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The many-body problem in quantum mechanics

» (Generic specification of a quantum |\I;> vector with 22V
state requires resources exponentially
large in the number of degrees of
freedom N

» Joday's best supercomputers can solve
the wave equation exactly for systems
with a maximum of ~45 spins.

» Yet, technologically relevant problems
IN chemistry, condensed matter
physics, and quantum computing are
much larger than 45




» Nature Is sometimes compassionate:
amount of information smaller than the
maximum capacity — problems have
structure and we explolt It

» Quantum Monte Carlo: stochastic
exploration of most important regions
of the gigantic state space.

» Tensor Networks: Exploit the fact that
quantum states realized in nature have
ittle entanglement

» Both techniques have led to profound
implications to our understanding of
condensed matter systems

There Is still hope for classical algorithms

|\If> vector with 2%V

QMC Low entanglement:
crgeeee MPS and other TN
H i

g
L TTT T




There Is still hope for classical algorithms
|\If> vector with 2°"

» Enter Machine learning (ML): ML
community deals with highly structured
problems arising in natural datasets.

» Insight: both quantum and ML
problems have a lot of shared structure

and symmetry.

» \What are these commonalities and are
they important beyond mere
resemblance?
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High dimensionality

* Imagine you have a camera. How many different pictures can a camera take”?

 Consider a simple camera with L x L pixels. The camera is take only take
binary images — Each pixel can be only 1 or O
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High dimensionality: building a camera pixel by pixel

» The first pixel can be 1 or 0 —> that is 2 values

» The second pixel can be 1 or 0 —> the combinations of the two first pixels is
4=2%°:00,10,01, 11.

» Now add a third pixel: 000, 001,010, 100,110,011,101,11 1.
That is 8 = 27 possible combinations

» 4 pixels —>0000,0001,0010,0100,1000....there are 16 = 2%
possible combinations

> For all of those L X L pixels we get N = 2"~

» The space of all possible images is exponentially big—same as quantum
states or the Boltzmann distribution in stat mech.



Take 28 x 28 binary images

> Size of state space: 2%°°*° = 1.017458 x 10°°°

» Bigger than the number of atoms in the known universe. Most images are
noise —> Probabillity distributions over the images our brain understands live
In low-dimensional subspace of these big spaces.
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Commonality in some of the mathematical objects

» |n unsupervised learning researchers are interested, e.g. in understanding the
underlying probabillity of a dataset. For instance images of handwritten digits

0000000C00800000

fFyv s VFal L red 2
A >ERLELERL2R2E2Y
TIDIVFTSI32M%933335
H 4 Y £ QLYY J Y&
SIS 5rCI)SSs 58590588
b HGC6OG66ELLGBG6GGEE E
PP THYET 2V 27
¥ 88358885V 8&ETY S
22922993 790949 1779
» What is the probability P( % ) or what is the P( ¥ )



In ML people study P(image) and in stat mech...

» Boltzmann distribution » \Wavefunction
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ML and statistical (and quantum) physics are interested in similar high
dimensional distributions and wavefunctions
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https://www.thispersondoesnotexist.com/

Correlations and symmetries with strikingly similar structure

Natural Images

» (Critical correlations: e~ —22]

|
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Ising Model
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» Natural language and natural images N
» Music 0 1 'T\z E

_ Statistical Thermodynamics of Natural Images
> Flocks of animals i

» All exhibit power-law decaying
correlations identical to a (classical or
quantum) at a critical point

» Translational, rotational, reflection, and
other symmetries— rich

g O |

At 2 Scale-free correlations in starling flocks.
== | PNAS 107 (26) 11865-11870




What'’s learning?

- Whatis learning? “The activity or process of gaining knowledge or skill
by studying, practicing, being taught, or experiencing something.”
Merriam Webster dictionary

« “A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E.” Tom Mitchell



What is machine learning?

How can we solve a specific problem?

We can write a program that encodes a set of rules that are useful to solve the problem
However, In many cases it is very difficult to specify those rules

>~ Some tasks (vision, speech, NLP) are too complicated to code.

>~ Some systems need to adapt.

- Handle noise.

> Solve a differential equation, eg, Schrodinger equation.

Instead of explicitly writing a program to solve a specific problem, we typically use examples
(training data) to train the computer to perform this task (to generalize). Alternatively we can
use the differential equation in the solution.



