on four sublattices: H O = H O; = H O; = H O; =1
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Bulk properties

Ground state degeneracy on 3-torus with dimensions Lx x Ly x L;:

L, L, L,
Or|¥s™) = 10g”) VI a=1...2"  n=gd (7’ > 2>

[Bravyi, Leemhuis & Terhal, Ann. Phys. (2011)]

Defect: O; = —1 BRE Aii"lii
Spin operator creates four defects ‘!'- 4"4%!
. . A Daw
on a plane. Pair of defects (dipole) e !-7‘
moves along rigid lines. be % ‘i,“'
Q‘I!’ ) !, ’



Single defects

Local operators cannot move single defect (fracton) without creating additiona
ot
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Single defects

Local operators cannot move single defect (fracton) without creating additiona
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Chamon model with a boundary

Gapped boundaries of fracton models not classified by bulk braiding statistics.

[Bulmash & ladecola, PRB (2019); Manoj et al., SciPost (2021); Luo, Spieler, Sun & Karch, PRB (2022)] 2

4 0 3
Five-site stabilizers on (001) boundary: O = o{o5030]0f z

Boundaries on AB and CD planes violate different constraints.
Spin operator on the boundary creates three defects.

x Yy
9 9

L

In both cases boundary defects cost energy.
Boundary modes are gapped.

[/
[/

[Fontana & RP, arXiv (2022)]




Boundary processes

Dipoles can be converted into boundary fracton: (b,c) b  (b,c) > c X
(a,d) —a  (a,d) —>d X

Allowed processes depend on the parity of boundary plane coordinate z.
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Boundary processes

Dipoles can be converted into boundary fracton: (b, c)
(a,d)




Effective field theory In the bulk

Write spin operators in terms of two bosonic fields. Ground state subspace

described by effective Chern-Simons-like action with higher derivatives:
[Fontana, Gomes & Chamon, SciPost (2021)]

1 1
S=>» > /d3rdt (2—Kmn ADo, AD + Z AWK, D, Ag>)
T Tr

=12 m,n=1,2

0 1
K:(—l o) Dy =0, — 0, Dy =0, —0;

Add layer index [ = 1,2 for (001) planes with odd/even z.

Gauge invariance: AD 5 AD 4 /a D, ¢V AD 5 AD 1 /aa,c®



BO un d ad ry theo ry [Fontana & RP, arXiv (2022)]

Analogy with QHE: gauge invariance requires physical AY
degrees of freedom at the boundary. Write gauge fields
as derivatives of two-component bosonic field.

Ay} = Va Dy ©i(r), Dayr (v)] = im (K1) d(r — 1) Dyy = 0> — 07

Boundary modes are gapless. Dispersion has signature
of UV-IR mixing.

w = plk; -k p=/det(M)




Symmetries and charged operators

1
Conserved charges: Q)= — / dxdy Ky Dy 01 Dy, =97 — 0,

T

Charged operators: U, (r) ~ %) ¢ = (q1, ) Q, U, (r)] = —q T, ()
Dipoles created by exponentials of derivatives: Ul (r +8)¥, (r) ~ e "0 Verlr)
Boundary action has U(1) subsystem symmetries:

pi(z,y) = pi(z,y) + file +y) + gz — y) 3

Generalized neutrality condition:

<H eiq7¢l(ra)> + 0 onlyif r,, vertices of rectangular membrane.

84



Boundary condition

To match number of d.o.f. in the boundary theory, we impose that normal
derivative must be linear combination of bosonic fields:

(coefficients depend on the type of boundary)

Ribbon operators that extend to the boundary create boundary
fracton at the end point. v ¢
"
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How to gap out the boundary modes?

Perturbations are similar to cosine terms in Luttinger liquid theory.

0H, = —gq/da:dy cos(q;p;)

~ %q/dmdy (qrp1)”

WHAT
WOULD

EDUARDO
D0?

9

which leaves (353) unchanged. In this case, the Umklapp
term becomes

Humklapp — A /dazcos 4\/Tgo ()] . (356)

22 o2

It 1s known from renormalization oroup arguments that for
g > gerit = 1/2, the Umklapp term is irrelevant: its ef-

fect on the low-energy sector 1s simply to renormalize the
effective parameters u and g but, other than this, it can be
ignored. However,if g < 1/2, then the Umklapp term is rel-
evant: 1t 1s responsible for the opening of a gap in the spec-
trum. In this case, a Luttinger liquid description 1s no longer
valid. The case g = g.r;+ = 1/2 (which coincides with the
1sotropic Heisenberg model as we saw) 1s a marginal case.

[Eduardo’s “Introduction to bosonization”]



Correlations at weak coupling fixed point

Gapless boundary theory is scale invariant with dynamical exponent z = 2. But
two-point correlation is (ultra) short-range:

¢_ can be small
<eiq“"l(r)e_iql’9@l’(0)> = (r #£0) # cos(qip1) irrelevant at weak coupling
Dipole correlations can be long range: (w/a)?
Mg = R q My qr

_ Tlq
<€iTUQZ 3g¢l(§)€—i’wa/3g¢l/ (O)> — (@2 _1|_ 52 ) #

Gapless phase is stable. BKT-type transition to non-fractonic phase.

cos(wqOs 1)  can be relevant

Same theory appears in 2D model: XY plaguette model for Bose metal.

[Paramekanti, Balents & Fisher, PRB (2002); Seiberg & Shao, SciPost (2021); You & Moessner, PRB (2022); Grosvenor et al., PRB (2023)]



Strong coupling regime

Solvable lattice model is at strong coupling: vanishing dispersion @ — 0

Transition between gapped boundaries governed by competition between two
cosine terms:

OH = —/dazdy g1 cos(qop1) + g2 cos(qop2))

First-order boundary phase transition; mapping to 2D compass model/Xu-
Moore model.

Weak coupling regime requires perturbations that enhance quantum fluctuations
and layer mixing at the boundary.

Outlook: microscopic model for gapless phase? Boundary phase transitions?

[in collaboration with C. Chamon]



Summary

* Fracton phases represent a new type of “topological” order in which
quasiparticles have restricted mobility.

 The Chamon model has two types of gapped (001) boundaries distinguished
by broken parity constraints and processes that turn bulk dipoles into
boundary fractons.

o Effective field theory predicts more boundary phases. Need better
understanding of boundary phase transitions.
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Conservation laws

Electric and magnetic fields vanish in the ground state manifold.

ED = 9,40 —p, AV =0 BW = DAY — DAY =0

Subsystem symmetries: conservation of line/ribbon operators.
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