Boundary modes in fracton models

Rodrigo Pereira
IIP, Natal, Brazil

Workshop on Strong Electron Correlations in Quantum Materials, ICTP-SAIFR, June 22, 2023
My story with Eduardo #TBT

• First met in 1999 during my undergrad at Unicamp.
My story with Eduardo #TBT

• First met in 1999 during my undergrad at Unicamp.
Introduction to Bosonization

E. Miranda

Instituto de Física Gleb Wataghin, Unicamp,
Caixa Postal 6165, 13083-970, Campinas, SP, Brazil
emiranda@ifi.unicamp.br

Received on 27 August, 2002

“The highly pedagogical notes of Eduardo Miranda, which are self-contained and assume just some basic knowledge of second quantization, are of particular relevance as an introduction to the use of modern bosonization techniques.” [BJP (2003)]
My story with Eduardo #TBT

- First met in 1999 during my undergrad at Unicamp.
- Masters 2002-2004. Worked on 1D Kondo lattice, magnetic domain walls and impurities in Luttinger liquids.
- I keep going back to the lessons I learned from Eduardo. This talk is an example.
Outline

- Topological phases with boundaries
- Fractons
- Gapped boundaries of the Chamon model
- Effective field theory for boundary modes

In collaboration with Weslei Fontana (Natal)
Gapped edges of topological phases

Topological-ordered phases without symmetries, e.g. fractional quantum Hall states and quantum spin liquids.

Long-range entanglement. Ground state degeneracy depends on topology of closed surface in real space. Fractionalization: elementary excitations are anyons.

Gapped edges classified by condensation of anyons with self/mutual bosonic statistics: Lagrangian subgroups of the set of quasiparticles.

[Kapustin & Saulina, NPB (2011); Levin, PRX (2013); Wang & Wen, PRB (2015)]
Example: Z₂ topological order

Present in Anderson’s resonating valence bond state.

[Anderson (1973); Kivelson, Rokhsar & Sethna (1987)]

Realized in quantum simulation platforms: superconducting qubits, Rydberg atoms, trapped ions.

[Satzinger et al. (Google Quantum AI), Science (2021)]
[Semeghini et al., Science (2021)]
[Iqbal et al. (Quantinuum), arXiv:2302.01917]
Anyons in the \mathbb{Z}_2 spin liquid

Toric code: e and m particles have bosonic self-statistics, mutual semionic statistics; bound state of e and m is a fermion.

Stabilizers:

$$A_s = \prod_{j \in s} \sigma_j^x$$

$$B_p = \prod_{j \in p} \sigma_j^z$$

H = \sum_s A_s - \sum_p B_p

[Diagram of stabilizer operators and a lattice with anyons]
Two types of gapped edges

Boundary stabilizers:

\[B'_p = \sigma_1^z \sigma_2^z \sigma_3^z \]

\[A'_s = \sigma_1^x \sigma_2^x \sigma_3^x \]
Two types of gapped edges

Boundary stabilizers:

$$B'_p = \sigma_1 \bar{z} \sigma_2 \bar{z} \sigma_3$$

$$A'_s = \sigma_1^x \sigma_2^x \sigma_3^x$$
Two types of gapped edges

Open boundaries (surface codes): e particles condense on rough edges and m particles on smooth edges. Different boundary phases separated by quantum phase transition (described by Ising CFT).

Boundary stabilizers:

\[B'_p = \sigma_1^z \sigma_2^z \sigma_3^z \]

\[A'_s = \sigma_1^x \sigma_2^x \sigma_3^x \]
Two types of gapped edges

Open boundaries (surface codes): e particles condense on rough edges and m particles on smooth edges. Different boundary phases separated by quantum phase transition (described by Ising CFT).