What is machine learning?

« Learning systems are not directly programmed to solve a problem, instead develop
own program based on:

» Examples of how they should behave
- From trial-and-error experience trying to solve the problem
 Different than standard CS:

» Want to implement unknown function, only have access e.g., to sample input-
output pairs (training examples)

» Learning simply means incorporating information from the training examples into
the system



What is machine learning?

« For many problems, it's difficult to program the correct behaviour by hand:
» recognizing people and objects

- understanding human speech

« Machine learning approach: program an algorithm to automatically learn from data, or from
experience

- Why might you want to use a learning algorithm?
» hard to code up a solution by hand (e.g. vision, speech)
« system needs to adapt to a changing environment (e.g. spam detection)
- Want the system to perform better than the human programmers

. privacy/fairness (e.g. ranking search results)



Examples

Computer vision

Object detection, semantic
segmentation, pose estimation

Autonomous vehicles
Analysis of Medical images

Precision agriculture

Face recognition

Robotics

https://trid.trb.org/view/1678741


https://arxiv.org/abs/2001.05566

Natural language processing

Branch of computer science, linguistics, and machine learning concerned
with giving computers the ability to process text and spoken words in a
similar way humans do it.

Machine translation

Speech recognition

Sentiment analysis

Automatic summarization of text

Text to image/video generation



ChatGPT

i@ CBC

Can the new Al tool ChatGPT replace human work? Judge

« ChatGPT is a machine learning for yourself

A new artificial intelligence tool using natural language processing has captured the

m Od e | W h i C h i n te ra CtS i n a public's imagination, amassing more than a million...
conversational way

% Global News

ChatGPT: Everything to know about the viral,

° D|a |Og ue fO rmat ma keS |t '‘groundbreaking’ Al bot - National | Globalnews.ca

Users can ask the Al to write essays, poems or scripts, or even translate or summarize “ d

p OSS i b | e fO r C h a t G PT tO text. ChatGPT can also answer questions on a wide...

21 hours ago

answer followup questions, i

admit its mistakes, challenge it SN [
incorrect premises, and reject

Inappropriate requests. 2 e Tt st

| wrote a story about ChatGPT’s Al. Then | dared it to write a
better one

Like a million or so other artificial intelligence dumb-dumbs who discovered ChatGPT
this week, | couldn't wait to show off the capabilities...

https://openai.com/blog/chatgpt/



ChatGPT

« People now believe these B ey el
. . ChatGPT can pass the United States Medical Licensing
1 The rise of the machines? ChatGPT CAN pass US Medical Licensing Exam and the
d ee p teC h n O | Og I Ca | ’ Bar, experts warn - after the Al chatbot received B grade on...

educational, and societal A

implications. _ | |
OpenAl’'s ChatGPT passes Wharton’s MBA Exam, while also

qualifying for a medical licence in the US

Medical researchers are actually considering using ChatGPT in actual, clinical cases to
assist real doctors. OpenAl's chatbot ChatGPT has been...

5 hours ago

02-21-23 | 9:59 AM

A science fiction magazine closed
submissions after being bombarded
with stories written by ChatGPT

https://openai.com/blog/chatgpt/ In a case of life (or something) imitating art, an award-winning publisher of science
fiction says it's being overrun with Al-generated work.



ChatGPT

write a poem about ICTP-SAIFR and the Journeys into Theoretical Physics program

In Sao Paulo, where knowledge blooms,
A center of brilliance, ICTP-SAIFR looms.
Within its walls, the curious minds convene,

Embarking on journeys into theoretical physics unseen.

At ICTP-SAIFR, the air crackles with intellectual fire,
Where scholars, young and seasoned, aspire
To unravel the secrets of the universe profound,

In the realm where theoretical physics is crowned.

The Journeys into Theoretical Physics program,
A gateway to knowledge, like a celestial anthem,
Draws minds from across the world's expanse,

Uniting them in the pursuit of cosmic dance.

The scholars gather, their spirits alight,
Immersed in equations that illuminate the night,
Seeking answers to questions, profound and deep,

Exploring the mysteries the universe does keep.

In lecture halls adorned with brilliance and light,
Equations dance, filling the rooms with insight.

As the beauty of theoretical physics unwinds.




