Quantum information processing and simulation

with Rydberg atom arrays fannes Bernien

			•	
UVER	vier	W	-	

I Single atoms as quantum building blocks I Rydberg interactions t QIP IN Simulation + New Frontiers

I 1, typical atoms

¹ н																	2 He*
³ Li	4 Be											5 B	⁶ C	7 N	8 0	9 F	¹⁰ Ne*
¹¹ Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar*
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	³¹ Ga	³² Ge	33 As	34 Se	35 Br	36 Kr*
37 Rb	³⁸ Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe*
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	⁸⁶ Rn
87	88	89			_		_	_	_	_					_		
Fr	Ra	Ac		58 Ce	59 Pr	60 Nd	⁶¹ Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				90 Th	91 Pa	92 U											

blue: lases cooled atoms
often exp. use etoms with one extra e
R.g. Li, Na, K, Rb, Cs,
"easy level structure"

=>RL "Silicon of atoms" ·also 2e atoms: Yb, Sr => more complex level structure => opportunities: . optical clacks · huckear spin 2. Eggical setup: Utt Chamber ~ 10-10 torr () load atoms from RT vapor (or atomic (e.g. piece Rb) (or atomic (c pump (oven) @laser light - cooling, trapping hamber State prep.... + Tools: · Vacuum tech the sta · Laser tech , optics, electroirs · cameras

3. Laser cooling: • atoms @RT travel with vn 300m · ») need to cool 43759 W_{L} W_{L} 58 55 5• moving atom sees laser freg. shifted by Doppler shift $\Delta w = \vec{k} \vec{v} (|k| = \frac{2\vec{k}}{\vec{v}})$ => atom absorbs photon from counter-propagation beam (Dabsorbtion Q cmit photon Paton = mV - th Kabs Paton = mV - th Kaster · atom emits in random direction < kemit > = 0 = atom is sloved down o need to down in xy2 => typical 6 counter propagating

Leser beams

o combination with magnetic fields Magneto - Optical - Trap =) spatially dependent restoring form =) acold ensemble (cloud) of spatially confined atoms

·Truk, Vrcm

· cloud ~ 10⁴ atoms

4, trapping single atoms : · optical dipole trap : detuned laser shifts 58 $34\frac{n^2}{44}$ evergy levels $58 \frac{34}{34}$ evergy levels $12 \frac{1}{2} \frac{$

 $\Sigma = \frac{1Edl}{t_1}$ transition dipole element E-field th of laser Question: 1) derive the energy shift of TLS with far off resonant light. 2)a) lookup the dipole element for 55, CP 5P1 transition in Kb bassume you have ImW of laser light @ Bloum focused to 1 pm² calculate the energy shift c) can this trap a 10 mK cold atom · Weason < Watom ("rad detuned") =) atom is attracted to high intersty

· Weaser > water ("Slue detuned") => atom is repelled =) both can be used for trapping 5. trapping single atom w ~241 D => to have tight trapping need of large =) use microscope objective $\left(NA = \frac{V}{24}\right)$ typ NA~ 0.65; 1~810 nm (Rb) =) Wo ~ 500mm · how many atoms trapped ? => light assisted collisions => 0 or 1 atom when tight for