Boundary stabilizers:

$$B'_{p} = \sigma_1^z \sigma_2^z \sigma_3^z$$

$$A'_{s} = \sigma_1^x \sigma_2^x \sigma_3^x$$
Two types of gapped edges

Boundary stabilizers:

For rough edges:

$$B'_p = \sigma_1^z \sigma_2^z \sigma_3^z$$

For smooth edges:

$$A'_s = \sigma_1^x \sigma_2^x \sigma_3^x$$
Fracton “topological” order

Restricted mobility: particles unable to move in isolation, move along certain directions by forming bound states (type-I, e.g. Chamon model, X-cube); or are completely immobile (type-II, e.g. Haah code).

[Chamon, PRL (2005); Bravyi, Leemhuis & Terhal, Ann. Phys. (2011); Haah, PRA (2011); Vijay, Haah & Fu, PRB (2015)]

Ground state degeneracy depends on geometric data; typically increases with system size.

Not described by topological quantum field theories; effective field theories depend on microscopic details (UV-IR mixing).

Lattice models involve multi-spin interactions. Proposals with Majorana zero modes and quantum circuits with time evolution and measurements.

[You & von Oppen, PRR (2019); Verresen et al., arXiv(2021); Lu et al., PRX Quantum (2022)]
Chamon model

Stabilizers defined on octahedra in the fcc lattice.

\[O = \sigma_1^x \sigma_2^x \sigma_3^y \sigma_4^y \sigma_5^z \sigma_6^z \]

\[H = -J \sum_I O_I \]

Sum over octahedra

[Chamon, PRL (2005)]
Chamon model

Stabilizers defined on octahedra in the fcc lattice. [Chamon, PRL (2005)]

\[\mathcal{O} = \sigma_1^x \sigma_2^x \sigma_3^y \sigma_4^y \sigma_5^z \sigma_6^z \]

\[H = -J \sum_I \mathcal{O}_I \]

\(\sum \text{over octahedra} \)

\(\mathbb{Z}_2 \) constraints on four sublattices:

\[\prod_{I \in A} \mathcal{O}_I = \prod_{I \in B} \mathcal{O}_I = \prod_{I \in C} \mathcal{O}_I = \prod_{I \in D} \mathcal{O}_I = 1 \]
Bulk properties

Ground state degeneracy on 3-torus with dimensions $L_x \times L_y \times L_z$:

$$\mathcal{O}_I |\Psi_0^{(\alpha)}\rangle = |\Psi_0^{(\alpha)}\rangle \quad \forall I \quad \alpha = 1, \ldots, 2^{4n} \quad n = \gcd\left(\frac{L_x}{2}, \frac{L_y}{2}, \frac{L_z}{2}\right)$$

Defect: $\mathcal{O}_I = -1$

Spin operator creates four defects on a plane. Pair of defects (dipole) moves along rigid lines.
Single defects

Local operators cannot move single defect (fracton) without creating additional excitations.
Single defects

Local operators cannot move single defect (fracton) without creating additional excitations.
Chamon model with a boundary

Gapped boundaries of fracton models not classified by bulk braiding statistics.

Five-site stabilizers on (001) boundary: \(\mathcal{O}_I' = \sigma_1^x \sigma_2^x \sigma_3^y \sigma_4^y \sigma_5^z \)

Boundaries on AB and CD planes violate different constraints. Spin operator on the boundary creates three defects.

In both cases boundary defects cost energy. Boundary modes are gapped.

[Fontana & RP, arXiv (2022)]
Boundary processes

Dipoles can be converted into boundary fracton:

\[(b, c) \rightarrow b \quad \checkmark \quad (b, c) \rightarrow c \quad \times\]
\[(a, d) \rightarrow a \quad \checkmark \quad (a, d) \rightarrow d \quad \times\]

Allowed processes depend on the parity of boundary plane coordinate \(z\).
Boundary processes

Dipoles can be converted into boundary fracton:

\[(b, c) \rightarrow b \quad \times \quad (b, c) \rightarrow c \quad \checkmark \]
\[(a, d) \rightarrow a \quad \times \quad (a, d) \rightarrow d \quad \checkmark \]