Examples
Game play

A
Chess Shogi Go
AlphaZero vs. Stockfish AlphaZero vs. Elmo AlphaZero vs. AGO
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single system that taught itself from scratch how to master the
games of chess, shogi (Japanese chess), and Go, beating a world-
champion program in each case.
https://www.science.org/doi/10.1126/science.aar6404
https:/deepmind.com/blog/article/alphazero-shedding-new-light-
grand-games-chess-shogi-and-go

Go is known as the most challenging classical game for artificial intelligence
because of its complexity. https://deepmind.com/research/case-studies/

alphago-the-story-so-far



https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://deepmind.com/research/case-studies/alphago-the-story-so-far
https://en.wikipedia.org/wiki/Shogi
https://en.wikipedia.org/wiki/Go_(game)
https://www.science.org/doi/10.1126/science.aar6404
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Examples

Machine learning in sciences

AlphaFold Experiment

Highly accurate protein structure prediction with AlphaFold. Nature volume 596, pages 583-589 (2021)


https://www-nature-com.proxy.lib.uwaterloo.ca/

ML broad categories

 Data-based learning  Equation/law-based learning

- We are provided an equation we

« We are provided with useful
need to solve.

data that allows us to solve the

problem + Example: Physics/chemistry-

informed neural networks are a

. Applies when it is possible to neural networks that can embed the

k | f hysical/chemical
collect data about the system. nowledge of any p ysiea /o emita
laws that govern a given data-set in

the learning process, and can be
described by differential equations.

- Eigenvalue problems



ML broad categories

Data-driven learning

Supervised learning (correct outputs known). Given (x, y) pairs learn a mapping from x toy.
Example:

- Classification: categorical output (object recognition, classifying a phase from measurements)
- Regression: real-valued output (predicting market prices, customer rating)

Unsupervised learning. Given data points find some structure in the data. Example:
Dimensionality reduction, learning a probability distribution. Quantum state tomography.

Online learning. Supervised learning when the data is given sequentially, by an adversary, No
separate train/test phases. Example: Spam filtering

Reinforcement learning. Learn actions to maximize future rewards. Delayed playoffs, agent
controls what he sees. Example: Flying drones.

Other categories: active learning, semi-supervised learning.



ML broad categories

Equation/physical law learning

Eigenvalue/ground state problems/Hamiltonian driven learning
Approximate dynamics of a classical or guantum system

Stochastic reaction dynamics in chemistry

Approximate equilibrium properties of a system in thermal equilibrium
Approximate steady state of an open quantum system

For all these systems, it is possible to reformulate the problem in a
variational approach.



Supervised learning



Supervised learning setup
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In supervised learning:

. Thereisinputx € X, typically a vector of features
. There istargett € I (also called response, outcome, output, class)

. Objective isto learn afunctionf: 2 — Jsuchthatt~ y = f(x)
based on some data @ = {(x", V) fori =1,2,...,N}



Binary classification

. Classification: given a D-dimensional input x € R” predict a discrete-
valued target.

. Binary: predict a binary targetr € {0,1}

. Training examples with ¢t = 1 are called positive examples, and
training examples with ¢t = 0 are called negative examples.

. te{0,1}orre {+1,—-1}.

. We will build models y = f(x) which predict the targets given some
input X, ie we want y to match t.

- The models will have a set of adjustable parameters.



Neural networks




Basic unit

« For neural nets, we use a neuron, or unit:

Y output output weig\;hts blas
' l
w1 v
W2 w y:gb(wa-I-b)

O ) inputs 4 "\

L1 L L3

activation function inputs

. Typically ¢ is a non-linear function. It can be between O and 1 (active/
inactive neuron)

« By putting together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!



Multilayer Perceptrons

an output
» We can connect lots of units i unit
together into a directed ~ output layer
acyclic graph.

second hidden layer
» Typically, units are grouped

into layers. first hidden layer

a hidden
unit

» This gives a feed-forward

neural network. input layer

| a connection
depth

an input
unit



Multilayer perceptrons

Each hidden layer 1 connects /V,_; input units to /V; output units.

In a fully connected layer, all input units are connected to all output units.

Note: the inputs and outputs for a layer are distinct from the inputs and outputs to
the network.

If we need to compute M outputs from NN inputs, we can do so using matrix
multiplication. This means we’ll be using an M X N matrix.

The outputs are a function of the input units: y = f(x) = ¢(Wx + b)

@ is typically applied component-wise

A multilayer network consisting of fully connected layers is called a multilayer
perceptron.



Multilayer Perceptrons

« Common activation functions:

-1t 1
2 o
3 3
4 3 2 1 0 1 2 3 4 2 3 > 1 0 1 5 3
. e 11 : Softplus
|dentity Rectified linear unit (RelLu) D

_ Z
y=Z y = max((),z) y = lOg(l + e )



Multilayer Perceptrons

Common activation functions:
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Multilayer perceptrons

- Each layer computes a function, so the network computes a
composition of functions:

hD = FD(x) = HWDx + bD)
h® = FORD) = HWORD 4 p@)

y =fEhEY)
«  Or more simply:

y :f(L) O oo Of(l)(x).

« Neural nets provide modularity: we can implement each layer’s
computations as a black box.

y O O O
£
f(3)¥

h2| O O O
f(2)

hHV]| O O O
f(l)

X 1O O O



Loss Function

A loss function Z(v, t) defines how bad it is if, for some example x, the algorithm
predicts y, but the target is actually t.

2
Squared error loss function: £ (y, 1) = > (y — t) (but there are many more)
y — tis the residual, and we want to make this small in magnitude
1
The 5 factor is just to make the calculations convenient.
Cost function: loss function averaged over all training examples
F(w) = 1 i (y® — t(z’))z
2N

=1

Terminology varies. Some call “cost” empirical or average loss.



Optimization: solving the minimization problem

- We defined a cost function £ (w), which wed like to minimize.

« Recall from calculus: the minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the
derivative is zero.

- multivariate generalization: set the partial derivatives d_¢/0w; to zero

- Equivalently, we can set the gradient to zero. The gradient is the vector of partial derivatives:

9
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Solutions may be direct or iterative

- Sometimes we can directly find provably optimal parameters (e.g. set the gradient to zero and solve in
closed form). We call this a direct solution.

. |terative solution methods repeatedly apply an update rule that
gradually takes us closer to the solution. This applies to neural networks.



Iterative solution: gradient descent

All optimization problems we cover in these lectures don’t have a direct
solution.

To minimize the cost function, we use the broadly applicable gradient descent.

Gradient descent is an iterative algorithm, which means we apply an update
repeatedly until some criterion is met.

We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

S (W)

Fw) 1




Gradient descent

« Observe:
. If 0 #/0w; > 0, then increasing w; increases 7.

. If 07/0w; < 0, then increasing w; decreases 7.

. The following update always decreases the cost function for small enough a (unless df/@wj = ()):

0f

- a > (is alearning rate (or step size). The larger it is, the faster w changes.

- We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or
0.0001.

. |f cost is the sum of N individual losses rather than their average, smaller learning rate will
be needed (a’ = a/N).



Gradient descent

- This gets its name from the gradient. Recall the definition:
0.f
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. This is the direction of fastest increase in £.

- Update rule in vector form:

0t
We—Ww—Qqg—
ow

- So gradient descent updates w in the direction of fastest decrease.

. . . 0f
. Observe that once it converges, we get a critical point, i.e., — = ()

ow



PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ising ferromagnet in two dimensions

B = _ngigj
(%,7)

\4

Ferromagnet

O; — 1

Temperature

Lars Onsager Phys. Rev. 65, 117
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PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

Ising ferromagnet in two dimensions

B = _ngigj
(%,7)

/\

Ferromagnet

O; — 1

Temperature

Lars Onsager Phys. Rev. 65, 117
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Phases, phase transitions, and the order parameter
Ferromagnetic transition: order parameter

10 o - |
« N
.
0.8 | “
1 It iIs a measure of the
0.6 F : -
F t * P t
E erromagne ] aramagne degree of order
0.4F  M>0 :: M=0 -
] IN the system
0.2} |
I
I
OO | | 1
1.0 1.5 2.0 2.0 3.0 3.0
1 1

M = ﬁ E <0'@'>, O; — 1 Lars Onsager Phys. Rev. 65, 117 (1944)




Inspiration: fluctuations handwritten digits (mnist)
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SQUARE LATTICE ISING MODEL

T./J =2/In(1+/2)

2D Ising model in the ordered phase na
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Toy model

Investigating the argument of the hidden layer during the training
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Toy model
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Message

NN analysis of the models enable us to make quantitative predictions about
the critical points of the models and can even inform us about universal
properties of such critical points without a priori knowledge about the
pertinent order parameters or energy.