Allowed processes depend on the parity of boundary plane coordinate \(z \).
Effective field theory in the bulk

Write spin operators in terms of two bosonic fields. Ground state subspace described by effective Chern-Simons-like action with higher derivatives:

\[S = \sum_{l=1,2} \sum_{m,n=1,2} \int d^3r \, dt \left(\frac{1}{2\pi} K_{mn} A^{(l)}_m \partial_t A^{(l)}_n + \frac{1}{\pi} A^{(l)}_0 K_{mn} D_m A^{(l)}_n \right) \]

\[K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad D_1 = \partial_x^2 - \partial_z^2 \quad D_2 = \partial_y^2 - \partial_z^2 \]

Add layer index \(l = 1, 2 \) for (001) planes with odd/even \(z \).

Gauge invariance: \(A^{(l)}_n \rightarrow A^{(l)}_n + \sqrt{a} D_n \zeta^{(l)} \) \(A^{(l)}_0 \rightarrow A^{(l)}_0 + \sqrt{a} \partial_t \zeta^{(l)} \)
Boundary theory

Analogy with QHE: gauge invariance requires physical degrees of freedom at the boundary. Write gauge fields as derivatives of two-component bosonic field.

\[A_{IJ}^{(l)} = \sqrt{a} \, D_{IJ} \varphi_l \]

\[[\varphi_l(r), D_{xy} \varphi_{l'}(r')] = i\pi (K^{-1})_{ll'} \delta(r - r') \]

\[S_{bd} = \frac{1}{2\pi} \int d^2 r \, dt \left(K_{ll'} \varphi_l \partial_t D_{xy} \varphi_{l'} - M_{ll'} D_{xy} \varphi_l D_{xy} \varphi_{l'} \right) \]

Boundary modes are gapless. Dispersion has signature of UV-IR mixing.

\[\omega = \mu |k_x^2 - k_y^2| \]

\[\mu = \sqrt{\det(M)} \]
Symmetries and charged operators

Conserved charges: \[Q_l = \frac{1}{\pi} \int dxdy K_{l\nu} D_{xy} \varphi_\nu \]
\[D_{xy} = \partial_x^2 - \partial_y^2 \]

Charged operators: \[\Psi_q(r) \sim e^{iq_l \varphi_l(r)} \]
\[q = (q_1, q_2) \]
\[[Q_l, \Psi_q(r)] = -q_l \Psi_q(r) \]

Dipoles created by exponentials of derivatives:
\[\Psi_q^\dagger(r + \delta) \Psi_q(r) \sim e^{-i q_l \cdot \nabla \varphi_l(r)} \]

Boundary action has U(1) subsystem symmetries:
\[\varphi_l(x, y) \rightarrow \varphi_l(x, y) + f_l(x + y) + g_l(x - y) \]

Generalized neutrality condition:
\[\left\langle \prod_\alpha e^{iq_\alpha \varphi_l(r_\alpha)} \right\rangle \neq 0 \quad \text{only if } r_\alpha \text{ vertices of rectangular membrane.} \]
Boundary condition

To match number of d.o.f. in the boundary theory, we impose that normal derivative must be linear combination of bosonic fields:

\[a \partial_z \varphi_l \rightarrow c_{ll'} \varphi_{l'} \]
(coefficients depend on the type of boundary)

Ribbon operators that extend to the boundary create boundary fracton at the end point.

\[
W_l = e^{\frac{i}{\sqrt{a}} \int d\xi_1 \int_{\xi_1}^{\xi_1+w} d\bar{\xi}_1 A^{(l)}_2}
\]

\[
W_l = e^{i\sqrt{2}w[\partial_z \varphi_l(\mathbf{r}_0) + \partial_y \varphi_l(\mathbf{r}_0)]} \sim e^{i\sqrt{2}w[c_{ll'} \varphi_{l'}(\mathbf{r}_0) + \cdots]}
\]
How to gap out the boundary modes?