* Only from raw configurations obtained numerically or experimentally.

 We have made use of the knowledge of the critical point to construct our
datasets. This limitation was quickly lifted and there are approaches that do
not require any knowledge about the transition. See e.g. “Learning phase
transitions by confusion” Evert P. L. van Nieuwenburg, Ye-Hua
Liu & Sebastian D. Huber. Nature Physics volume 13, pages 435-439 (2017)



https://www.nature.com/articles/nphys4037#auth-Evert_P__L_-van_Nieuwenburg
https://www.nature.com/articles/nphys4037#auth-Ye_Hua-Liu
https://www.nature.com/articles/nphys4037#auth-Ye_Hua-Liu
https://www.nature.com/articles/nphys4037#auth-Ye_Hua-Liu
https://www.nature.com/articles/nphys4037#auth-Ye_Hua-Liu
https://www.nature.com/articles/nphys4037#auth-Sebastian_D_-Huber
https://www.nature.com/nphys

Can we deal with disordered and
topological phases not described
by order parameters?




Phases of matter without an order parameter at =0

 [opological phases of matter. Examples: Fractional quantum hall effect,

quantum spin liquids, Ising gauge theory. Potential applications in topological

quantum computing. These phases dety the Landau symmetry breaking
classification.

 Coulomb phases = Highly correlated “spin liquids” described by

electrodynamics. Examples: Common water ice and spin ice materials
(Ho2Ti2O7 and Dy2Ti2O7)



Phases of matter without an order parameter at T=0,c0
Wegner’s Ising gauge theory:

1
_ < Y
H = _JZp HiEin T
o
F.J. Wegner, J. Math. Phys. 12 (1971) 2259 A
(Kogut Rev. Mod. Phys. 51, 659 (1979)) T

The grandmother of most lattice

| | models for topological quantum
The ground state is a highly degenerate computation
manifold with exponentially decaying

spin—spin correlations. Ground state is

a disordered topologically ordered
phase

 ——>

T=0 high temperature phase T = oo

Castelnovo and Chamon Phys. Rev. B 76, 174416 (2007)



For two configurations
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For two configurations
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high-temperature state

Ground state

Feedforward NN are difficult to apply to this problem and lead to 50% accuracy




ISing gauge theory EJ. Wegner, J. Math. Phys. 12 (1971) 2259
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The picture we draw for what the CNN is using to distinguish the phases is
that of the detection of satisfied local constraints. In few words, the neural network figures out the energy and uses it to classify states




Analytical understanding: What does the CNN use to make predictions?

 Based on this observation we derived the weights of a streamlined
convolutional network analytically designed to work well on our test sets.

OCOld(O-]_)---pO-N) x lim GXpﬁJZHO'iZ
P

B—r00 .
1€p

' Fully connected
output layer

100% accuracy on test sets

[[

1/

16 2X2 maps Q Q

on each
sublattice

Sub-lattices act as color channel in computer vision applications J. Carrasquilla and R. G. Melko. Nature Physics 13, 431-434 (2017)



Connection with computer vision

* Convolutional neural networks revolutionized computer vision — beat humans
at classifying images since 2015

AP N '

e G -

YRN=P

=N

Filters used by the 1st convolutional 1ayer. Qak?or filters, bel!evgd to exist In our examples, they see magnetic
In visual processing in the

brain (Olshausen & Field monopoles or in spin ice, they see the ice
https://cs231n.github.io/understanding-cnn/ 1997) ’ rules

1 = _JZp HiEp O-:LZ




Analytical model for the Ising gauge theory

Convolutional layer
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fully-connected layer

8L2 terms 8L2 terms
e | e N
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W, = . and b, =
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The purpose of the filters is to individually process
each plaqguette in the spin configuration and
determine whether its energetic constraints are
satisfied or not. Basically the Conv. layer encodes
the Hamiltonian

https://github.com/carrasqu/IsingGaugeTensorFlow



Analytical model for the Ising gauge theory

Convolutional layer
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The purpose of the filters is to individually
process each plaguette in the spin configuration
and determine whether its energetic constraints
are satisfied or not. Basically the Conv. layer
encodes the Hamiltonian



Analysis of experimental data in quantum systems

nature LETTERS
thSlCS https://doi.org/10.1038/541567-019-0554-0

|ldentifying quantum phase transitions using
artificial neural networks on experimental data

Benno S. Rem'?, Niklas Kdming®1, Matthias Tarnowski'?, Luca Asteria’, Nick Flaschner’,
Christoph Becker'3, Klaus Sengstock?3* and Christof Weitenberg ©'2

Input image (151 x 151 pixel) Convolutional layer Fully connected layer Classification
8 filter (5 x 5 pixel) (Softmax)

Neuron

Fig. 1| Using a neural network to identify physical phases from experimental images. Single images of the density of atoms in momentum space after
time-of-flight (false-colour representation of a single-channel image) serve as input for a deep convolutional neural network with a variety of layers
including convolutional filters and fully connected layers. The white line represents the sliding of the filters across the input image. The final softmax
layer outputs the probability that the image belongs to one of the classes (here, Chern numbers C=-1, 0 or 1). The weights of the network are trained on
many labelled images and the network can then classify an unknown single image with high confidence. This approach—originally developed for image
recognition—works well for identifying physical quantum phases from experimental images.
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“Our results point the way to
unravel complex phase diagrams of
experimental systems, where the
Hamiltonian and the order
parameters might not be known”

Rem et al. Nature Physics 15, 917 (2019)



Experimental condensed matter physics
LETTER a

https://doi.org/10.1038/s41586-019-1319-8

Machine learning in electronic-quantum-matter
imaging experiments

Yi Zhangh!!) A. Mesaros>!!, K. Fujita3, S. D. Edkins"# M. H. Hamidian', K. Ch’ng®, H. Eisaki’, S. Uchida’8,
J. C. Séamus Davis"*?19 Ehsan Khatami® & Fun-Ah Kim?!*
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Neural networks as qguantum
states
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Neural networks as quantum states

Hamiltonian driven learning — Data driven learning —

Finding ground states. This Is just quantum state tomography, approximate
one example, but therg are many reconstruction of quantum devices, quantum
more tasks that are driven by a simulations and Quantum channels

“physical” principle.
Closest in spirit to ML tasks



Neural networks as quantum states

Hamiltonian driven learning —

Finding ground states. This is just Solving for the low-energy, time-
one example, but there are many q independent solutions of the
more tasks that are driven by a Schrodinger equation.

“physical” principle.



Ground states

* (Given a problem Hamiltonian H, approximate its ground
state.

 His a very large Hermitian matrix that describes the
behaviour of a physical system at the microscopic scale.

* Finding the ground state — the Hamiltonian’s lowest
energy eigenvector and eigenvalues.

* Typically hard because of exponential complexity.

* Solve the problem analytically or propose an Ansatz
inspired by machine learning technigues (neural network)

* |n modern variational guantum algorithms — variational
quantum eigensolver (VQE) algorithm.

St

Schematic representation of the Hamiltonian
matrix of the Hubbard model with L = 4,
NT =3, N| =2 (5 particles)

Exact Diagonalization Techniques.
Alexander WeiBeHolger Fehske.

Part of the Lecture Notes in Physics book
series (LNP, volume 739)



https://link-springer-com.proxy.lib.uwaterloo.ca/bookseries/5304

Ground states

 Hamiltonians are very large— problem Is
computationally difficult.

e Structured and sparse.

St

 Symmetries (some of which are common to

: : : : : : O
Important symmetries and inductive biases in ¥
L] []
L] ] N
ML) .l .l.li
* The rows and columns indices are usually cenemelo represemiation o the Py onen
related to real space configurations of the NT =3, NJ = 2 (5 particles) |

particles in the system and are usually ordered
using bit-strings representations (001010110).




Approximating ground states with neural networks

 Recall that we represent a guantum state as a 2N_dimensional vector of complex

entries
¥0.0,0,..
° ¥1.0.0.,..
ly) = |V1.1.0..
_1/11,1,1,..

v

(0.00...00 | Where the complex-valued
wy(1,0,0,...0,0)

.0,0
.0,0

0,0

1,1

w(1,1,1,...1,1)

What does it mean that we represent a guantum state as a neural
network?

boolean function

Wy(X1, X, -..,Xy) = Neural network(x,, x,, ..., xXy)

As a consequence, we go from an exponential amount of parameters to a neural network with a
few parameters at the cost of constraining the type of functions we can represent.