Perturbations are similar to cosine terms in Luttinger liquid theory.

\[\delta H_q = -g_q \int dxdy \cos(q \varphi_l) \]

\[\sim \frac{g_q}{2} \int dxdy (q \varphi_l)^2 \]

which leaves (353) unchanged. In this case, the Umklapp term becomes

\[H_{\text{Umklapp}} \rightarrow \frac{\Delta}{2\pi^2 \alpha^2} \int dx \cos [4\sqrt{\pi}g\phi(x)]. \]

(356)

It is known from renormalization group arguments that for \(g > g_{\text{crit}} = 1/2 \), the Umklapp term is irrelevant: its effect on the low-energy sector is simply to renormalize the effective parameters \(u \) and \(g \) but, other than this, it can be ignored. However, if \(g < 1/2 \), then the Umklapp term is relevant: it is responsible for the opening of a gap in the spectrum. In this case, a Luttinger liquid description is no longer valid. The case \(g = g_{\text{crit}} = 1/2 \) (which coincides with the isotropic Heisenberg model as we saw) is a marginal case. The renormalization factor of (356) is finite in this case.

[Edwardo’s “Introduction to bosonization”]
Correlations at weak coupling fixed point

Gapless boundary theory is scale invariant with dynamical exponent $z = 2$. But two-point correlation is (ultra) short-range:

$$\langle e^{iq_1 \varphi_1(r)} e^{-iq'_1 \varphi_1(0)} \rangle = 0 \quad (r \neq 0) \quad \text{can be small}$$

Dipole correlations can be long range:

$$\langle e^{i\omega q_1 \partial_\xi \varphi_1(\xi)} e^{-i\omega q'_1 \partial_\xi \varphi_1(0)} \rangle = \left(\frac{1}{\alpha^2 + \xi^2} \right)^{\eta_q} \quad \text{can be relevant}$$

Gapless phase is stable. BKT-type transition to non-fractonic phase.

Same theory appears in 2D model: XY plaquette model for Bose metal.

[Paramekanti, Balents & Fisher, PRB (2002); Seiberg & Shao, SciPost (2021); You & Moessner, PRB (2022); Grosvenor et al., PRB (2023)]
Strong coupling regime

Solvable lattice model is at strong coupling: vanishing dispersion \(\mu \to 0 \)

Transition between gapped boundaries governed by competition between two cosine terms:

\[\delta H = - \int dxdy \left[g_1 \cos(q_0 \varphi_1) + g_2 \cos(q_0 \varphi_2) \right] \]

First-order boundary phase transition; mapping to 2D compass model/Xu-Moore model.

Weak coupling regime requires perturbations that enhance quantum fluctuations and layer mixing at the boundary.

Outlook: microscopic model for gapless phase? Boundary phase transitions?

[in collaboration with C. Chamon]
Summary

- Fracton phases represent a new type of “topological” order in which quasiparticles have restricted mobility.

- The Chamon model has two types of gapped (001) boundaries distinguished by broken parity constraints and processes that turn bulk dipoles into boundary fractons.

- Effective field theory predicts more boundary phases. Need better understanding of boundary phase transitions.
Conservation laws

Electric and magnetic fields vanish in the ground state manifold.

\[E_{n}^{(l)} = \partial_{t} A_{n}^{(l)} - D_{n} A_{0}^{(l)} = 0 \quad \text{and} \quad B^{(l)} = D_{1} A_{2}^{(l)} - D_{2} A_{1}^{(l)} = 0 \]

Subsystem symmetries: conservation of line/ribbon operators.

\[W_{l} = \exp \left[\frac{i q}{\sqrt{a}} \int d\xi_{1} \int_{\bar{\xi}_{1}+w}^{\xi_{1}} d\bar{\xi}_{1} A_{2}^{(l)} \right] \]