Cold neuron in our model: Ground
state of Kitaev’s toric code with
convolutional neural networks
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Ground state of the toric code

|
.
v
- |
H=-J, Zga JZE[O‘ S
‘\IJTC> X 6114)111 JZ H@EP O'N>
OO()'l,...,(f]\f

PEPS : E Verstraete, M. M. Wolf, D. Perez-Garcia, J. I. Cirac Phys. Rev. Lett. 96, 220601 (2006).

Ocold(01,...,0n) o lim expﬂJZHa

B8—00

1ED

000000000000000000

oooooooooooooooo
oooooooooooooooooooooooooooooooo

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431-434 (2017)
Dong-Ling Deng et al Phys. Rev. X 7, 021021 (2017)
Jing Chen, Song Cheng, Haidong Xie, Leit Wang, Tao Xiang arXiv:1701.04831 RBMs




Neural network quantum states

Computer Physics Input layer Hidden layer
Communications

Computer Physics Communications 104 (1997) 1-14 Output |ayer

Artificial neural network methods in quantum mechanics
LE. Lagaris', A. Likas, D.I. Fotiadis

Department of Computer Science, University of Ioannina, P.O. Box 1186, GR 45110 loannina, Greece
Received 17 March 1997; revised 22 April 1997

Input layer Convolutional layer Fully
connected

layer

3.5. Two-dimensional Schridinger equation

We consider here the well-studied [2] example of the Henon-Heiles potential.
The Hamiltonian is written as

1 /3% 3
H:—-— V > ]
2 (8}(2 * é‘y2) V()

O V(o)

. L s " | s 13 16 2x2 maps
with V(x,y) = 5(x* +y°) + m(xy —3X7). per sublattice

LE. Lagaris et al. /Computer Physi

Hidden
layer

oob66 ocoopopo
M ON = C =W,

Visible
layer

Fig. 4.

Fig. 4. Ground state of the Henon-Heiles problem (€ = 0.99866).



Neural network quantum states

nature

physics

LETTER

: 13 FEBRUARY 2017 | DOI: 10.1038/NPHYS4035

Machine learning phases of matter

Juan Carrasquilla™ and Roger G. Melko"?

KITAEV'S TORIC CODE GROUND STATE

o —~ e —~ T I
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p €D v i€V |
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. B z
‘\IJTC> x lim GQJZP HZGP 7 01, 7UN>
B—00
O714e00y ON

J. Carrasquilla and R. G. Melko. Nature Physics 13, 431-434 (2017)
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Neural network quantum states

RESEARCH

RESEARCH ARTICLE

MANY-BODY PHYSICS

Solving the quantum many-body
problem with artificial

neural networks

Giuseppe Carleo'* and Matthias Troyer"?>

The challenge posed by the many-body problem in quantum physics originates from the
difficulty of describing the nontrivial correlations encoded in the exponential complexity

of the many-body wave function. Here we demonstrate that systematic machine learning of
the wave function can reduce this complexity to a tractable computational form for some
notable cases of physical interest. We introduce a variational representation of quantum
states based on artificial neural networks with a variable number of hidden neurons.

A reinforcement-learning scheme we demonstrate is capable of both finding the ground
state and describing the unitary time evolution of complex interacting quantum systems.
Our approach achieves high accuracy in describing prototypical interacting spins models in

one and two dimensions.
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https://arxiv.org/search/cond-mat?searchtype=author&query=Carleo%2C+G
https://arxiv.org/search/cond-mat?searchtype=author&query=Troyer%2C+M

Exploration areas

 Condensed matter physics

* Quantum chemistry

* Materials science

* Atomic physics

* High energy physics and field theory
e Quantum information

* Nuclear physics

 Combinatorial optimization

Juan Carrasquilla (2020) Machine learning for quantum matter, Advances in Physics: X, 5:1, DOI: 10.1080/23746149.2020.1797528

Juan Carrasquilla and Giacomo Torlai. Neural networks in qguantum many-body physics: a hands-on tutorial. https://arxiv.org/abs/2101.11099

Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-Maranto, and Lenka Zdeborova.
Machine learning and the physical sciences”. Rev. Mod. Phys. 91, 045002 (2019)


https://doi-org.proxy.lib.uwaterloo.ca/10.1080/23746149.2020.1797528
https://arxiv.org/abs/2101.11099
https://journals-aps-org.proxy.lib.uwaterloo.ca/rmp/abstract/10.1103/RevModPhys.91.045002#tr1

Questions?



Numerical approach based on Variational Monte Carlo

 (Ground state search reframed as an optimization problem with an appropriate
cost function.

» The variational theorem in quantum physics E, = (W, | H|Y¥Y,) > E, where E,
IS the lowest energy eigenvalue of Hamiltonian matrix H.

 |¥,) is a neural network parameterizing the quantum state.

» It is possible to evaluate E, and its gradients VykE, via Monte Carlo — use
gradient descent techniques

 No data from the exact solution is needed— gradient signal comes from H

F Becca, S Sorella. Quantum Monte Carlo Approaches for Correlated Systems. Cambridge
University Press (2017)



Numerical approach based on Variational Monte Carlo

 Ground state search reframed s an optimization problem with an appropriate cost
function.

» The variational theorem in quantum physics E, = (Y, | H|¥Y,) > E, where Ej is

‘I I I‘-“:IL‘-‘-‘-‘

the lowest energy eigenvalue corresponding to the ground ~*~*-
matrix H.

 |¥,) is a neural network parameterizing the quantum state

» |t is possible to evaluate E, and its gradients V ,E, via Mol
descent techniques

 No data from the exact solution is needed— gradient signa

F Becca, S Sorella. Quantum Monte Carlo Approaches for Correlated Systems. Cambridge
University Press (2017)



Training the models

« Both £y and its gradients available through sampling.
wy(o')

E = (‘P9|I—AI\ P, = 2 | yy(o) \2 Z H__ = We interpret |y, (o) \2 as a probability distribution
, Yo\ O
_ 2 .
= Z |l yy(0) |°E), (6) % — Z E, (6) Evaluate via Monte Carlo average
0'N|l//9(0')|
* Gradients
ag.l//g(o')
0 E =Y |y o)|"— E, (6)+c.c
° J ; Wék(d) ocC
Ny o w¥(c®
2 s Ogyg(6)
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Recurrent neural network wavefunctions
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Symmetries: Spin inversion, mirror reflection, Sz. Sign: different Marshall signs for the J1-J2 model

Mohamed Hibat-Allah, Martin Ganahl, Lauren E. Hayward, Roger G. Melko, and Juan Carrasquilla Phys. Rev. Research 2,

023358 (2020)



Classical topological order

* The peculiar structure of phase space divided into sectors that are connected
exclusively by extensive rearrangements of the microscopic degrees of
freedom.



Take 28 x 28 binary images

> Size of state space: 2%°°*° = 1.017458 x 10°°°

» Bigger than the number of atoms in the known un
noise —> Probability distributions over the image:
In low-dimensional subspace of these big spaces.

Quantum

States ,
Neural

Quantum States

FIG. 3. Expressive power of classically tractable variational
quantum states. Different classes of quantum states describing a
qudit system with N degrees of freedom and comprising poly(N)
variational parameters are compared. MPS can efficiently represent
gapped ground states of one-dimensional systems. PEPS* denotes
projected entangled pair states of bond dimension y that are exactly
or approximately contracted in poly(N, x ) time on a classical com-
puter. NQS comprise all polynomially tractable TN, thus include
MPS, and PEPSx, while also representing additional states with
volume-law entanglement that are not efficiently described by such
planar TN.
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ML broad categories

Equation/physical law learning

Closed quantum systems Open quantum systems

Time-dependent Schroédinger equation Master equation
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Inspiration: The brain

. Our brain has ~ 10!} neurons, each of which communicates to other ~ 10*
Neurons

Action potential : :
_— Impulses carried
Na* ions in toward cell body
_§ § e | branches
- e 8 : dendrites of axon
£ § % K™ ions out 2 e
2 q 3 nucleus I il
et 5 .
S | —® -~ terminals
-=|__Threshold | Failed e 7 P
E Initiations S0 L, (G : =
- Resting St-ate /, ‘ \ lmpUISeS Carned ‘\_‘i
e Stimulus| away from cell body
o cell body
Hyperpolarization
0 1 2 3 4 5
Time (ms)

» Neurons receive input sighals and accumulate voltage. After some threshold they
will fire spiking responses.

 Pic credit: www.moleculardevices.com, http://cs231n.github.io/neural-networks-1/



